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[1] We compare the aftershock decay rate in natural data with predictions from a stochastic
analytical model based on a Markov process with stationary transition rates. These
transition rates vary according to the magnitude of a scalar representing the state of stress
and defined as the overload. Thus, the aftershock decay rate in the model is a sum of
independent exponential decay functions with different characteristic times. From different
shapes of the overload distribution and different expressions of the transition rates, we
discuss the magnitude of the exponent of the power law aftershock decay rate and the time
interval over which we can expect to observe this regime. Before and after this time
interval, we show that the decay is linear and exponential, respectively. From our analytical
solutions, we deduce a model of aftershock decay rate in which a power law scaling
exponent and two characteristic rates emerge. One rate is a short-term linear decrease
before the onset of the power law decay to account for a finite number of events at zero
time, and the other one can be interpreted as an inverse correlation time, after which
aftershocks no longer occur. Then, we interpret the empirical modified Omori law (MOL)
and its parameters in the framework of our theoretical model. We suggest a technique to
systematically estimate and interpret the temporal limits of the power law aftershock decay
rate in real sequences. We approximate these temporal limits from data available from
several well-known aftershock sequences and show from an Akaike Information Criteria
(AIC) that, in almost all cases examined here, our mode! fits better the aftershock decay rate

than the MOL despite a quantitative penalty for the extra parameter required. From this
work, we conclude that the time delay before the onset of the power law decay may be
related to the recurrence time of an earthquake. Finally, we suggest that the power law

decay rates extend over longer times according to the concentration of the deformation

along dominant major faults.
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1. Introduction

[2]1 Aftershocks are smaller earthquakes resulting of per-
turbations of the state of stress generated by neighboring
major events. For example, they are observed in laboratory
experiments following macroscopic fractures [Mogi, 1967],
in human-related activities following mine collapses [Phil-
lips et al., 1999] or nuclear explosions [Gross, 1996], and,
of course, with only a handful of exceptions, after other
earthquakes. Because an aftershock is an earthquake and
because each earthquake seems to put the crust in the
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conditions appropriate to the start of a new aftershock
sequence, main shocks and aftershocks are difficult to
separate from each other in earthquake catalogs. No con-
sensus has been reached about the precise definition of an
individual aftershock and conclusions about general proper-
ties of the seismicity may differ according to different
definitions [Knopoff, 2000].

{3] The origin of the aftershock frequency, and the
relationships between fault properties and the shape of the
aftershock decay rate motivate the systematic description of
the aftershock sequences [Kisslinger, 1996]. For example, a
relationship between the aftershock decay rate and the heat
flow [Kisslinger and Jones, 1991], and the role of fluids in
the mechanism of stress relaxation have been emphasized.
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Furthermore, aftershocks may reflect structural properties of
the fault zones acquired over geological timescales [Hirata,
1987], and/or stress concentration heterogeneities associ-
ated with rupture propagation [Yamashita and Knopoff,
1987]. In our work, we consider that the state of fracturing
within the aftershock zone is a critical parameter [Nanjo et
al., 1998]. We therefore concentrate on the possible rela-
tions between the state of stress, the state of fracturing, and
the range of timescales over which the aftershock sequences
extend.

[4] Aftershock sequences have internal properties, and
different relationships have been established, for example,
between the magnitudes of the largest aftershocks, the
slopes of the frequency—magnitude of the aftershocks and
the sizes or the shapes of the areas they cover {Mogi, 1967].
The strongest observation concerns the temporal behavior
of the aftershock sequences. The aftershock rates seem to
follow a power law decay and a common measure of this
decay is the parameter p of the modified Omori law (MOL)
[Utsu, 1961],

MO = )

where A(?) is the aftershock rate at time ¢, K is a constant
of proportionality, and ¢ is a time constant essential to
define a finite aftershock frequency at ¢ = 0. Frequently,
for times less than ¢, the counting of the aftershocks is
incomplete due to the overlappings of the seismograms. In
these cases, the magnitude of ¢ may reflect more an
artifact of such saturation. Hence, the question of the after-
shock frequency immediately after an earthquake remains
open.

[s] Since the original empirical formula suggested by
Omori [1894] (p = 1 in (1)), the aftershock decay rate
has been investigated all over the world [see Utsu et al.,
1995, and references therein]. More complex laws with
additional time-dependent behaviors have been suggested
[Otsuka, 1985; Kisslinger, 1993]. Different laws provide
different numbers of parameters. In this case, the best fitting
model can be determined by the Akaike Information Crite-
rion (AIC) [Akaike, 1974; Ogata, 1983). Most of the time,
exponential and power law decays are simultaneously
present. Thus, the aftershock rate makes a transition from
a power law to an exponential decay after a characteristic
timescale (otherwise, aftershocks would occur forever).
This characteristic time may be described as a “correlation
time” after which aftershocks cease to occur and healing
dominates. In this paper, we propose a new model of
aftershock decay rate with a new set of parameters. We
infer these parameters from natural data in different after-
shock sequences, and we compare the performance of our
hypothesis to the MOL hypothesis in order to determine
which is the best fit.

[6] We adopt here the same theoretical background as
Scholz {1968a] (section 2) so this study can be considered
as a logical extension of this work. In fact, because
aftershock decay rates with p value ranging from 0.9 to
1.5 are frequently observed, we focus on the fluctuations
of the power law decay with factors p < 1, p=1,p > 1
[Shaw, 1993]. We are also interested in the time limits of
this power law decay to tackle fundamental questions
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about the beginning and the end of the aftershock
sequences.

[7] In section 2, we detail our analytical approach and
suggest a model of aftershock decay rate. In section 3 we
apply it to the fit of real aftershock sequences and compare
our model to the MOL according to an AIC. In a vast
majority of cases examined here, our model outperforms the
MOL despite a penalty for an increase in complexity.
Finally, we explore the possibility of extracting from real
aftershock sequences the temporal limit of the power law
decrease. The main results of this inference are discussed
and summarized in sections 4 and 5.

2. The Model

[8] During an earthquake, the slip distribution, the
speed of rupture front propagation and the segmentation
of the fault contribute to change the distribution of the
stress on a complex network of rough and irregular
fractures. Aftershocks can be described as a part of a
relaxation process of the zones of high stress [Das and
Scholz, 1981]. Thus, we concentrate on the temporal
properties of aftershock sequences assuming that they
are primarily controlled by the major event. We postpone
the study of the magnitude and the location of the after-
shocks [Narteau et al., 2000], as well as the investigations
of factors like postseismic deformation, cascades of after-
shocks [Ogata, 1999; Sornette and Sornette, 1999] or
spatial variations of the aftershock decay rate [Wiemer
and Katsumata, 1999].

[9] Just after the main shock, the aftershock zone is
modeled by a finite number of isolated and independent
intact domains. Each of them is initialized to a local over-
load, which locally combines the state of stress and the state
of strength. Schematically, if the stress exceeds the strength,
the overload is positive, the surplus is eliminated through
the fracturing process, and the domain will produce a
unique aftershock. Therefore, under a constant state of
stress, in response to an overload o,, we consider that the
rupture initiation is the ultimate expression of the organ-
ization of fracturing at small scales. The time dependence
may come from the nature of the interactions between the
increasing number of microfractures and/or chemical reac-
tion rates which control the crack growth at an atomic scale
[Das and Scholz, 1981].

[10] Following the study of Scholz [1968a], we describe
how the aftershocks are distributed in time according to a
Markov process with stationary transition probability. In
this exponential stochastic process without memory, a
function X\ defines the transition rate from a stable state
to the rupture according to the magnitude of the overload.
At any time f, the probability that an intact domain
produces an aftershock during an infinitesimal time inter-
val dt is N\(o,)dt, and 1/X\(0,) is a characteristic time
indicating the period of time between the main shock
and the aftershock of an intact domain. Thus, for a
population of intact domains, we study the aftershocks
rate A(f) from the overload distribution N(c,,f) and the
function \(o,):

Al = /0 " N (00, IN(G,)do. 2)
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Because each domain produces a unique aftershock,

@(—;’;’—”—) = —X0.)N(00, 1) (3)
From the solution of (3) and (2), we obtain

Alt) = /OmN(oo)X(o,,) exp(—X\(o,)t)do,, (4)

where N (o,) is the overload distribution immediately after
the major event at + = 0 over a population of Ny =
[N (o,)da, intact domains. We now examine some
particular features of the aftershock decay rates calculating
using (4) from different assumed shapes of the overload
distribution A (0,) and functions X\(o,) (Figure 1).

[11] To obtain the analytical solution, we assume simple
overload distributions, specifically a uniform distribution
and an exponential decay for o, < o, (Figure 1, first
column). Through this upper limit ¢,, we assume that the
perturbation of the stress produced by a major event can not
be infinite. Therefore, immediately after an event, the range
of stress is related to the characteristics of this event and
may reflect, for example, the magnitude of the main shock,
the segmentation of the fault or regional properties such as
the heat flow. 7\(c;) may be described as a characteristic rate
constant for the domains of highest overload.

[12] To determine the shape of A\(o,), our basic constraint
is that, for a given interval of time, an increasing magnitude
of the overload increases nonlinearly the probability to
trigger an aftershock. Different time-dependent laws have
been suggested according to different experimental settings.
For example, Schoiz [1968b] suggests an exponential rela-
tionship between the strength of a single crystal and the time
to failure, while subcritical crack growth experiments pro-
vide power law relationships between the stress intensity
factor and the crack velocity [Atkinson, 1984]. Generally,
exponential works for a single crack in a periodic crystalline
structure [Lawn and Wilshaw, 1975], and power law for
multiple cracks in a stochastic granular medium {Main,
1999]. Furthermore, from results of rock mechanics experi-
ments, it is difficult to distinguish between an exponential
and a power law behavior due to the narrow bandwidth of
stress intensities measured [Atkinson and Meredith, 1987].
Thus, we consider both possibilities of an exponential and a
power law increase of the transition rates versus the magni-
tude of the overload (Figure 1, second column). The fractur-
ing process is permanently competing with strengthening
processes. Under a low stress these strengthening processes
may dominate, and prevent rupture initiation. For small
overload, we consequently adopt a different time-dependent
behavior. Practically, for a sake of simplicity, we consider a
fracturing threshold at oy = 0. At this fracturing threshold,
the transition rates switch between A\, and 0. Below the
fracturing threshold, the time required to produce an after-
shock becomes infinite, , may be described as a character-
istic rate associated with the threshold of crack growth. Its
magnitude may vary according to structural properties or
timescale associated with physical and chemical processes.

[13] From these considerations, we isolate three cases that
we study in more detail. These three cases are an exponen-

ESE 12 -3

tial overload distribution with an exponential expression of
the transition rates (Figure 1, case A, note ¢, < ¢.), and an
uniform overload distribution with both an exponential
(Figure 1, case B) and a power law expression (Figure 1,
case C, note & > 0) of the transition rates. In each case, we
substitute the equations presented in Figure [ into (4) and
change the variable of integration from o, to \(o,)t. Finally,
in every case, the aftershock decay rate is given by

_ Alv(g, 1) — v(g: M) 5)
“

A2)

with X, = \(o;) and where

Yo, x) = /0 "o~ exp(—7)dr, (6)

is the incomplete Gamma function. Nevertheless, different
cases display different aftershock decay rates:
1. case A:

4=N2
[oF

The power law decay rate corresponds to a MOL with p <1
(. If 0, € 0, p — 1, and the power law decay rate
becomes hyperbolic (see case B). For example, this
condition is met when the overload distribution flattens
(o, — o0), or when the time-dependent behavior accelerates
with respect to the magnitude of the overload (o, — 0).

2. case B:

A=N22 and g = 1.
Op

As described by Scholz [1968a)], the power law decay
corresponds to the Omori law (p = 1 in (1)).
3. case C:

1
% andg=1+-<

A=Np 5

N

The power law decay corresponds to a MOL with p > 1 (1).
If § — oo, p — 1, and the power law decay rate becomes
hyperbolic (see case B). Large power law exponent (& > 10)
are common in subcritical crack growth experiments on
geological materials [Atkinson and Meredith, 1987].

[14] Two main characteristics of (5) are a finite value at
t=0:

A(O) — A(Xg _ X{)

and a convergent integral at long times due to the finite
healing/crack growth threshold. Another characteristic is
that the two terms of the numerator constrain the power law
decay rate. If X\, = 0 and X\, — oc the power law decay is
permanent with respect to an exponent g. If not, under the
assumption that A, >> X, three major regimes emerge
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Figure 1. Different aftershock decay rates obtained from different overload distributions and different
transition rates. The transition rates versus the overload are plotted in a logarithmic scale, while
logarithmic scales are used for both aftershock rates and times. From (A) to (C), the power law aftershock
decay rate accelerates. We determine N, from [§°A (60)dog = No. In order to illustrate the equations, we
arbitrarily choose the following numerical values: o, = 10 bars, g, = 125 bars, 5. = 125 bars, § =5, 1/\, =
1 day. Note that X, = (o). x, and x;, are constants determined by a threshold of divergence between the
aftershocks decay rates and a permanent power law behavior (i.e., Omori law or MOL, with ¢ = 0 (1)
plotted with the dotted line).
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Figure 2. x, (gray) and x; (black) versus the magnitude of
the g value for three different thresholds of divergence
between the aftershock decay rate and a permanent power
law decay. Logarithmic scales are used for both axes. As
detailed in section 3, the divergence ( is expressed as a
percentage. In this figure, the solid, dotted, and dashed lines
are for ( values of 0.99, 0.9, and 0.8, respectively.

(Figure 1). According to a permanent acceleration of the
decay rate, these regimes are,

1. a linear decay for ¢ < {i—

2. a power law decay for § <7< {1

3. an exponential decay for ¢ >3*.

[15] xpand x, are constants defined from the ¢ value and a
threshold of divergence between the aftershock decay rate
and a permanent power law decay (Figures 1 and 2). In fact,
the linear, the power law, and the exponential regimes are
permanently present, but they dominate over different time
periods. A transition time can be defined when the after-
shock decay rate changes between these three regimes.
These times vary according to the magnitude of g (Figure
2) and the relative magnitudes of X, and A,. If \; is on the
same order of magnitude as X\, over short times, the linear,
the power law and the exponential decay cannot be isolated
from each other, and a transient decay persists until times
greater than x,/\,. Then the exponential decay dominates
and it is difficult to extract from the aftershock decay rate a
power law regime. This statement is also valid when g,
tends to 0 with respect to the same power law exponent, or
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when A\(0) tends to N\(o,) with respect to the overload
distribution.

[16] In this section, we obtain a power law decay with
different exponents ¢ < 1, ¢ = 1, ¢ > 1, not only from
different overload distributions but also from different
expressions of the transition rates. The range of power
law exponent fits with all the observations, and obviously,
the parameter ¢ may reduce to the parameter p of the MOL
(1) as \, — 0. Thus, the MOL is a special case of our more
general model. Finally, we propose a model of aftershock
decay rate (5), which we describe as the band limited power
law (LPL). This LPL has both a convergent integral even
with power law exponent lower than 1, and a finite value at
time ¢ = 0 due to the two time constants in the model. In the
LPL three parameters control the decay rate: ¢ the exponent
of the power law decay and A\, and X\, two characteristic
rates. Through X, and \,, the power law decay is limited by
a linear decay over short times and a exponential decay over
long times. These patterns have already been suggested and
included in other formula [Utsu et al., 1995). For example,
the parameter ¢ of the MOL for the beginning of the
sequences and the Otsuka formula or the “stretched expo-
nential” for the end of the sequences [Utsu et al., 1995,
Kisslinger, 1993]. Here, our approach is not empirical and
the temporal limits emerge from (1) the truncation of the
overload distribution at high stress and (2) the minimum
threshold of fracturing at o, = 0. These follow from the
requirement to avoid (1) stress singularities and (2) infinite
healing times. Therefore, we do not try to justify them
anymore, but focus on real data to capture such patterns,
and then try to relate the properties of the aftershock decay
rate to independent geophysical observations in order to
validate the model. In order to do this objectively, we
compare our model with the MOL hypothesis, using an
appropriate statistical test in the form of the AIC.

3. Temporal Limits in Real Aftershock Sequences

[17] In addition to the aftershock sequence of the Benham
(BN) nuclear test, we have investigate the temporal proper-
ties of well-known sequences of aftershocks of southern
California from the Kern County event (21 July 1952) to the
Hector Mine (HM) earthquake (16 October 1999) [Kis-
slinger and Jones, 1991; Gross, 1996]. These aftershock
catalogs have been downloaded from the SCEC Data Center
or provided by S. Gross.

[18] According to Gardner and Knopoff [1974], we have
preliminary selected all main shocks with at least 100
aftershocks. Then, for each sequence, we have visually
estimated the aftershock region from the epicenter map of
the first month of aftershock activity. Most of the time, we
have selected the aftershocks within circular areas, but for
several earthquakes, we adopt polygonal areas in order to
decrease the background seismicity rate (Table 1). Follow-
ing previous works, we adopt classical techniques to meas-
ure the background seismicity rate ( /), and evaluate various
cutoff parameters as the minimum magnitude (M,,;,), the
start time (Zy,,,) and the finish time (7,,,) of the sequences
[Utsu et al., 1995]. Thus, we consider sequences as long as
possible to avoid the artifacts coming from data acquisition
over short and long time periods. In order to verify that our
particular selections do not affect the nature of our results,
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Table 1. Characteristics of the Main Shocks and Regions of the Aftershock Sequences Studied in this Paper®

Main shock Date Latitude Longitude Depth M Aftershock Region

Imperial Valley (IV) 15 October 1979 32,63 —115.33 12 6.6 P =333, —115.6), (33.3, —115.7),
(32.9, —115.7), (32.6, —115.4),
(32.2, —115.4), (32.2, —115.0),
(32.3, -115.0), (32.8, —115.3)

Oceanside (OS) 13 July 1986 32.97 —117.86 6 5.4 R =1(3297, -117.78), 15 km

Big Bear (BB) 28 June 1992 3421 —116.83 5 6.4 R =(34.20, —116.80), 20 km

Hector Mine (HM) 16 October 1999 34.59 -116.27 5 7.1 P=(35.0, -116.5), (35.0, —116.3),
(34.7, —116.1), (34.3, —116.0),
(34.3, —116.2), (34.5, —116.4),
(34.8, —116.5)

Benham Nuclear Test (BN) 19 December 1968 37.25 116.48 1.4 * *

*The acronym of the aftershock sequence is indicated between brackets. R indicates a circular region and P indicates a polygonal region. For the circular
region, we precise the center and the radius, while for the polygonal region we precise the location of each comer.

we always compare them with the results of independent
studies.

[19] From the decay rate of real aftershock sequences and
the maximum likelihood procedure [Ogata, 1983], we
estimate the sets of parameters of different models of
aftershock decay rate. This method consists of approximat-
ing the difference between the N aftershocks occurring at
times 7, i € {1,2,...,N}, during the time interval [T,
Ty10p] and an intensity function A(f) defined from a nonsta-
tionary Poisson point process. The likelihood function is

(i eof -

and allows not only to estimate the parameters of the model
of A(r), but also to compare different models including
different number 5, of adjustable parameters via an AIC
[Akaike, 1974; Ogata, 1983]:

e A(t)a’t}, (7)

Tstare

AIC = 2(n, — max{In(L)}) (8)
In this optimization problem, we used the continuous
minimization annealing method described by Press et al.
[1992]). This minimization is slower than the downhill
simplex algorithm used by Gross and Kisslinger [1994],
but, avoiding local minimum, the results seem more
reliable. The AIC can only be use to compare different
models but does not provide information about the
difference between the data and the models. In fact, for
this particular problem, there is no analytical solutions for
the covariation matrix of the estimated parameters [Ogata,
1983]. Then, we apply simplified estimations of errors as
the Kolmogorov—-Smimov statistic and the Anderson--
Darling statistic. These goodness-of-fit tests assess how
well the sequence resembles to the LPL and the MOL
[Press et al., 1992; Nyffenegger and Frohlich, 1998], and
the results that we present have a level of confidence of at
least 60%.

[20] Practically, we decompose our work in different
parts. (1) We approximate and compare two independent
sets of parameters: (g, A, »p) for the LPL; (p, ¢) for the
MOL. (2) We define the best fitting model by calculating
Ayjc values, the difference between the AIC values
obtained from the MOL and the AIC values obtained from
the LPL. If A 4;c <0, statistically the LPL fits the data better

than the MOL despite the additional parameter. (3) For the
LPL, according to different thresholds ¢, we evaluate differ-
ent times > at which the aftershock decay rate diverges from
the power law decay rate (Figure 2). ( is expressed as a
percentage because it measures the ratio between A(f) and
an idealized power law decay calculated from A(f). ¢
approximates the time when the linear decay is replaced
by a power law decay, while ¢ approximates the time when
power law decay is replaced by an exponential decay. Under
the assumption that A, < X\, 5> tlc, and, £ and £t
decreases and increases with respect to { respectively. (4)
We interpret our results from their comparison with other
geophysical observations.

[21] First, we try to demonstrate that the temporal limits
of the aftershock decay rate may exist. Second, we study the
origin of the magnitude of the g value. In this purpose, we
are of course interested in aftershock sequences with partic-
ular patterns and we take advantage of previously published
results [Kisslinger and Jones, 1991; Gross and Kisslinger,
1994; Gross, 1996]. Consequently, we only describe our
results from a limited set of aftershock sequences (Table 1).
These sequences are selected as a representative sample
which have previously been studied in-depth (Figure 3).
The aftershocks sequence are identified by acronyms related
to the main shock name in order to condense the length of
the text (Table 1).

3.1.
Rate

[22] In nearly all cases, the aftershock frequencies display
a non-power law decay over short times (< day), and, most
of the time, it is due to the lack of events of small
magnitudes [Utsu et al., 1995]. Because we now investigate
the onset of the power law regime, we then have to deal
with the completeness of the catalogs of aftershocks. Here,
we propose to evaluate this completeness over short times
by studying the evolution of the values of g, 5, p, and ¢
according to increasing values of M,,;,. If the g and p values
stay constant, while the values of t% and ¢ decrease, the
same power law decay appears faster for larger magnitude
events [Utsu et al., 1995, Table 1 and Figure 2]. In this case,
the linear decay is certainly due to incomplete catalogs,
even if we can not completely eliminate other explanations
related to the rupture nucleation process or the fracture size
distribution. On the other hand, an increase of the ¢ value
with respect to increasing value of M, has never been

The Onset of the Power Law Aftershock Decay
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reported, and our experiments also never show such an
increase for the £ value. Finally, if the values of g, c, t%, and
¢ stay constant, the power law decay emerges at the same
time whatever the value of M,,,,. If these values of /{ and ¢
are not zero, it provides a solid argument for the existence
of non-power law decay at the beginning of the aftershock
sequences.

[23] In Table 2, we present and compare results from the
modeling of the aftershock sequences of the October 1979,
M; = 6.6 Imperial Valley (IV) main shock, and of the
October 1999, M,, = 7.1 HM main shock. For both
sequences, we vary the value of M, from 2 to 4 by step
of magnitude of 0.2, and the ¢} value is calculated at ( =
{0.8;0.9;0.99}. The HM is a complex aftershock sequence
but very well constrained from the seismological point of
view. Here, we only use this sequence to underline a
particular aspect of many aftershock sequence over short
times. As shown by Gross and Kisslinger [1994], there is an
active background seismicity during the IV, and we also
obtain a better fit of the aftershock sequences with the
addition of a constant term in the MOL (and the LPL) until
M., = 3.4. This background seismic noise has an amplitude
of approximately 0.05 events d~' (~18 events yr~1). For
magnitudes larger than 3.4, no background seismicity is
required to obtain the better fit. This is always the case for
the HM whatever the value of M,,,;,. For the TV, because the
aftershocks are clustered in space, we also study the internal
properties of the subsequences of aftershocks associated
with these clusters.

[24] For the IV and the HM, we can notice that values of ¢
and p have similar high magnitudes, and that they are very
stable with respect to the M,,;, value. We also observe that
there are clear correlations between the variations of the
values of (¢ and )\, and between the variations and the
magnitude of the ¢ value and the £ value. As expected from

Table 2. Simultaneous Comparisons Between the Aftershock Sequences of the IV Earthquake and of the HM Earthquake and Between

the LPL and the MOL?

LPL MOL
Muyin N N i 118 7% q L P c S Agc
IV (15 October 1979; M = 6.6, T,y = 107> days, Tyop = 200 days)
2.4 801 5.83 0.38 0.51 0.94 1.43 0.257 1.61 0.286 0.257 1.0
2.6 647 5.96 0.40 0.54 0.97 1.58 0.157 1.78 0.299 0.158 -1.1
2.8 470 6.74 0.38 0.51 0.90 1.7 0.098 1.93 0.28 0.099 -0.8
3.0 317 7.58 0.34 0.46 0.80 1.73 0.056 1.95 0.244 0.057 —0.4
3.2 212 6.24 0.45 0.59 1.02 1.87 0.034 224 0.366 0.034 -1.9
34 127 7.69 0.36 0.47 0.81 1.82 0.019 2.07 0.251 0.020 -29
3.6 68 7.35 0.33 0.44 0.79 1.59 ~ 1.67 0.191 - —4.8
38 42 6.13 0.43 0.57 1.00 1.74 - 1.86 0.276 - -3.7
4.0 26 6.92 037 0.48 0.86 1.67 -~ 1.78 0.229 - —0.8
HM (16 October 1999; M = 7.1, Ty, = 5 % 1073 days, Ty, = 800 days)
2.4 2557 1.21 1.49 2.09 4.04 1.14 - 1.27 1.25 - —4.10
2.6 1657 1.62 1.16 1.61 3.08 1.19 - 1.29 0.84 - -6.71
2.8 1130 2.38 0.79 1.10 2.10 1.19 -~ 1.29 0.57 - -1.50
3.0 726 3.38 0.55 0.77 1.47 1.19 ~ 1.28 0.40 - 5.23
3.2 462 5.41 0.33 0.47 091 1.14 -~ 1.28 0.30 - 9.21
3.4 289 11.19 0.15 0.21 0.42 1.05 ~ 1.31 0.19 - —0.84
3.6 168 27.07 0.06 0.09 0.18 1.09 —~ 1.27 0.08 - -1.63
3.8 117 62.75 0.03 0.04 0.07 1.04 - 1.21 0.04 - —4.05
4.0 77 197.87 0.01 0.01 0.02 1.00 — 1.15 0.02 - —5.07

N is the number of aftershocks for the minimum magnitude My, X has units of d”*, #,¢, and ¢ have units of days, and g and p are unitless. A ¢ is the
difference between the AICs of the LPL and of the MOL with or without a seismicity background rate according to the better fit. f;, and fj are the seismicity

background rate for the LPL and the MOL, respectively. They have units of events d ™',
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section 2, these observations confirm that ¢ and X\, are
similar ingredients in the MOL and the LPL respectively.
For constant ¢ value, these observations also support that
the onset time of the power law decay is closely related to
s, the aftershock frequency (i.e., transition rate) associated
with the zone of highest overload.

[25] From the comparison of IV and HM, we observe
different variations of the 77 value (i.e., ¢ value) in response
to an increase of the value of M,,,;,. For the IV, the 1§ value is
almost constant, while for the HM, it decreases of more than
2 orders of magnitude. Therefore, in the case of the HM, we
conclude that the aftershock power law decay starts rapidly
(<1 hour), and that the large value of c is an artifact. On the
other hand, in the case of the IV, we conclude that the
aftershock power law decay starts only after few hours
(between 6 and 18 hours). This time interval is consistent
with other similar studies based on the observations of
aftershock sequences in Japan [Yamakawa, 1968] or China
[Utsu et al., 1995]. Thus, we have the confirmation that the
onset of the power law aftershock decay rate may be not the
main shock time.

[26] Interestingly, in addition to the background seismic-
ity, two particular observations characterize the Imperial
fault. First, the heat flux in the region where is located the
Imperial fault is high [Lachenbruch et al., 1985]. Kisslinger
and Jones [1991] noted that the high p value may be related
to this heat flux. Second, the Imperial fault ruptured in 1940
during the El Centro earthquake (M = 6.9). The El Centro
earthquake extended more toward the south along the Cerro
Prieto fault, but along the Imperial fault, the surface ruptures
and the offsets were similar in 1940 and in 1979 [Sieh,
1996].

[27] For the El Centro earthquake aftershock sequence,
we find that ¢ = 1.02, \, = 30, 1)8 = 0.05 days, p = 1.02,
and ¢ = 0.04 days. Unfortunately, the size of the catalogue
prevents from the calculation at different value of M,,,.
Almost 40 years later, a cluster of the IV was located close
to the epicenter of the El Centro earthquake. For this cluster,
we find a ¢ value lower than for the other subsequences, a
larger ¢¢ value, but, one more time, the limited number of
events (16 for M., = 2.9, g = 1.3, 18 = 0.08) limits the
conclusion that we can draw, as well as the comparison with
the value suggested by Gross and Kisslinger [1994]. There-
fore, there is no clear evidence of variations of the power
law exponent between the El Centro aftershock sequence
and the IV. If there was some evidence, that should have
been a possible origin of the change of the duration of the
non-power law decay at short times.

[28] Theory predicts a finite delay whose duration is
shorter when the crust contains zones of high overload.
The data show a longer time delay, implying the absence of
zones of very high overload. This absence of zones of very
high overload may result from a very low preexisting stress
due to the occurrence of the El Centro earthquake only 40
years before and the quasi permanent background seismic
rate. In addition, through thermally activated process of
stress relaxation, the amplitude of the heat flow may also
limit the amplitude of the preexisting stress, and in return
the magnitude of the overload. In 1940, without extrapola-
tion on the preexisting stress and on the heat flow, a larger
stress perturbation produced by a larger earthquake may
explain the smaller time interval for the onset of the power
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law decay rate. In the discussion, we generalize this con-
clusion to the properties of the aftershock sequence accord-
ing to the recurrence time of earthquakes.

[29] Finally, we can see from the A 4 value, that, even if
these sequences have many different properties, the IV and
HM are better fitted by the LPL than by the MOL, with only
few exceptions as M,,;, is tuned. For the IV, this may be
explained mainly by a better fit at the beginning of the
sequence given the different shapes of the LPL and of the
MOL over short times. For the HM, the origin of the better
fit is discussed in the next section.

3.2. From a Power Law to an Exponential Aftershock
Decay Rate

[30] In this section, we investigate the possible transition
from a power law to an exponential aftershock decay rate.
This transition may occur over long times and we may have
to deal with low aftershock rates. Consequently, it is
frequently impossible to distinguish such a transition if this
transition has not been completed before the aftershock rate
approaches the same order of magnitude than the back-
ground seismicity rate. This 1s for example the case for the
Iv.

[31] As described by Gross and Kisslinger [1994], the
aftershock sequence of the July 1986, M; = 5.3, Oceanside
main shock (OS) is a typical example of low background
seismicity rate. Moreover, these authors obtain a better fit of
the OS with a so-called stretched exponential including an
exponential decay over long times [Kisslinger, 1993].
Therefore, the OS is an opportunity of testing the LPL
and of determining the superior temporal limit of the power
law aftershock decay rate.

[32] In Table 3, we explore the OS by evaluating £, ¢ =
{0.8; 0.9; 0.99}, according to different values of M,,;,,.
Simultaneously, we compare with the MOL. In the OS,
the evolution of the ¢ value with respect to M,,;, indicates
that the power law decay is present at short times. The g and
p values are less than one and reflect a slow aftershock
decay rate. The X\, values indicate a relatively low character-
istic frequency. Nevertheless, because the 5 values are
several orders of magnitude lower than T,,, we conclude
that, at this time, the exponential aftershock decay rate has
become the dominant regime. This conclusion is confirmed
by the magnitude and the sign of the A - values, which
clearly indicate that the LPL fits better the OS than the
MOL. In fact, because both the ratio between the ¢ and Tj,,,
values tends to zero and the ratio between the g and p values
is closed to one, the A ;¢ values can only be explained by a
better fit of the transition from a power law to an exponen-
tial decay rate and from the exponential decay itself. There-
fore, we have verified that the transition from a power law
to an exponential decay exists at least in this data set. For g
value less that one, it ensures a finite number of aftershocks
at infinite time.

[33] As said above, for practical reasons related to the
aftershock decay rate and the background seismicity rate,
most of the time, the characteristic rate has to be high to be
observed. In the case of the OS, a low value can be observed
because this aftershock sequence is one of the largest
recorded in California for a M; < 5.5 main shock. This
high number of events has been explained by the low stress
drop of the main shock [Hauksson and Jones, 1988] or the
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Table 3. Transition From a Power Law to an Exponential Decay for the Aftershock Sequence of the OS Earthquake and Comparisons

Between the LPL and the MOL?

LPL MOL

Moin N 10° 3, o* 5? 5% q p c Ayc

0S (13 July 1986; My = 5.3, Tyse = 1072 days, Typ = 3 x 10° days)

22 1326 57 141.5 48.4 1.5 0.66 0.86 0.117 ~124.67
24 737 58 144.2 49.8 1.6 0.67 0.83 0.033 —8331
2.6 410 56 169.0 60.8 22 0.70 0.83 0.007 4345
28 249 48 197.0 712 2.7 0.71 0.82 0.021 ~19.33
3.0 158 54 170.6 61.1 22 0.70 0.81 0.004 —15.08

2N is the number of aftershocks for the minimum magnitude M,,;,. \, has units of d™*, /5 and ¢ have units of days, and g and p are unitless. A 4 is the

difference between the AICs of the LPL and of the MOL.

low seismic release of the entire aftershock sequence [Astiz
and Shearer, 2000].

[34] In the model developed in section 2, the magnitudes
of 13, N4, and q are closely related to each other, but, in
order to study the origin of the transition from a power law
to an exponential aftershock decay rate, the magnitude of
Xg is the key parameter. This characteristic rate indicates
the largest timescale of the aftershock sequence. Indirectly,
it approximates the intensity of the strengthening process
associated with, for example, reaction-transport mecha-
nisms or mechanical process acting on the state of
strength. Because we consider that all these processes
depend on too many factors, which are difficult to dis-
sociate from each other, we only study under what range
of conditions such a characteristic rate may appear. We
now explore possible relationships between the magnitude
of the characteristic rate and independent geophysical
observations.

[35] The OS occurred in the inner continental borderland,
offshore southern California at the southern end of the
Santa Catalina fault and at the northem end of the San
Diego through fault [Hauksson and Jones, 1988; Pacheco
and Nabélek, 1988]. Between these two main geologic
structures, the strike of the faulting curves clockwise
toward the north. These fault systems seem to essentially
accommodate strike-slip motions but compressive and
extensive motions are also present. For example, the focal
mechanisms of the largest aftershocks of the OS show
reverse and strike-slip faulting [4stiz and Shearer, 2000].
Even if they disagree on the orientation of the fault plane
of the OS event, all seismological studies suggest complex
faulting patterns for this aftershock sequence. Inspired by
results from laboratory test experiments and geomorpho-
logical studies detailed in section 4 [Hirata, 1987; Nanjo et
al., 1998], we focus on this possible diversity of the
faulting patterns to explain the magnitude of X,. In fact,
we test the hypothesis that the preexisting fault network
constrains the aftershock decay rate. Precisely, we argue
that, when the aftershock sequence is located in a region in
which it is difficult to extract either a specific fault
orientation or a dominant faulting mechanism, the transi-
tion from a power law to an exponential decay rate occurs
at a higher aftershock frequency and consequently over
shorter times. This is for example the case in regions within
which no major fault exists or at the boundary between
larger scale fault systems. Then, the characteristic rate at
which the transition occur reflects structural property
related to both the diversity of the faulting and the

correlation length of the fracturing process (i.e., the max-
imum length of faults). Thus, the correlation time is related
to the preexisting correlation length of the stress field. Due
to the possible mislocation of the aftershocks associated
with the offshore location of the OS and the low value of
X, this hypothesis has to be validated by other observa-
tions, and, as in the previous section, we now use the HM
to test our hypothesis.

[36] As said above, the HM is a complicate aftershock
sequence but very well constrained by seismological obser-
vations [Hauksson et al., 2002]. Once again, we extract a
robust feature and confirm that the power law decay of the
HM is difficult to interpret. For the HM, the surface rupture,
and both the location and the mechanism of the aftershocks
support a partition of the aftershock sequence. We decom-
pose the HM in three zones delimited from the north to the
south by the 34.75°N and the 34.48°N latitudes, respec-
tively. Thus, we isolate different zones with different
properties. As shown by Hauksson et al. [2002], the after-
shocks of the southern and central zones are mostly asso-
ciated with fault planes oriented following both a N6°W and
a N30°W trends. The focal mechanisms of the largest
aftershocks (>M; = 4.5) are essentially strike-slip while
the focal mechanisms of the smallest are more diverse. Of
course, the aftershocks within these zones may reveal an
increasing complexity as far as they are described in more
detail but, from our point of view, they are simple. In fact,
these aftershocks are confined along major fault planes
which accommodate the rotating condition imposed by both
the dextral strike-slip motions along these fault planes and
the regional stress field [Ron et al,, 2001]. On the other
hand, in the northern zone, Hauksson et al. [2002] notice
that aftershock focal mechanisms are more complex, includ-
ing not only strike-slip events with a larger variety of fault
strike but also normal faulting. In addition, this diversity is
also present in the spatial distribution of the aftershocks, in
the preexisting fault network, and in the surface ruptures
associated with the main shock [USGS and CDMG, 2000].

[37] In Table 4, we evaluate the parameters of the LPL
and the MOL as well as t{ofz} for the three subsequences of
the HM according to different values of M,,;, starting at
M,,.;, = 2.6. The comparisons between LPL and the MOL is
done via the A . Only sequences with more than 40
events are taken into account and all the results can be
generalized until values of Ty,,, < 16 days. As observed by
Wiemer et al. [2002), the fluctuations of both the p and the ¢
values indicate that these results are not very stable. There-
fore, the power law decay of these subsequences are less
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Table 4. Transition From a Power Law to an Exponential Decay For the Three Subsequences of the HM Main Shock Aftershock

Sequence and Comparisons Between the LPL and the MOL”

LPL MOL
Mo N 10° ), N, 7* 7* g P c Agc
HM Nord (16 October 1999; M,, = 7.1, Tyyor = 5 X 1073 days, Tqep = 800 days)
North of 34.75°N
2.6 210 277 19.4 0.032 44 0.39 and 1.36 19.4 -17.17
2.8 137 243 19.4 0.042 13.0 0.50 and 1.00 275 —13.70
3.0 89 210 28.5 0.031 19.3 0.53 0.80 0.16 ~8.57
32 53 295 31.8 0.030 19.1 0.59 0.85 0.09 ~7.38
North of 34.48°N South of 34.75°N
2.6 381 7 14.4 0.098 2230 0.88 0.89 0.04 ~3.39
2.8 262 * 15.9 0.096 * 0.95 0.95 0.04 -3.31
3.0 176 * 17.6 0.093 * 1.03 1.02 0.03 ~2.74
32 112 * 23.6 0.073 * 1.09 1.09 0.02 ~1.43
34 69 * 18.1 0.110 * 1.27 1.29 0.05 ~0.91
South of 34.48°N
2.6 114 11.1 0.138 * 0.96 0.96 0.059 ~0.38
2.8 79 14.8 0.109 * 1.00 1.00 0.044 0.45
3.0 47 * 16.3 0.107 * 1.10 1.11 0.051 1.16

2N is the number of aftershocks for the minimum magnitude M,,;,. The star symbols indicate that our estimations of X, are equal to the lowest value
allowed by our computations (10~%). X, and X, have units of d !, £§%, 12%, and ¢ have units of days, and g and p are unitless. A ¢ is the difference between

the AICs of the LPL and of the MOL.

constrained than the one of the entire sequence (see Table
2). Nevertheless, we point out that in the northern zone, the
X, values are high while they tend to zero in the southern
zones. Furthermore, the X, values are more stable than the g
value and the fluctuations of these two parameters are not
related to each other. The tg‘g value are more than 1 order of
magnitude smaller than T,,,. Moreover, the variation of the
A 4jc value indicates that the LPL fits better the northern
zones of the HM than the MOL, while in the southern zones
the better fit is obtained by the MOL. These results suggest
that the transition from a power law to an exponential decay
has been completed in the northern zone, and that such a
transition is impossible to distinguish in the southern
regions.

[38] Once again, we argue that the onset of an exponential
decay in the northern zone may be related to different
characteristics of the fault network. Interestingly, in addition
to the spatial distribution of the aftershocks, larger scale
geological structures can also provide supplementary evi-
dence. The northern zone of the HM is located at the
boundary between two sets of conjugate strike-slip faults.
The dextral fault system extends in a N30°W direction and
includes the fault segments which have ruptured during the
Landers sequence and the HM earthquake, while the sinis-
tral fault system is located more NE and extends in a N70°E
direction. At the boundary between these fault systems, no
major structure emerges and as shown by the April 1947,
Manix earthquake (M; = 6.2) sequence [Doser, 1990], it is
difficult to dissociate left-lateral and right-lateral motions.
Therefore, we conclude that, in the northern zone of the
HM, the transition from a power law to an exponential
decay is closely related to the lack of major fault and the
partition of the deformation between dextral and sinistral
faulting.

[39] A subsequence of HM and the OS show similar
transitions from a power law to an exponential decay. They
are both located at the boundary between larger fault
systems and characterized by the diversity of the focal
mechanism of their larger events. More indices of such a

relationship between the morphology of the fault systems
and the aftershock decay rates are presented in section 3.3
and discussed in section 4.

3.3. A Transient Power Law Aftershock Decay Rate

[40] In this section, we explore another regime of after-
shock sequences in order to describe additional advantages
of the LPL and validate previous hypothesis.

[41] Only 3 hours after the 28 June M,, = 7.3 Landers
earthquake, its largest aftershock was the M,, = 6.2 Big
Bear (BB) earthquake. Given the distance from the Land-
ers rupture (~35 km) and the magnitude of this event, the
BB aftershock sequence can be treated as an independent
subsequence. In this region, the seismic background is
relatively high but does not improve significantly the fit of
this aftershock sequence. In Table 5, we explore the BB by
evaluating the parameters of the MOL and the LPL as well
as 1{01'?2} according to different values of M,,;,. The varia-
tions of the ¢ and ¥ values indicate that the power law
decay is present over short times. The X, values are high
and associate with low values of 75'® which reveal that the
transition toward an exponential decay is completed only a
couple of weeks after the BB earthquake. Consequently,
the time delay #5-° — #)'® is short and the power law decay
is a transient regime toward the exponential one. The A 4
values are negative while the p and g values are more and
less than one respectively. Therefore, the faster power law
decay shown by the MOL can be explained by a slower
power law decay undergoing a transition toward an
exponential decay over short times.

[42] The temporal description of the BB and the northern
sequence of the HM bave many things in common. Seis-
mological and regional tectonic studies provide other sim-
ilarities [Hauksson and Jones, 1993]. For example, the
largest events of the BB exhibit different focal mechanisms
and this sequence is decomposed in different clusters of
aftershock including subparallel left-lateral faults, which
have never been mapped before. From our point of view,
the most important is that the BB region is also a boundary
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Table 5. Transient Regime Toward an Exponential Decay Rate of the Aftershock Sequence of the BB Main Shock and Comparisons

Between the LPL and the MOL?

LPL MOL
Mopin N 103 ), s s S8 q p c Agc
BB (28 April 1992; M,, = 6.2, Tyare = 5 x 107° days, Trop = 150 days)
238 409 18 9.51 0.13 6.07 0.75 1.24 0.51 —~23.00
3.0 273 14 15.37 0.09 9.78 0.82 1.12 0.18 —12.82
32 200 14 18.81 0.08 11.87 0.88 1.13 0.12 —-7.70
3.4 132 15 38.37 0.04 10.57 0.87 1.10 0.06 —423
3.6 87 15 49.10 0.03 12.94 0.94 1.10 0.03 —2.83

®N is the number of aftershocks for the minimum magnitude M,,;,. \, and X, have units of d~7, 1§, /2%, and ¢ have units of days, and ¢ and p are

unitless. A 4 is the difference between the AlCs of the LPL.

between two major fault systems. In fact, the BB region is
limited on the north by a major thrust, and on the south by
the San Andreas fault system. In addition, the recent
seismicity suggests that the deformation is partitioned
between thrust and more active strike-slip faults [Webb
and Kanamori, 1985]. As before, we propose that this
partitioning and the lack of dominant fault explain the high
aftershock rate at which the power law decay disappear in a
faster exponential decay. Such a transition can also be
observed under different geophysical contexts at lower
deformation rate.

[43] The earthquake activity after a nuclear explosion may
be treated as an aftershock sequence since the explosion also
perturbs the preexisting stress field. Such a sequence was
recorded following the BN underground nuclear test on
December 1968 [Hamilton and Healy, 1969]. Table 6
summarizes the fits of the LPL and the MOL and evaluate
the best fitting model via the A ;¢ according to different
values of M,,;,. Our result show that the LPL fits better the
BN than the MOL and confirm that an exponential decay
rate is a major ingredient of the aftershock decay rate of this
nuclear test [Gross, 1996]. Under this condition, the high p
values only indicate that the MOL is unable to deal with this
faster decay. The power law decay measured by the LPL is
extremely slow (<0.5) but the main result resides in the
magnitudes of the characteristic rates. The magnitude of A,
tends to infinity while the magnitude of X\, is high. Then,
when they do not only reflect the overlapping of the seismo-
gram (~6 hours according to Hamilton and Healy [1969)),
the 1% values tends to zero. This observation may be related
to the difference between the mechanisms of a detonation
and the physics of the earthquake. A detonation unlike a
rupture propagation is an instantaneous and predetermined
perturbation of the state of stress. Then, for nuclear tests,

zones of higher overload may exist because they can not be
associated with the main event. On the other hand, the t§"8
values are always lower than 30 hours and indicate that the
transition toward the exponential decay is almost immediate.
Supported by seismological and geodetic studies, we empha-
size that this observation is again related to the morphology
of the fault network but also to the magnitude of the regional
stress field. First, the focal mechanisms of the largest after-
shocks are partitioned between right lateral strike-slip and
dip-slip, and, as proposed by Hamilton and Healy [1969],
this diversity appear to respect the regional motions. Second,
the strain rate is relatively low in this region and we consider
that, in average, this region is far from failure (i.e., higher
crustal strength). Thus, both the partitioning of the deforma-
tion and the low magnitude of the strain may produce a rapid
transition toward an exponential decay. In this case, the
power law decay is a transient state, and the MOL can not be
reasonably used to model such a sequence.

4. Discussion

[44] From a restricted formalism and different examples,
we have developed and tested a model of aftershock decay
rate. This is a static model which describe the entire
sequence from a state defined immediately after the main
shock. Friction laws, cascades of aftershocks and dynamical
effects are not in the scope of this model but we agree that
they may have an impact on the aftershock sequence
[Dieterich, 1994; Ogata, 1999; Sornette and Sornette,
1999]. The purpose of this article is to underline different
possible behaviors related to the aftershock temporal dis-
tribution, and, it is a chance that such behaviors can be
approached by a restricted formalism based on physical
principle. The selection of only few aftershock sequences

Table 6. Transient Regime Toward an Exponential Decay Rate of the Aftershock Sequence of the BN Nuclear Test and Comparisons

Between the LPL and the MOL?

LPL MOL
Mumin N 10° X, b 7* 3" q )4 c Auc
BN Nuclear Test (19 December 1968; T = 2 % 1074 days, Ty, = 134.8 days)
1.7 935 24 1.99 0.23 0.14 0.30 2.00 8.88 —13.69
1.9 842 25 1.35 0.50 0.67 0.42 2.11 8.95 —15.60
2.1 680 26 1.45 0.56 1.20 0.49 2.02 7.13 —16.31
2.3 524 32 2.38 0.27 0.40 0.40 2.11 6.70 -16.23
2.5 366 40 * * 0.04 0.26 2.17 5.69 -19.70
2.7 240 40 * * 0.20 0.36 1.91 3.49 —27.88
2.9 162 37 * * 0.55 0.44 1.65 1.94 24.28

N is the number of aftershocks for the minimum magnitude M,,;,,. The star symbols indicate that our estimations of X, are equal to the lowest value
allowed by our computations (107%). X, and X\, have units of d!, £}, £5, and ¢ have units of days, and ¢ and p are unitless. A 4 is the difference between

the AICs of the LPL.
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for analysis means that the empirical support provided for
the model has still to be improved and we now plan to
extend our study to a large suit of aftershock sequences. On
the other hand, direct simulations done via a multiscale
cellular automaton confirm the theoretical results presented
in this work [Narteau et al., 2000].

[45] Our model is consistent with the data, and, in almost
all cases examined here, it outperforms the MOL hypothesis
despite a penalty for the extra parameter. Specifically, it
seems to capture essential aftershock behaviors not only over
shortest and longest times but also during the transition from
one regime to another.

[46] In our model, the power law decay is limited over
short and large times by characteristic aftershock rates, X,
and \,. Then, if X, and X, are 0 and infinity respectively, the
aftershock decay rate is hyperbolic with respect to the
exponent g. ¢ and X\, act as p and ¢ in the MOL (1), while
over long times the A, value can be associated to a transient
time of an exponential decay. Consequently, if \, — 0 and p
= ¢, ¢ can be derived from X, to make (1) and (5) equal.
Because X, and X, may converge to each other, the after-
shock decay rate can take many different forms but the final
stage is always an exponential decay. We showed that such a
diversity may be observed in real aftershock sequences and
we therefore maintain that our model of aftershock decay
rate complements the MOL. Furthermore, this richer class
of behaviors is obtain through physical assumptions which
can give a deeper understanding of the genesis of the
aftershock sequence.

[47] This model is not empirical, it approximates charac-
teristic timescale from a time-dependent law and a sche-
matic state of stress within the fault zone. Consequently g,
X; and X, can be associated with physical parameters as
summarized below.

[48] Theoretically, the magnitude of ¢ is determined by
the shape of the time-dependent law and the shape of the
overload distribution (Figure 1, columns 1 and 2). Steeper
slopes of these relationships correspond to lower magnitudes
of the ¢ value. Thus, g reflects not only the complexity of the
overload distribution resulting from the stress perturbation
and the preexisting stress but also the internal acceleration
process leading to the rupture. It can explain not only the
range of power law decay reported in the literature (0.9—1.5
according to Utsu et al. [1995]) but also the spatial varia-
bility of the p value in an aftershock zone [Wiemer and
Katsumata, 1999]. In our model, because the power law
decay is limited in time, we propose a larger range of ¢ value
from 0.3 to 1.9. In general, the g value is lower than the p
value and lower than 1. The transition toward an exponential
aftershock decay rate over long times may explain the
difference between the ¢ and the p values but it definitely
limits the number of aftershocks. Some sort of transition is
surely inevitable for any event with p < 1, since otherwise an
infinite number of aftershocks would eventually occur.

[49] The characteristic rate ), determines the lowest
timescale of the aftershock sequence and it may be related
to the rupture duration. The magnitude of this characteristic
rate is associated with the highest magnitude of the overload
just after the main shock. Because it simultaneously reflects
the absolute crustal strength and the highest stress pertur-
bation produced by the main shock, only the combined
effect of these two factors can be inferred.
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[s0] The characteristic rate \, determines the largest
timescale of the aftershock sequence. The magnitude of
X\, approximates the acceleration of the fracturing process at
the threshold under which the strengthening process dom-
inates and prevents the initiation of the rupture. From
different examples, we have related this rate to the structural
scale of faulting and the complexity of the fault network,
notably its correlation length. For this reason, ;' can be
referred to as a correlation time.

[s1] The temporal limits of the power law aftershock
decay rate can be derived from X\, and ;. The comparison
between these temporal limits and independent geophysical
observations provides different pieces of evidence in order
to describe more general aftershock sequence properties.

[s2] When it is not an artifact, it is assumed in this paper
that the onset of the power law aftershock decay rate is
delayed according to a decreasing magnitude of the zones of
highest overload. A lack of such zones may be associated
with (1) the earthquake recurrence time and fault interac-
tions, (2) the weakening process related to the deformation
rate along faults, (3) the regularity of the rupture, and (4) the
heat flow and the pore pressure. Therefore, we suggest that
short recurrence times, regular faults and high deformation
rates are good indicators of large ¢ value (~f;). Never-
theless, most of the time, as for example for the IV after-
shock sequence, it is more likely a combination of these
different factors which can explain the origin of the magni-
tude of the ¢ value (~f;). To differentiate between these
factors, we plan to study the first stages of other aftershock
sequences, and particularly these produced by similar rup-
ture patterns, if possible along the same fault.

[s3] The concept that the aftershock sequence properties
may be related to the network of existing fractures has been
suggested from laboratory tests by Hirata [1987]. In a
sample of basalt under uniaxial compression, he recorded
successive bursts of acoustic emissions and extracted from
them main shock-aftershocks sequences. Following the
advances of the fracturing process, he argued that the
aftershock decay rates operates a transition from an expo-
nential decay (~exp(—pt)) to an Omori’s power law decay
(1) and that the p value continuously decreases. From
geomorphological analysis and measurements of the fractal
dimension of the fault system in aftershock regions, Nanjo
et al. [1998] also find that the p value decrease with time
according to the development of the fault network.

[54] Our results appear to verify that the preexisting fault
network controls some characteristics of the aftershock
decay rate. More exactly, we have observed that the strain
rates, and both the shape and the complexity of the fault
networks affect the aftershock frequency at which the
exponential decay dominates the power law decay. This
frequency decreases according to an increasing complexity
of the fault network. Then, aftershock regions at the
boundary between larger fault systems and zones under
low strain rates exhibit a higher aftershock rate when the
exponential decay appears. If the correlation time is less that
2 days, then the power law decay can not be seen.

[ss] From our study and previous modeling [Narteau et
al., 2000], we conclude that the concentration of the defor-
mation along major faults and the emergence of a dominant
faulting mechanism both decrease the amplitude of \,. Then,
following the evolution of the fault network [Cowie, 1998;
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Figure 4. Schematic representation of a possible evolution
of the aftershock decay rate through time according to the
evolution of fault network. The curves represent (5) with
A=1,%,=10° g =1, and \, varying from 1 to 10”7 in
logarithmic steps. The insets represent fault networks at
different times. The lower insets represent the evolution of
a dextral strike-slip fault network, while the upper one
represents the evolution of a network of conjugate strike
slip fault (Narteau, submitted manuscript, 2002).

C. Narteau, Formation and evolution of a population of
strike-slip faults in a multiscale cellular automation model,
submitted to Geophysical Journal International, 2002, here-
inafter referred to as Narteau, submitted manuscript, 2002],
the power law decay phase dominates the aftershock decay
rate over larger and larger time periods. Even if we have not
enough indices to distinguish any change of the p value, we
argue that our observations are one step further the obser-
vations of Hirata [1987] and Nanjo et al. [1998]. We suggest
that the exponential and the power law decay are perma-
nently present and that the transition observed by Hirata
[1987] only reflects the increase of the transient time
associated with the exponential decay (Figure 4). The
evolution of the p value also observed by Nanjo et al
[1998] may be only an artifact resulting from the estimate
of the parameters of the MOL. Because the power law and
the exponential tail are simultaneously present, the estima-
tions should include both decay laws. Consequently, we
propose to systematically test our model of aftershock decay
rate in order to distinguish in time these different regimes.
[s6] This paper has presented and discussed evidence that
in aftershock sequences, the transient time of an exponential
decay may be strongly related to the correlation length of the
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preexisting fracture field (Figure 4). Such a relationship
between a correlation time and a correlation length is com-
mon in the physics of critical phenomena. From this point of
view, the variation that we suggest indicates that the after-
shock regions are converging toward a critical point from a
subcritical state. At this critical point, the correlation length—
time is infinite. In our case, it corresponds to a permanent
power law decay. This link between the earthquake physics
and the critical phenomena physics has already been sug-
gested by many authors [4/légre et al., 1982], and the gamma
function has been used under many different geophysical
contexts in order to describe some spatial-temporal properties
of the fracturing process [Main, 1996]. Here, we add another
element to this growing body of evidence.

5. Conclusion

[57] In this study of the aftershock decay rate we first
derived constitutive rules via a Markov process with sta-
tionary transition rates, and hence derived the magnitude of
the exponent of the power law decay from different states of
stress and different time-dependent behaviors. Analytical
solutions for exponents g larger, equal and lower than 1 are
presented. These analytical solutions use the same equation
with different parameters, and we propose this equation as a
general model of aftershock decay rate. In this model, the
power law decay is limited in time by two characteristic rate
constants. Over short times, a linear decay dominates while
over long times an exponential decay dominates. Power law
decay rates appear between these major regimes and if the
characteristic rates are on the same order of magnitude, only
an exponential decay may emerge over long times. Our
model has a finite frequency at 1 = 0 and a convergent
integral. Most of all, it incorporates physical assumptions
which can be validated on real aftershock sequences and
independent geophysical observations.

{s8] From the comparison with real aftershock sequences,
we show that, in almost all cases examined here, our model
provides a better fit than the MOL. From the confrontations
with independent physical observations, we conclude that the
duration of the linear decay regime just after the main shock
may be a consequence of the lack of zones of highest stress.
Then, short repeat time and regular rupture are possible
ingredients that prolong this initial regime. We also suggest
that the duration of the power law decay phase increases with
time as long as the strain concentrates on larger and larger
faults with one particular type of faulting mechanism.
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