

1864-30

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions

1 - 13 October 2007

Long Memory Processes

Filippo Petroni *GRAPES, B5, Sart Tilman, Liege, Belgium*

Long Memory Processes

Filippo Petroni

GRAPES, B5, Sart Tilman, B-4000 Liège, Belgium

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions

Outline

- 1. Brief Introduction
- 2. Definition of Long Memory Processes
- 3. Relation between Long Memory and Self-Similar Processes
- 4. Short overview of the methods to detect long memory
- 5. An example with real data

Introduction

A great challenge in modern times is the construction of predictive theories for non-linear dynamical systems for which the evolution equations are barely known, if known at all.

The more dependence there is between X_{n+k} and the past values X_n, X_{n+1}, \ldots the better X_{n+k} can be predicted.

Stochastic process may be used to model the behavior of an observed time series in ^a purely statistical way, without a direct physical interpretation of the parameters.

Definition Let X_t be a stochastic process with finite mean $\mu = E[X_t]$ and variance $\sigma^2 = E[(X_t - \mu)^2]$, the autocorrelation between X_i and X_j is defined as

$$
\rho(i,j) = \frac{\gamma(i,j)}{\sigma^2} \tag{1}
$$

where $\gamma(i, j)$ is the autocovariance between X_i and X_j and is defined as

$$
\gamma(i,j) = E[(X_i - \mu)(X_j - \mu)] \tag{2}
$$

In the following we will indicate $\rho(i, i + k)$ as $\rho(k)$.

Definition The spectral density for the same stochastic process X_t is defined as

$$
f(\lambda) = \frac{\sigma^2}{2\pi} \sum_{k=-\infty}^{\infty} \rho(k) e^{ik\lambda}
$$
 (3)

Stationary processes with long memory

- A. Qualitative features:
	- 1. There are relatively long periods where the observations tend to stay at high (low) level
- 2. Looking only at short time periods, there seems to be cycles/trends. However, looking at the whole time series, there is no apparent persisting cycles/trend.
- 3. Overall the series look stationary

A simple example of fractional noise with $H=0.8$

Same as before but for a longer period

- B. Quantitative features
	- 1. The variance of the sample mean seems to decay to zero slower than n^{-1}
	- 2. The sample correlation $\rho(k) = \gamma(k)/\gamma(0)$ decays to zero at a rate that in good approximation is proportional to $k^{-\alpha}$ for some $0 < \alpha < 1$
- 3. Near the origin the logarithm of the power spectrum $f(\lambda)$ plotted against the logarithm of the frequency appears to be randomly scattered around ^a straight line with negative slope.

Correlations for the same process (fractional noise with $H=0.8$)

Power Spectrum for the same process (fractional noise with $H=0.8$)

Point A.3 implies that at least at first approximation, it is reasonable to assume stationarity. Let us therefore assume that the data are a sample path of a stationary process X_t .

Definition: Let X_t be a stationary process for which the following holds. There exist a real number $\alpha\in(0,1)$ and a constant c_ρ such that

$$
\lim_{k \to \infty} \rho(k) / [c_{\rho} k^{-\alpha}] = 1 \tag{4}
$$

Then X_t is called a stationary process with long memory or long range dependence or strong dependence (or long range correlations).

The Hurst exponent is defined as $H=1-\alpha/2$, in terms of Hurst exponent long memory occurs if $\frac{1}{2} < H < 1.$

An equivalent definition of long memory is the following:

Definition: Let X_t be a stationary process for which the following holds: There exists a real number β \in $(0,1)$ and a constant $c_f > 0$ such that

$$
\lim_{\lambda \to 0} f(\lambda) / [c_f |\lambda|^{-\beta}] = 1 \tag{5}
$$

Then X_t is called a stationary process with long memory.

These two definitions are equivalent in the following sense:

<code>Theorem:</code> (i) <code>Suppose 4</code> holds with $0 < \alpha = 2 - 2H < 1$ 1. Then the spectral density f exists and

$$
\lim_{\lambda \to 0} f(\lambda) / [c_f(H)|\lambda|^{1-2H}] = 1 \tag{6}
$$

where

$$
c_f = \sigma^2 \pi^{-1} c_\rho \Gamma(2H - 1) \sin(\pi - \pi H) \tag{7}
$$

and
$$
\sigma^2 = var(X_t)
$$

(ii) Suppose 5 holds with $0 < \beta = 2H-1 < 1$. Then

$$
\lim_{k \to \infty} \rho(k) / [c_{\rho} k^{-2H-2}] = 1 \tag{8}
$$

where

$$
c_{\rho} = \frac{c_{\gamma}}{\sigma^2} \tag{9}
$$

and

$$
c_{\gamma} = 2c_f \Gamma(2 - 2H) \sin(\pi H - \frac{\pi}{2}) \tag{10}
$$

It is important to note that the definition of long-range dependence by 4 and 5 is an asymptotic definition.

To summarize...

For ^a Long Memory Process

$$
\rho(k) \approx k^{-\alpha} \tag{11}
$$

$$
f(\lambda) \approx |\lambda|^{-\beta} \tag{12}
$$

and

$$
H = \frac{(2 - \alpha)}{2} = \frac{(1 + \beta)}{2}
$$
 (13)

with $\frac{1}{2} < H < 1$

Self Similar Processes

A geometric shape is called self-similar in a deterministic way if the same geometric structures are observed, independently of the distance from which one looks at the shape.

In the context of stochastic processes, self-similarity is defined in terms of the distribution of the process:

Definition: Let Y_t be a stochastic process with continuous time parameter t . Y_t is called self-similar with self-similarity parameter H , if for any positive stretching factor c , the rescaled process with time scale ct , $ct\,$ $u^{-H} Y_{ct}$, is equal in distribution to the original process Y_t .

This means that for any sequences of time t_1,\ldots,t_k and any positive constant $c,\ c$ ${}^{-H}(Y_{ct_1},Y_{ct_2},\ldots,Y_{ct_k})$ has the same distribution of $(Y_{t_1}, Y_{t_2}, \ldots, Y_{t_k})$.

Thus, typical sample paths of self-similar process look qualitatively the same, irrespective of the distance from which we look at them.

In contrast to deterministic self-similarity, it does not mean that the same picture repeats itself exactly as we go closer. It is rather the general impression that remains the same.

Self-similarity arises in a natural way from limit theorems for sums of random variables.

Definition: if for any $k \geq 1$ and any k time point t_1,\ldots,t_k , the distribution of (Y_{t_1+c}) $-Y_{t_1+c-1}, \ldots, Y_{t_k+c}$ − $Y_{t_k + c - 1})$ does not depend on $c \in R$, than we say that Y_t has stationary increments.

Theorem: (i) Suppose that Y_t is a stochastic process such that $Y_1\,\neq\,0$ with positive probability and Y_t is the limit in distribution of the sequence of normalized partial sums

$$
a_n^{-1} S_{nt} = a_n^{-1} \sum_{i=1}^{[nt]} X_i, \quad n = 1, 2, \dots \tag{14}
$$

Here $[nt]$ denotes the integer part of nt , X_1, X_2, \ldots is a stationary sequence of random variables, and a_1,a_2,\ldots is a sequence of positive normalizing constants such that log $a_s \to \infty$. Then there exists an $H > 0$ such that for any $u>0$

$$
\lim_{n \to \infty} \frac{a_{nu}}{a_n} = u^H \tag{15}
$$

and Y_t is self-similar with self-similarity parameter H , and has stationary increments.

(ii) All self-similar processes with stationary increment s and $H > 0$ can be obtained by partial sums as given in (i).

Part (i) says that whenever ^a process is the limit of normalized partial sums of random variables, it is necessarily self-similar.

Suppose that Y_t is a self-similar process with self-similarity parameter H. The property

$$
Y_t =_d t^H Y_1 \quad (t > 0)
$$
\n⁽¹⁶⁾

where $=_d$ is equality in distribution, implies the following limiting behavior of Y_t as t tends to infinity:

1. If
$$
H < 0
$$
, then $Y_t \rightarrow_d 0$

2. If $H = 0$, then $Y_t = d Y_1$

3. if $H > 0$ and $Y_t \neq 0$, then $|Y_t| \rightarrow_d \infty$

Analogously, for t converging to zero, we have:

- 1. If $H < 0$ and $Y_t \neq 0$, then $|Y_t| \rightarrow_d \infty$
- 2. If $H = 0$, then $Y_t =_d Y_1$
- 3. if $H > 0$ and $Y_t \neq 0$, then $Y_t \rightarrow_d 0$

If we exclude the trivial case $Y_t\equiv 0$, then these properties imply that Y_t is not stationary unless $H=0$.

For the purpose of modelling data that look stationary, we need only to consider self-similar processes with stationary increments. The range of H can then be restricted to $H > 0$.

The form of the covariance function $\gamma_y(t,s)=cov(Y_t,Y_s)$ of a self-similar process Y_t with stationary increments follows from these two properties. Let us assume that $E[Y_t] = 0.$

Let $s < t$ and denote by $\sigma^2 = E[(Y_t - Y_{t-1})^2] = E[Y_1^2]$ $\left[\begin{smallmatrix} 2 \ 1 \end{smallmatrix}\right]$ the variance of the increments process $X_t = Y_t - Y_{t-1}$. Then

$$
E[(Y_t - Y_s)^2] = E[(Y_{t-s} - Y_0)^2] = \sigma^2 (t-s)^{2H}
$$
 (17)

The covariance $\gamma(k)$ of the increments sequence $X_i =$ $Y_i - Y_{i-1}$, between X_i and X_{i+k} for $k > 0$ is

$$
\gamma(k) = \frac{1}{2} \{ E[(Y_{k+1} - Y_0)^2] - E[(Y_{k-1} - Y_0)^2] - 2E[(Y_k - Y_0)^2] \}
$$
\n(18)

Using self-similarity, we obtain the formula

$$
\gamma(k) = \frac{1}{2}\sigma^2[(k+1)^{2H} - 2k^{2H} + (k-1)^{2H}] \tag{19}
$$

The correlations are then given by

$$
\rho(k) = \frac{1}{2} [(k+1)^{2H} - 2k^{2H} + (k-1)^{2H}] \tag{20}
$$

The asymptotic behavior of $\rho(k)$ follows from Taylor expansion

$$
\frac{\rho(k)}{[H(2H-1)k^{2H-2}]} \to 1
$$
 (21)

as $k\,\rightarrow\,\infty.$ For $1/2\,<\,H\,<\,1$ this means that the correlations decay to zero so slowly that

$$
\sum_{k=-\infty}^{\infty} \rho(k) = \infty \tag{22}
$$

The process X_i $(i = 1, 2, ...)$ has long memory.

For $H=1/2$, all correlations at non-zero lags are zero, i.e., the observations X_i are uncorrelated.

For $0 < H < 1/2$, the correlations are summable. In fact ^a more specific equation holds, namely,

$$
\sum_{k=-\infty}^{\infty} \rho(k) = 0
$$
 (23)

In practice, this case is rarely encountered and the sum is equal to some constant c different from zero.

We will assume that the variance is always finite and $\lim_{k\to\infty}\rho(k)=0$ and then $0 < H < 1$.

Under this assumptions, the spectral density of the increments X_i can be calculated directly and expanded near the origin giving

$$
f(\lambda) \approx c_f |\lambda|^{1-2H} \tag{24}
$$

To summarize... again

Let X_i be a stationary stochastic process

- \bullet $\frac{1}{2} < H < 1$ or $0 < \alpha < 1$ or $0 < \beta < 1$ then X_i has Long Memory (persistent)
- \bullet $H=\frac{1}{2}$ then correlations are zero
- \bullet $0 < H < \frac{1}{2}$ correlations are, in fact, negative and the process is anti-persistent

32

33

34

Fractional Brownian Motion and Gaussian Noise

Suppose that Y_t is a self-similar process with stationary increments (N.B. we do not request stationarity of the process itself). That the increments $X_i = Y_i - Y_{i-1}$ have zero mean and that they are Gaussian.

For each value of $H\in(0,1)$ there is exactly one Gaussian process X_i that is the stationary increment of a self similar process Y_t . This process is called **fractional** Gaussian noise.

The corresponding self-similar process Y_t is called fractional Brownian motion denoted by $B_H(t)$

In the simple case of $H = 1/2$, X_i are independent normal variable $\rightarrow B_1$ 2 $\left(t\right)$ is an ordinary Brownian motion.

Definition: Let $B(t)$ be a stochastic process with continuous sample paths and such that

- $B(t)$ is Gaussian
- $B(0) = 0$ almost surely
- $B(t)$ has independent increments

$$
\bullet \ \ E[B(t)-B(s)]=0
$$

$$
\bullet \ \ var[B(t) - B(s)] = \sigma^2 |t - s|
$$

Then $B(t)$ is called Brownian motion.

 $H=0.1$ $H=0.3$ 0.5 $H = 0.7$ $e, 0 = H$

Detection of Long Memory

- 1. Detrended Fluctuation Analysis
- 2. Rescaled Range Analysis
- 3. Spectral Analysis

Detrended Fluctuation Analysis

The method has been used to identify whether long range correlations exist in many research fields such as e.g. finance, cardiac dynamics, meteorology etc. etc.

• The signal time series $X(i)$, $i = 1, 2, ..., N$ is $first$ integrated

$$
Y(k) = \sum_{i=1}^{k} [X(i) - \langle X \rangle]
$$
 (25)

where $\langle X \rangle$ is the mean;

- The time axis (from 1 to $N)$ is next divided into non-overlapping boxes of equal size $n;$
- \bullet In each box of length n one looks thereafter for the best (polynomial, of degree $m)$ trend, $z_{n,m};$
- The integrated signal in each box is detrended by subtracting the local trend;

• For each box size n , the root mean square deviation of the (integrated) signal is calculated

$$
F_m(n) \equiv \sqrt{\frac{1}{N} \sum_{k=1}^{N} \left[Y(k) - z_{n,m}(i) \right]^2} \quad ; \tag{26}
$$

• the above computation is repeated for ^a broad range of scales (box size n) to provide a relationship between the fluctuation function $F_m(n)$ and the box size ⁿ;

If the original time series $X(i)$ is long range correlated (has long memory) the fluctuation function $F_m(n)$ increases following ^a power law:

$$
F_m(n) \approx n^{\gamma} \tag{27}
$$

and the exponent γ is related to the correlation exponent α . It turns out that $\gamma = H$.

DFA for the same process (fractional noise with $H=0.8$)

Rescaled Range Analysis

- The signal time series $X(i)$, $i = 1, 2, \ldots, N$ is divided into l boxes of equal size $n;$
- In the k^{th} box, $(k = 1, \ldots, l)$, there are n elements;
- the local fluctuation at point j in the k^{th} box is $F^{(k)}(n) = X^{(k)}(j) - \langle X \rangle_n^{(k)}$ (28)

where $\langle \mathbf{>}_n$ is the mean in the k^{th} box;

• Let

$$
S^{(k)}(n) = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (F(n)^{(k)})^2}
$$
 (29)

• The cumulative departure $Y_m^{(k)}(n)$ up to the m^{th} point in the k^{th} box (of size n) is next calculated

$$
Y_m^{(k)}(n) = \sum_{j=1}^m F^{(k)}(n)
$$
 (30)

for $m = 1, \ldots, n$ and in all k boxes

• look for $\max_{1 \le m \le n} Y_m^{(k)}(n)$ and $\min_{1 \le m \le n} Y_m^{(k)}(n)$

- The rescaled range function is then defined by $R^{(k)}(n)$ $S^{(k)}(n)$ $=\frac{\max_{1\leq m\leq n}Y^{(k)}_{m}}{1+e^{2\pi i}}$ $\zeta^{(k)}_m(n) - \mathsf{min}_{1 \leq m \leq n} \, Y^{(k)}_m$ $\zeta_n^{\scriptscriptstyle\!}{}$ $\frac{1}{\sqrt{2}}$ 1 $\frac{1}{n}\sum$ \overline{n} $\sum\limits_{j=1}^n{(F(n)^{(k)})^2}$ for $k=1,\ldots,l$
- The average of the rescaled range function for boxes of size n is obtained and denoted by $< R/S >_{n}$
- $\bullet\,$ Everything is repeated for different n
- for Long Memory processes one expects

$$
\langle R/S \rangle_n \approx n^H \tag{31}
$$

FIG. 1. (a) Log-log plot of the rescaled range statistic $Q(s)$ against the window size *^s* for ^a true long range correlated process with α =0.6, variance 0.25, and a long data set of 8192 points. (b) Spectral density of the same data.

FIG. 2. (a) Log-log plot of the rescaled range statistic $Q(s)$ against the window size *^s* for ^a true long range correlated process with α =0.6, variance 0.25, and a short data set of 256 points. (b) Spectral density of the same data.

Two examples taken from [2]

Spectral Analysis

The periodogram (the sample analogon of the spectral density) is defined as

$$
I(\lambda_j) = \frac{1}{2\pi n} |\sum_{t=1}^n (X_t - \langle X \rangle_n) e^{it\lambda_j}|^2 = \frac{1}{2\pi} \sum_{k=-(n-1)}^{n-1} \hat{\gamma}(k) e^{it\lambda_j}
$$

where

$$
\hat{\gamma}(k) = \frac{1}{n} \sum_{t=1}^{n-|k|} (X_t - \langle X \rangle_n)(X_{t+k} - \langle X \rangle_n)
$$

are the sample covariances

It is expected for ^a long memory process

$$
I(\lambda_j) \approx |\lambda|^{1-2H}
$$

References

- 1. J. Beran, Statistics for Long-Memory Processes, Chapman & Hall, New York (1994).
- 2. G. Rangarajan, M. Ding, Phys. Rev. E 61 (2000) 4991-5001.
- 3. B.D. Malamud and D. L. Turcotte, J. Stat. Plann. Infer. 80 (1999) 173-196.