

1864-23

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions

1 - 13 October 2007

Seismic Melts and Earthquake Mechanics Part 1

Giulio Di Toro *Dipartimento di Geoscienze Universita di Padova Italy*

Seismic melts and earthquake mechanics earthquake mechanics PART 1

Giulio Di Toro

giulio.ditoro@unipd.it Dipartimento di Geoscienze, Università di Padova, Padova, Italy

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions International Centre for Theoretical Physics, Trieste, Italy

4 October 2007

INTRODUCTION INTRODUCTION

PSEUDOTACHYLYTES PSEUDOTACHYLYTES

Kobe Earthquake (JPN) 1995

http://quake.usgs.gov/recent/helicorders/Examples/Fore_main_after.html

…but, inferring EQ mechanics from seismograms is like trying to understand how the engine of a car works by listening to its noise from far away (deadly EQs nucleate at 10-15 km depth).

In the next 90', let's lift the bonnet of the EQ engine.

The EQ engine: an **exhumed fault.** However it's an old and rusted engine.

How do we know that the fault was seismic?

PT = solidified frictional melts produced PT = solidified frictional melts produced at slip rates typical of at slip rates typical of EQs (1 m/s)

pseudotachylyte pseudotachylyte

300 μ **m**

Pseudotachylyte under the SEM-BSE Flow and devitrification structures Flow and devitrification structures

100 μ **m**

Why faults with pseudotachylytes? Why faults with pseudotachylytes?

- **1) The fault was seismic** (Cowan, JSG, 1999)
- **2) One pseudotachylyte layer = one EQ**
- **3) Since fractures are filled by PT, fractures were opened/prod. during seismic faulting**
- **4) Geological constraints (age, ambient cond.)**

Problems of using pseudotachylytes… a lot, let's discuss this later…

What happens during an EQ?

Northridge Earthquake (Los Angeles)

M 6.9

(57 dead and (57 dead and > 9000 wound.)

blind thrust -SAF

http://www.data.scec.org/Module/links/northrup.html

Looking at the fault surface. Crack propagation as a self-healing pulse

NORTHRIDGE EARTHQUAKE

http://www.data.scec.org/Module/links/northrup.html

Do PST record EQ dynamics?

What I will try to sell today is that PT-bearing fault s networks retain information on:

1) EQ rupture dynamics

2) Fault strength during an EQ

3) EQ energy budgets

Points 2 and 3 are out of the range of seismology How can I sell you this?

WITH 1) micr. observ.

2) HVRFE 2) HVRFE

3) melt lubr. modeling modeling

4) rupture 4) rupture dynamics[®] **modeling modeling**

Outline Outline

1) A natural lab of a seismogenic source 1) A natural lab of a seismogenic source

2) Earthquake rupture dynamics 2) Earthquake rupture dynamics

3) Fault strength during seismic slip 3) Fault strength during seismic slip

4) Earthquake energy budgets 4) Earthquake energy budgets

Outline 1) A natural lab of a seismogenic source 1) A natural lab of a seismogenic source 2) Earthquake rupture dynamics 3) Fault strength during seismic slip 4) Earthquake energy budgets

FAULT ZONE **30 Ma** old (Ar-Ar) **Seismic faulting** ambient ambient conditions: **9 -11 km depth 250 -300 o C**

[*Di Toro and Pennacchioni*, JSG, 2004; *Di Toro et al.,* Tectonophysics, 2005; *Pennacchioni et al*., Tectonophysics, 2006]

Aerial view of the **Gole Larghe Fault**

Most faults exploit WNW-ESE striking pre-existing joints.

Outcrop view of the GLF: some of the 200 **main sub main sub -parallel faults. parallel faults.**

1 m

Detail of the Gole Larghe Fault Zone: main faults are spaced apart every 2-5 m

3D View 3D View

Faults are sub **vertical vertical** and maintained their original attitude during exhumation

e.g., host rock roof pendants are sub horizontal inside the batholith

Most main faults consists of Most main faults consists of one layer of PT layer of PT overprinting cataclasites overprinting cataclasites

tonalite tonalite

pseudotachylyte pseudotachylyte (melt)

> **cataclasites (no cataclasites (no melt)**

tonalite tonalite

Some fault segments have only pseudotachylyte (optical microscope image) (optical microscope image)

5 mm

Tonalite

Pseudotachylyte

The Adamello outcrops are a window over a 10 km depth seismogenic source.

Some faults segments of the GLF have only one continuous layer of PST.

EQs produced up to 1.44 m of slip 30 Ma ago. This slip corresponds to $a \sim M6-7$ EQ.

Outline 1) A natural lab of a seismogenic source 2) Earthquake rupture dynamics 2) Earthquake rupture dynamics 3) Fault strength during seismic slip 4) Earthquake energy budgets

Do PT record EQ dynamics?

Stress field around a propagating crack (theory)

Experiments Experiments

Nature

Very similar features, produced by shooting:

• **EQs** in the Gole Larghe Fault 30.000.000 yrs ago.

• **Bullets Bullets** in the lab 7 yrs ago.

Most fractures (coseismic) injected by melt are **towards the south**.

This seems a general rule in this fault zone.

We measured the angle α of PT-bearing fractures with respect of the major faults.

Di Toro et al., Nature 2005

Of 624 PT-filled fractures (29 faults), most are striking:

1) at 90^o-270^o

2) towards the **SOUTH** wall rock

We simulated the **dynamical stress field** on a horizontal plane at 10 km depth during rupture propagation for the Gole Larghe Fault EQs.

Numerical model mechanical parameters

DATA USED IN THE NUMERICAL MODEL

2. GEOMECHANICAL PROPERTIES FOR TONALITE

Slip pulse model

steady state slip-weakening self-healing pulse

- $\tau_{\rm v}$ peak stress
- ^τ*r*residual stress
- *R* cohesion zone length
- *L* slipping zone length

For V_{r} < V_{Ral} analytical solution (Rice et al., 2005) For V_{r} > V_{Ral} numerical solution

Elastodynamics gives constraints

$$
G = \delta(\tau_0 - \tau_r)
$$

\n
$$
G = \frac{(\tau_y - \tau_r)^2}{\mu} Rh \left(\frac{R}{L}\right) F(V_r)
$$

\n
$$
\frac{\tau_0 - \tau_r}{\tau_y - \tau_r} = g \left(\frac{R}{L}\right)
$$

\nunknown: $\tau_r R L V_r G$

known: ^τ*r*, *R*, *L*, *Vr*, *G* τ_{ν} , τ_0 , μ , δ

- *G* fracture energy
- δ displacement
- μ shear modulus
- *g, h, F* functions
- *R* cohesion zone length

*L*_{crack} length

constraints: Direction of coseismic, tension fractures Minimum level of absolute tension Minimum level of absolute tension

Rupture velocity $V_f = 0.6$ Vs (shear wave velocity)

$V_r = 0.6 V_s$

color = stress magnitude (purple=tension; yellow=compression) thin segments = planes of maximum tension

Rupture velocity $V_r = 0.9$ Vs (shear wave velocity)

$V_r = 0.9 V_s$

thin segments = planes of maximum tension

Rupture velocity $V_f = 1.41$ Vs (shear wave velocity)

 $V_r = \sqrt{2} V_s$

thin segments = planes of maximum tension

1) N/S asymmetry reflects directivity (rocks are weaker under tension)

2) Tens. 2) Tens. **crack direction crack direction** reflects reflects rupture velocity $Vr \sim 0.9$ Vs

Earthquakes propagated from West toward the East

Conclusion

Rupture dynamics is frozen in ancient exhumed pseudotachylyte-bearing faults.

The ancient EQs propagated from the West to the East, probably at $V_r \sim 0.9$ Vs.