

1864-23

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions

1 - 13 October 2007

Seismic Melts and Earthquake Mechanics Part 1

Giulio Di Toro Dipartimento di Geoscienze Universita di Padova Italy

Seismic melts and earthquake mechanics PART 1

Giulio Di Toro

giulio.ditoro@unipd.it Dipartimento di Geoscienze, Università di Padova, Padova, Italy

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions International Centre for Theoretical Physics, Trieste, Italy

4 October 2007

INTRODUCTION

PSEUDOTACHYLYTES

Earthquake Mechanics....

Kobe Earthquake (JPN) 1995

http://quake.usgs.gov/recent/helicorders/Examples/Fore_main_after.html

...but, inferring EQ mechanics from seismograms is like trying to understand how the engine of a car works by listening to its noise from far away (deadly EQs nucleate at 10-15 km depth).

In the next 90', let's lift the bonnet of the EQ engine.

The EQ engine: an exhumed fault. However it's an old and rusted engine.

How do we know that the fault was seismic?

PT = solidified frictional melts produced at slip rates typical of EQs (1 m/s)

pseudotachylyte

µm

Pseudotachylyte under the SEM-BSE Flow and devitrification structures

100 μm

Why faults with pseudotachylytes?

- 1) The fault was seismic (Cowan, JSG, 1999)
- 2) One pseudotachylyte layer = one EQ
- 3) Since fractures are filled by PT, fractures were opened/prod. during seismic faulting
- 4) Geological constraints (age, ambient cond.)

Problems of using pseudotachylytes... a lot, let's discuss this later...

What happens during an EQ?

Northridge Earthquake (Los Angeles)

M 6.9

(57 dead and > 9000 wound.)

blind thrust -SAF

http://www.data.scec.org/Module/links/northrup.html

Looking at the fault surface. Crack propagation as a self-healing pulse

NORTHRIDGE EARTHQUAKE

http://www.data.scec.org/Module/links/northrup.html

Do PST record EQ dynamics?

What I will try to sell today is that PT-bearing faults networks retain information on:

1) EQ rupture dynamics

2) Fault strength during an EQ

3) EQ energy budgets

Points 2 and 3 are out of the range of seismology How can I sell you this?

WITH 1) micr. observ.

2) HVRFE

3) melt lubr. modeling

4) rupture dynamics modeling

Outline

eoruoe pinepomeiee s to del larutan A (1

2) Earthquake rupture dynamics

3) Fault strength during seismic slip

4) Earthquake energy budgets

eoruoe pinepometee is to dist listution A (1) 2) Earthquake rupture dynamics 3) Fault strength during seismic slip 4) Earthquake energy budgets

Outhoe

GOLE LARGHE FAULT ZONE 30 Ma old (Ar-Ar) Seismic faulting ambient conditions: 9-11 km depth 250-300 °C

[*Di Toro and Pennacchioni*, JSG, 2004; *Di Toro et al.*, Tectonophysics, 2005; *Pennacchioni et al.*, Tectonophysics, 2006]

Aerial view of the Gole Larghe Fault

Most faults exploit WNW-ESE striking pre-existing joints.

Outcrop view of the GLF: some of the 200 main sub-parallel faults.

1 m

Detail of the Gole Larghe Fault Zone: main faults are spaced apart every 2-5 m

3D View

Faults are subvertical and maintained their original attitude during exhumation

e.g., host rock roof pendants are subhorizontal inside the batholith

Most main faults consists of <u>one</u> layer of PT overprinting cataclasites

tonalite

pseudotachylyte (melt)

cataclasites (no melt)

tonalite

Some fault segments have only pseudotachylyte (optical microscope image)

5 mm

Tonalite

Pseudotachylyte

The Adamello outcrops are a window over a 10 km depth seismogenic source.

Some faults segments of the GLF have only one continuous layer of PST.

EQs produced up to 1.44 m of slip 30 Ma ago. This slip corresponds to a ~ M6-7 EQ.

Outline 1) A natural lab of a s ource 2) Earthquake rupture dynamics 3) Fault strength during seismic slip 4) Earthquake energy budgets

Do PT record EQ dynamics?

Stress field around a propagating crack (theory)

Experiments

Nature

Very similar features, produced by shooting:

• EQs in the Gole Larghe Fault 30.000.000 yrs ago.

• Bullets in the lab 7 yrs ago.

Most fractures (coseismic) injected by melt are towards the south.

This seems a general rule in this fault zone.

We measured the angle α of PT-bearing fractures with respect of the major faults.

Di Toro et al., Nature 2005

Of 624 PT-filled fractures (29 faults), most are striking:

1) at 90°-270°

2) towards the **SOUTH** wall rock

We simulated the dynamical stress field on a horizontal plane at 10 km depth during rupture propagation for the Gole Larghe Fault EQs.

Numerical model mechanical parameters

DATA USED IN THE NUMERICAL MODEL

1. GOLE LARGHE FAULT PROPERTIES:	
Fault length	10 km
Fault depth	10 km
Vertical Stress	260 MPa
Pore pressure	100 MPa
Effective stress normal to the fault	112 MPa
Maximum effective horizontal stress	256 MPa
Minimum effective horizontal stress	64 MPa
Coefficient of friction at rupture	0.7
Coseismic slip	1.0 m

2. GEOMECHANICAL PROPERTIES FOR TONALITE

Tonalite density	2700 kg m ⁻³
Fracture toughness	2 MPa m ^{1/2}
Shear Modulus	26 GPa
Bulk modulus	47 GPa
Young moduls for tonalite	60 GPa
Poisson's ratio	0.2
Ultim. compressive strength (unconf	.) 150 MPa
Ultimate tensile strength	15 MPa
Ultmate shear strength	30 MPa
Mode II rupture velocity	4 km s ⁻¹

Slip pulse model

steady state slip-weakening self-healing pulse

- τ_v peak stress
- τ_r residual stress
- *R* cohesion zone length
- *L* slipping zone length

For $V_r < V_{Ral}$ analytical solution (Rice et al., 2005) For $V_r > V_{Ral}$ numerical solution

Elastodynamics gives constraints

$$G = \delta(\tau_0 - \tau_r)$$

$$G = \frac{(\tau_y - \tau_r)^2}{\mu} Rh\left(\frac{R}{L}\right) F(V_r)$$

$$\frac{\tau_0 - \tau_r}{\tau_y - \tau_r} = g\left(\frac{R}{L}\right)$$

unknown:

 au_r, R, L, V_r, G au_y, au_0, μ, δ

known:

- fracture energy G
- δ displacement
- shear modulus μ
- g, h, F functions

 \boldsymbol{L}

- cohesion zone length \boldsymbol{R}
 - crack length

constraints: Direction of coseismic, tension fractures Minimum level of absolute tension

Rupture velocity $V_r = 0.6 V_s$ (shear wave velocity)

$V_{\rm r} = 0.6 V_{\rm s}$

color = stress magnitude (purple=tension; yellow=compression)
thin segments = planes of maximum tension

Rupture velocity $V_r = 0.9 V_s$ (shear wave velocity)

$V_{\rm r} = 0.9 V_{\rm s}$

thin segments = planes of maximum tension

Rupture velocity $V_r = 1.41$ Vs (shear wave velocity)

 $V_r = \sqrt{2} V_s$

color = stress magn. (purple = tension; green = compression) thin segments = planes of maximum tension 1) N/S asymmetry reflects directivity (rocks are weaker under tension)

2) Tens. crack direction reflects rupture velocity Vr ~ 0.9 Vs

Earthquakes propagated from West toward the East

Conclusion

Rupture dynamics is frozen in ancient exhumed pseudotachylyte-bearing faults.

The ancient EQs propagated from the West to the East, probably at Vr ~ 0.9 Vs.