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OBSERVATIONS / MODELS
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The word complex comes from the Latin 
“complexus” and means a whole made up of 
many interacting , interwoven parts.

A complex system is said to be adaptive if the 
system can change its behavior under external 
influences.

COMPLEX ADAPTIVE SYSTEM
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SOME DESCRIPTIONS. 1

Computation What are the limits of computers and what does it mean 
to compute? The theory of computation yields a surprisingly simple 
definition of what it means to compute: one can construct higher
mathematical functions with only a very small set of primitive 
computational functions as a starting place.

Fractals Beautiful images that can be efficiently produced by iterating
equations. They are often found in natural systems.

Chaos A Chaos makes the future behavior of deterministic systems 
impossible to predict in the long term, but predictable in the short 
term. Often associated with chaos, there is a special type of fractal 
known as a strange attractor. 
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SOME DESCRIPTIONS. 2

Complex Systems Consisting of many very simple units that interact. 
The amount of interaction among agents (components) partially 
determines the overall behavior of the whole system. On one extreme, 
systems with little interaction fall into static patterns, while on the other 
extreme, overactive systems boil with chaos. Between the two  
extremes is an region of criticality.

Adaptation Due to changes of the environment (the action of external 
forces), the complex systems may change, adapt, learn, and evolve.

(Flake (1998))
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FEEDBACK

Is the most frequent mechanism of interaction among the different 
components of natural systems.

Consists in the interaction of a signal with itself, as for example when 
the output of a signal interacts with the input.

Feedback can be negative (tend to reduce the output), positive (tend 
to amplify the output) or bipolar (may amplify or reduce the output).

Bipolar feedback is present in many natural phenomena and is related 
to its regulation. Negative feedback keps the stability of a system 
against external variations, whereas  positive feedback increase the 
possibilities of divergence of the system and thus opening the 
possibilities of the system to new equilibrium states.

In natural phenomena, multiplicative noise may be an important 
contribution to feedback.
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LINEAR AND NONLINEAR SYSTEMS

Linear systems are characterized by the property:

For them applies the superposition principle :

For a nonlinear system the first relation does not  apply. For example,

As well, the superposition principle is no longer valid, being substituted 
by a competition between the different components.

( ) ( ) ( ).f ax b y af x bf y+ = +

( ) .in t
n

n

x t c e ω
∞

=−∞

= ∑

( ) ( ) ( )sin sin sinx y x y+ ≠ +
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sin 0x k x+ =ɺɺ

3 0x k x hx+ + =ɺɺ
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Microseism activity: 

an example of a natural 
nonlinear system
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COMPLICATED vs. COMPLEX. 1

• A complicated system may consist in many simple 
systems, each one acting independently. The global 
behavior is the sum of the different  contributions.

• A complex system is that consisting of interconnected or 
interwoven parts interacting continuously. 

The difference of a system behaving as complicated or 
complex lies precisely in the way the different parts may 
interact (no interaction, linear interaction, nonlinear 
interaction)
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The elements and 
their connections are
equally important

+
Simple algorithms
originate responses
simple and predictible

+
The elements of the
response are fully
determined

= complicated

Connections are 
critical, individual 
elements no

+
Simple rules originate 
responses complex 
and adaptable 

+
The elements have 
capacity of response 
inside the rules

complex=

COMPLICATED vs. COMPLEX. 2
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PHYSICS OF THE EARTH

Gravity field

Magnetic field

Thermal flux

Elastic waves

Geodynamics

PLANET EARTH

Simple
systems

Complex
system
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CHARACTERIZATION OF COMPLEX SYSTEMS

• External manifestations

• Spatial structures

• Temporal evolution of the system (often defining cycles)

• Relation of the system with its environment

• Ability of the system to self-organize (due to interactions 
among its elements) and/or to adapt (accommodation of 
the system to variations of the environment)

• Appearance of emergent structures and behaviors
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QUANTIFICATION OF COMPLEX SYSTEMS

We should be able to identify

• Its elements

• How the elements interact

• How the complex systems emerge

• How the complex systems evolve and their predominant 
spatio-temporal scales

• The interaction of the system with the environment
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THE RISE OF COMPLEXITY

• Emergence

• Complexity

• Self-organization 

• Self-Organization vs entropy

• Patterns

• Adaptation 
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Emergence is...
1. ... what parts of a system do together that they would not do by 

themselves: collective behavior.
How behavior at a larger scale of the system arises from the                 
detailed structure, behavior and relationships on a finer scale.

2. ... what a system does by virtue of its relationship to its environment 
that it would not do by itself: e.g. its function.
Emergence refers to all the properties that we assign to a system 
that are really properties of the relationship between a system and its 
environment. 

3. ... the act or process of becoming an emergent system.

EMERGENCE

In short: the term “emergence” refers to a process by which a 
system of interacting elements acquires qualitative ly new pattern 
and structure that cannot be understood simply as t he 
superposition of the individual contributions .  ���� HOLISTIC appr.
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• Complexity is …(the abstract notion of complexity has 
been captured in many different ways. Most, if not all of 
these, are related to each other and they fall into two 
classes of definitions):
– 1) ...the (minimal) length of a description of the 

system.
– 2) …the (minimal) amount of time it takes to create 

the system
• The length of a description is measured in units of 

information. The former definition is closely related to 
Shannon information theory and algorithmic complexity, 
and the latter is related to computational complexity.

COMPLEXITY (of a complex system)
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The most robust and unambiguous examples of self-organizing systems 
are from physics, although it is also relevant in chemistry, and is central 
to the description of biological systems. 

There are also examples of "self-organizing" behavior in the literature of 
many other disciplines, both in the natural sciences and the social 
sciences such as economics or anthropology, and has also been 
observed in mathematical systems such as cellular automata (CA).

SELF-ORGANIZATION. 1

Self-organizing systems are systems in which patter n and 
structure at the global level arises solely from in teractions among 
the lower-level components of the system. The rules  specifying 
interactions among system’s components are executed  using only 
local information, without reference to the global pattern.

The pattern is an emergent property of the system, rather than a
property imposed on the system by an external influ ence.



24

Self-organization usually relies on four basic 
ingredients:

1. Positive feedback

2. Negative feedback

3. Balance of exploitation and exploration

4. Multiple interactions

SELF-ORGANIZATION. 2
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SELF-ORGANIZATION vs. ENTROPY

Self-organization (“order”) challenges an earlier paradigm of 
ever-decreasing order, based on the second law of 
thermodynamics: entropy is a measure of the statistical 
"disorder" at a microstate level. However, at the 
microscopic or local level, the two need not be in 
contradiction : it is possible for a system to reduce its 
entropy by transferring it to its environment.

In open systems, it is the flow of matter and energy through 
the system that allows the system to self-organize, and to 
exchange entropy with the environment. This is the basis of 
the theory of dissipative structures. Ilya Prigogine noted that 
self-organization can only occur far away from 
thermodynamic equilibrium.
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PATTERNS. 1

Pattern refers not only to a particular arrangement of objects in space , 
but also to structure and organization in time .

In self-organizing systems, pattern and organization develop through  
interactions internal to the system, that is, without the intervention of 
external influences. The pattern is an emergent property of the 
system itself .
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PATTERNS. 2

Based on physical and 
chemical properties

1. Belousov-Zhabotinsky
reaction

2. Bénard convection cells
3. Sand dune ripples
4. Glass cracks 
5. Mud cracks

Benard convection cells
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Non-equilibrium Pattern Formation vs
Equilibrium Phase Transitions. 1

Natural phenomena can be considered as open (dissipative) systems far 
from equilibrium, whereas phase transition (as for example the Ising
model) are related to equilibrium systems (see Appendix).

The Benard convective cells illustrates some features of non equilibrium 
pattern formation (thus order creation) that are similar to those of 
second-order phase transitions in equilibrium systems:

1. In both cases the pattern formation depends on a parameter 
crossing some value (compare the Ising model with the Benard cell).

2. There is a change of symmetry as the threshold is crossed.

3. Dissipative structures show order at a length scale that is much
larger than the intrinsic microscopic length scale: a large correlation 
length emerges that allows the system to organize itself at a 
collective level. This is similar to what happens near a second order 
phase transition.
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Non-equilibrium Pattern Formation vs
Equilibrium Phase Transitions. 2

There are also some differences:

1. In non-equilibrium systems it is impossible in general to determine 
the exact pattern that will be formed, as the system is usually 
sensitive to various details and noise. By contrast, the state of an 
equilibrium system is uniquely determined by extremal principles, 
like the minimization of free energy. There is, thus, more variety of 
patterns in non-equilibrium systems, as Nature proves.

2. The final (away from the transition point) order of equilibrium 
systems shows a characteristic length scale similar to that of the 
underlying level. However, the patterns in non-equilibrium systems 
have no relation to the underlying structure. In fact, the large 
correlation length of dissipative structures is a classic example 
of an emergent property.
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DISSIPATIVE STRUCTURES

The order and complexity in complex systems is possible if they are 
open systems that are far from equilibrium.

By contrast to closed systems in equilibrium, which evolve towards a 
state of “boring” uniformity where differences and irregularities are 
smoothened out, open systems that are out-of-equilibrium can evolve 
towards states that display macroscopic order and patterns. This order 
is dynamic, instead of the static order of the equilibrium systems.

The term dissipative structures is often used to describe non-equilibrium 
open systems which take in matter or energy, also dissipate matter 
and/or energy, and which display ,macroscopic structure or order not 
inherent at the microscopic level.

Note that the inflow is necessary to maintain the system out of 
equilibrium, while the dissipation is required for decreasing the entropy 
of the system (but of course increasing that of the environment much 
more, as well as to maintain stability (remove the excess  of energy or 
mass).
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PATTERNS. 3

A far from equilibrium system can self-organize in emergent structures, 
known as patterns. This property  allows us to shorten its description: we 
need to describe  only one simple structure. This structure may repeat in 
space (Benard cells) or in time (climatic seasons). 

The structures (patterns) can also be viewed as prototype s, that can be 
repeated at infinitum.

The relation between a structure as a repetition and a structure as a 
prototype is just the relation between to types of emergent properties: 
those that arise from a relation in the components of a system for one 
side (self-organization ), and those that arise from a relation between 
the system and its environment (adaptation ).
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ADAPTATION

An adaptive system is a system that is able to adapt its behavior 
according to changes in its environment or in parts of then system 
itself, as for example a human being. 

A       B           C
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ADAPTATION AS FIT

A configuration of a system may be called “fit” if is is able to maintain or 
grow given the specific configuration of its environment.

An unfit configuration is one that spontaneously disintegrate under new 
boundary conditions.

Different configurations can be compared as to their degree of fitness, 
or likeliness to survive under the given conditions imposed by the 
environment.

Adaptation can be conceived as achieving a fit between system 
and environment. 

It follows that every self-organizing system adapts to its environment: 
self-organization implies adaptation .

Systems may be called adaptive if they can adjust to changes in 
boundary conditions while keeping their organization.
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REGULATION AND THE EDGE OF CHAOS

Adaptation can be modeled as a problem of regulation or control, 
minimizing deviations from a given configuration. This means that the 
system must be able to 

1. produce a sufficient variety of actions to cope with each of the 
possible perturbations

2. select the most adequate counteraction for a given perturbation.

Variety can be fostered by keeping the system suficiently far from 
equilibrium so that it has plenty of stationary states to choose from. 

Selectivity requires that these configurations be sufficiently small in   
number and sufficiently stable to allow an appropriate one to be
“chosen” without danger of losing the overall organization.

Complex adaptive systems tend to reside on the “edg e of chaos”, 
the narrow domain between frozen constancy (equilib rium) and 
turbulent, chaotic activity. 
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Regulation and the edge of chaos

� Self Organized Criticality

� Control parameters

Modeling of natural phenomena

EDGE OF CHAOS

PREDICTABILE UNPREDICTABLE

ORDER CHAOS

COMPLEX
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• Chaos deals with deterministic systems whose 
trajectories diverge exponentially over time

• Models of chaos generally describe the dynamics of one 
(or a few) variables which are real. Using these models 
some characteristic behaviors of their dynamics can be 
found

• Complex systems do not necessarily have these 
behaviors. Complex systems have many degrees of 
freedom: many elements that are partially but not 
completely independent

• Complex behavior  → "high dimensional chaos”

CHAOS vs. COMPLEX



37

There are two primary regimes of rules, 
periodic (Class II) and chaotic (Class 
III), separated by a third, transition 
regime (Class IV) 
(Langton's egg diagram)

Schematic drawing of CA rule space
showing the relationship between the
Wolfram classes and the underlying
phase-transition structure. 
Jeremy Avnet (2000). Computation, 
Dynamics and the Phase-Transition.
http://www.theory.org/complexity/cdpt/html/cdpt.html
(last visited 24 June 2007)   

EDGE OF CHAOS IN CELLULAR AUTOMATA
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EDGE OF CHAOS: NOT ALWAYS MAXIMUM

(Vicens Solé)
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Self-Organized Criticality (SOC). 1Self-Organized Criticality (SOC). 1

• Input to system is steady.
• Minor events start chain reactions affecting any nu mber of 

elements in the system.
• Output series of ‘avalanches’ with power-law frequen cy-size 

statistics.
• Criticality: power-law scaling: N(E) ~ E -b , b ~ 1
• SOC: Systems evolve spontaneously towards a critica l state.

A working definition of self-organized criticality is that 
a slowly driven system will evolve into a statistic al 
state that exhibits scale invariance without any 
parameter tuning. The system fluctuates about a 
quasi-equilibrium state.
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Self-Organized Criticality (SOC). 2Self-Organized Criticality (SOC). 2

Power Law: graphed

N
(s

)

s
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CONTROL PARAMETERS

In natural systems the 
power law distribution is 
reached spontaneously.

In laboratory or in 
numerical simulations the 
power law distribution is 
reached by tuning some 
control parameters .
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MODELING NATURAL SYSTEMS. 1

One of the most striking aspects of physics is the simplicity of its laws: 
see, for example, Maxwell’s equations, Schrödinger equation, and 
Hamiltonian mechanics.  

Every thing is simple and neat –except, of course, the world.

Complexity means that there appear structures that evolve with time.  
There is some natural tendency toward the formation of structures in the 
physical world.

Chaos, the sensitive dependence of a final result upon the initial 
conditions, is also found very frequently. 

A complex world is interesting because it is highly structured. A chaotic 
world is interesting because we do not know what is coming next. But 
the world contains regularities as well.
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MODELING NATURAL SYSTEMS. 2

For example, climate is very complex, but winter follows summer in a 
predictable pattern. Our world is both complex and chaotic.

Nature can produce complex structures in simple sit uations, and 
can obey simple laws even in complex situations
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NATURAL & MAN-MADE ORGANIZED SYSTEMS 

hurricanes tornados
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The phase change corresponds to 
the evolution of a laminar  to  
turbulent flux (Taylor-Couette 
convection)  in an ascensional 
column of cigarette smoke.

Ford, J. How random is acoin toss?           
Physics Today, April 1983, 1

PHASE TRANSITION 
ORDER/DISORDER
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In complex systems the separation of scales is not possible becausen
theynare coupled: we are entering the domain of chaos and fractal 
geometry (hierarchical systems). Chaos describe the coupling of the
different scales, and fractals describe the relation among the
components of the system at different scales.

MODELING NATURAL SYSTEMS. 3
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CREATING COMPLEXITY

Fluids frequently produce complex behavior, which can be either highly 
organized (think of a tornado) or chaotic (like a highly turbulent flow).

What is seen often depends on the size of the observer.

The equations that describe how the fluid velocity at one point in space 
affects the velocity at other points in space are derived from three basic 
ideas:

• Locality. A fluid contains many particles in motion. A particle is 
influenced only by other particles in its immediate neighborhood.

• Conservation. Some things are never lost, only moved around, 
such as particles and momentum.

• Symmetry. A fluid is isotropic and rotationally invariant.

Nature has been kind enough to provide us (a lot of  times) with a 
convenient separation of length, energy and time sc ales.
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UNDERSTANDING COMPLEXITY

To extract physical knowledge from a complex system, one must focus 
on the right level of description.

There are three modes of investigation of systems like this:

• experimental

• computational

• theoretical

Experiment is best for exploration, because experimental techniques 
can scan large ranges of data very  efficiently.

Computer simulations are often used to check our understanding of a 
particular physical process or situation. Use the right level of
description to catch the phenomena of interest.

The same applies to theoretical work. The modeling should be driven 
by asking “What are the simplest nonlinearities that should be present”.
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DESCRIBING COMPLEXITY. 1

Traditional physics is based on reductionism: the distinct contributions 
of a phenomenon can be dealt with separately.  The reductionist
approach is valid when the characteristic scales of  the physical
processes can be separated.

The idea of the separation of scales is that there are three types of 
processes: slow , dynamic and fast . Each of these processes uses a 
different approach. 

The slow processes are considered to be static. All of the parameters 
describing these slow processes are fixed (frozen). 

The dynamic processes are the ones we treat using Newtonian laws 
of physics, logical laws of computers, etc.

The fast processes are averaged over. 
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DESCRIBING COMPLEXITY. 2

The problem with the idea of separation of scales in complex systems is 
that the different scales of behavior become coupled. 

This is captured in a simple through the study of chaos and fractals . 

Chaos describes the coupling of different scales through the time 
evolution of the dynamics of the system (amplification or dissipation 
of differences ). 

Fractals describe the causal/logical relationship between behaviors 
of the system at different scales . Since the behavior of the system at 
different scales are related, our descriptions should include these 
relationships. 

The use of separation of scales in the real world i s to average 
the fast degrees of freedom (thermodynamics) and di scuss their 
influence on the dynamic degrees of freedom (Newton ian 
Mechanics) while keeping fixed the slow degrees of freedom. 
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EPILOGUE

A complex system is exactly that: there are 
many things going on simultaneously. If you 
search carefully, you can find your favorite 
toy: fractals, chaos, self-organized criticality, 
phase transition analogies, Lotka-Volterra
predator-prey oscillations, etc., in some 
corner, in a relatively well-developed and 
isolated way. But do not expect any single  
insight to explain it all.

(Rolf-Landauer)
(resist over-enthusiastic attempts

at universalization!)
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APPENDIXES

APPENDIX I. EMERGENCE OF STRUCTURES AS  PHASE 
TRASNSITIONS

1. EQUILIBRIUN SYSTEMS

2. FAR FROM EQUILIBRIUM SYSTEMS

2.1. Emergence of patterns: interactions of elements

2.2. Beginning of turbulence

2.3. Extended systems

2.4. Far from equilibrium systems (formation of patterns) with 
respect to equilibrium systems (phase transitions)

APPENDIX II. EXAMPLE OF A SIMPLE ADAPTABLE SYSTEM

APPENDIX III. EXAMPLE OF DYNAMIC SELFORGANIZATION: SELF-
ORGANIZED CRITICALLITY
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PHASE CHANGE ORDER-DISORDER. 1

Equilibrium systems – The Ising model

A
pp

en
di

x 
I

Second order phase transition for  a magnetic material. 
The arrows represent the spin of the  particles.
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Consider a sheet of metal:

It has the property that at low temperatures it is 
magnetized, but as the temperature increases, the 
magnetism “melts away”.  
We would like to model this behavior.  We make some 
simplifying assumptions to do so.

– The individual atoms have a “spin”, i.e., they act like little bar 
magnets, and can either point up (a spin of +1), or down (a 
spin of –1).

– Neighboring atoms with different spins have an interaction 
energy, which we will assume is constant.

– The atoms are arranged in a regular lattice.

THE ISING MODEL
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One possible state of the lattice
A choice of ‘spin’ at each lattice point.

Ising Model has a 
choice of two possible
spins at each point

q = 2
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The energy (Hamiltonian) of the 
state

of this system is  ( )H w -11J

,( )
i js s

edges
H w Jδ∑= −

A state w with the value of δ marked on each edge.

0

1
0

0

0
00 0

0
0

0

1

1

1 1
11

1

1
1

1

0

0

00

0 0

0 0 0

0
Endpoints have different spins, soδ is 0.

Endpoints have the same spins, soδ is 1.
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A
pp

en
di
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I

THE ISING MODEL

The Spins interact according to a Hamiltonian

( )

' , ' .i j i i j i
i j i ij i
edge

H J s s H s J s s H sδ
〈 〉

= − − = − −∑ ∑ ∑ ∑

Where si is the spin variable. The first term is responsible for the 
cooperative behavior and the possibility of a phase transition. J is the 
exchange of energy: positive j favors parallel alignment and negative J
antiparallel alignment of the spins. <ij> denotes a sum over nearest 
neighbors spins (edges).

For J = 0 the equation is the Hamiltonian of a paramagnet. The only 
influence ordering the spins is the field H’. They do not interact, there 
are no cooperative effect and hence no phase transition.
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The order parameter Q can be defined as the difference of a state variable 
characterizing the system in a given state (for example, the difference in 
densities in a fluid/vapor continuous phase transition). In earthquake 
occurrence it could be defined as the difference between the stress 
concentration and the resistance of the material, the critical stress σc. 
(Unfortunately, this parameter is not an observable,  so that some other 
relater parameter should be found ).

The medium is inhomogeneous, so that the stress concentration will also be 
inhomogeneous. Consider the medium subdivided in patches and assume the 
patches characterized as +1 if the stress concentration is ~ σc or -1 otherwise. 
(in this way we reduce this model to an Ising one). The correlation length ξ
can be roughly defined as the linear dimension of the largest correlated 
spatial structure (i.e. the size of the largest +1 or -1 island). From another 
point of view, it can be defined as the distance over which the effects of a 
disturbance spread. 

Close to the critical point the order parameter and the correlation length show 
a power law behavior

Q       |σr|β, ξ |σr|-ν, σr = (σ – σc)/ σc∝

ORDER PARAMETER AND CORRELATION LENGTH

∝
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Dependence of the magnetic moment on the temperatur e

α)( TTM c −∝ γξ −−∝ )( TTc

Patches size: 
exponential 
distributionA

pp
en

di
x 

I

Patches size: 
potential 
distribution

(c):
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POTTS’ MODEL

Let’s consider a system of interacting spins, which can be parallel or 
antiparallel. The spins are located on a planar grid.

The direction of the spins may be those defined along one of the q
possible values (ground states): 2 / , 0,1, ..., 1.n n q n nθ π= = −

In its more general form the interactions among the nearest neighbors 
depend only on the relative angle between the two vectors

( ), .ij ij ni nj
ij

J θ θ θ θΗ =− = −∑
Examples

Ising model

As temperature increases, a paramagnetic
phase transition appears, continuous for q
≤ 4 and first order (in two dimensions) for 
q > 4.
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Far from equilibrium systems

A
pp
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di

x 
I

PHASE CHANGE ORDER-DISORDER. 2

Rayleigh-Benard convection
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BIFURCATION POINT
A

pp
en

di
x 

I
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EMERGENCY OF PATTERNS. 1

Temperature gradient:

/ , b tT h T T Tβ = ∆ ∆ = −

Temperature field

0( ) bT z T zβ= −
Let θ (> 0) be a temperature fluctuation with respect to the unperturbed profile.

Upward buoyancy force : as the density at the bottom is lower than that at 
the top (ρ decreases with increasing T), a drop of fluid experiences an upward 
force and tends to rise. As well, the fluid at the top, with higher density,  tends 
to fall.

Dissipative forces : 

• Friction (damping by viscosity)

• Heat diffusion (the warmer drop looses its heat)

The instability develops only if the drop is accelerated sufficiently to overcome 
the  stabilizing processes.
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Control parameter : β Threshold: βc

Above the threshold a specific structure of organized convection cells develop.

Temperature field at mid-height of the cell: ( )' , , ( )cos ,
2 c

h
z x t A t k xθ  = 
 

∼

For β ~ βc and A small enought (A: amplitude of the perturbation, the order 
parameter)                 ,                    , 

dA
s A

dt
= 0s r τ= ( ) /c cr β β β= −

Beyond the threshold, A cannot grow indefinitely. Substituting s by 

( )2
0/efs r gA τ= − 3

0

dA
rA gA

dt
τ = −

0τ : characteristic time scale

A
pp

en
di

x 
I

EMERGENCY OF PATTERNS. 2

This is a nonlinear evolution equation for the amplitude which correcly
describes the bifurcation point.
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EXTENDED SYSTEMS. 1

A(t) A(x,t)

( )1
exp . .

2 cA ik x c cθ +  ∼( )( )cos cA t k xθ ∼

Equation for the evolution of the amplitude |A| (now complex):

2
0

dA
r A g A

dt
τ = −

( )0cos cA k x xθ −  ∼

3
0

d A
r A g A

dt
τ = −

0 0.
d

A
dt

φτ =

( ) 0exp , cA A i k xφ φ= = −

A
pp

en
di

x 
I
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The modulations with respect to a reference state may be 
described by means of an amplitude with spatial 
dependence  A → A(x,t), known as envelope. 

Assume that the coherency involved in the mechanism of 
instability will be the origin of the inhomogeneities of 
diffusive relaxations. Thus, we can complete the amplitude 
equation with the term                :2

2
0 x

Aξ ∂

2

22
0 0 .t x

A r A A g A Aτ ξ∂ = + ∂ −

This is the Ginzburg-Landau equation.

A
pp

en
di

x 
I

EXTENDED SYSTEMS. 2
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A SIMPLE ADAPTIVE SYSTEM. 1

Consider the branch of a tree which adapts its angle x under the weight 
of snow. If we call D the constant of elasticity of the branch, the 
equation of motion in the limit of strong friction (i.e., neglecting  inertia)

,x Dx F= − +ɺ F: a constant external force that mimics the snow.

Introduce the potential ( ) 21( ) 2V x x x= − x F D= 1 Dτ =

( ) ( ) (1)x x x V x
x

τ ∂= − = −
∂

ɺ

The figure shows that the above 
equation describes also the motion 
of a particle sliding by the basin of a 
parabolic potential.  

A
pp

en
di

x 
II
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The potential in equation (1) can take a more general form, as for example

[ ] ( ) 2

1

1
( ) log exp ( ) exp

n

i i
i

V x f x x xβ β
β =

 = − − − − ∑

Which is represented in  the figure for  β >> 1 and n = 3.

A
pp

en
di

x 
II

A SIMPLE ADAPTIVE SYSTEM. 2
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SELF-ORGANIZED CRITICALLITY

Paradigmatic example: the sand pile

Upon a slow loading, the pile 
spontaneously self-organizes 
to a critical state, in which the 
addition of a single grain may 
trigger an avalanche of any 
size. Once the pile is 
unloaded, the process starts 
again, describing cycles.

A
pp

en
di

x 
III
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THE SAND PILE. 1
A

pp
en

di
x 

III

Duong (2003)
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A
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di

x 
III

THE SAND PILE. 2
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