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Introduction

A great challenge in modern times is the construction

of predictive theories for non-linear dynamical systems

for which the evolution equations are barely known, if

known at all.

The more dependence there is between Xn+k and the

past values Xn, Xn+1, . . . the better Xn+k can be pre-

dicted.

Stochastic process may be used to model the behavior

of an observed time series in a purely statistical way,

without a direct physical interpretation of the parame-

ters.

3



Definition Let Xt be a stochastic process with finite

mean µ = E[Xt] and variance σ2 = E[(Xt − µ)2], the

autocorrelation between Xi and Xj is defined as

ρ(i, j) =
γ(i, j)

σ2
(1)

where γ(i, j) is the autocovariance between Xi and Xj

and is defined as

γ(i, j) = E[(Xi − µ)(Xj − µ)] (2)

In the following we will indicate ρ(i, i + k) as ρ(k).
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Definition The spectral density for the same stochastic

process Xt is defined as

f(λ) =
σ2

2π

∞
∑

k=−∞

ρ(k)eikλ (3)
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Stationary processes with long memory

A. Qualitative features:

1. There are relatively long periods where the obser-

vations tend to stay at high (low) level

2. Looking only at short time periods, there seems

to be cycles/trends. However, looking at the whole

time series, there is no apparent persisting cycles/trend.

3. Overall the series look stationary

6



0 200 400 600 800 1000
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

A simple example of fractional noise with H=0.8

7



0 2000 4000 6000 8000 10000
−1

−0.5

0

0.5

1

1.5

Same as before but for a longer period

8



B. Quantitative features

1. The variance of the sample mean seems to decay

to zero slower than n−1

2. The sample correlation ρ(k) = γ(k)/γ(0) decays to

zero at a rate that in good approximation is pro-

portional to k−α for some 0 < α < 1

3. Near the origin the logarithm of the power spectrum

f(λ) plotted against the logarithm of the frequency

appears to be randomly scattered around a straight

line with negative slope.
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Point A.3 implies that at least at first approximation,

it is reasonable to assume stationarity. Let us therefore

assume that the data are a sample path of a stationary

process Xt.

Definition: Let Xt be a stationary process for which

the following holds. There exist a real number α ∈ (0,1)

and a constant cρ such that

lim
k→∞

ρ(k)/[cρk
−α] = 1 (4)

Then Xt is called a stationary process with long memory

or long range dependence or strong dependence (or long

range correlations).

The Hurst exponent is defined as H = 1−α/2, in terms

of Hurst exponent long memory occurs if 1
2 < H < 1.
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An equivalent definition of long memory is the follow-

ing:

Definition: Let Xt be a stationary process for which

the following holds: There exists a real number β ∈

(0,1) and a constant cf > 0 such that

lim
λ→0

f(λ)/[cf |λ|
−β] = 1 (5)

Then Xt is called a stationary process with long mem-

ory.
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These two definitions are equivalent in the following

sense:

Theorem: (i) Suppose 4 holds with 0 < α = 2 − 2H <

1. Then the spectral density f exists and

lim
λ→0

f(λ)/[cf(H)|λ|1−2H] = 1 (6)

where

cf = σ2π−1cρΓ(2H − 1) sin(π − πH) (7)

and σ2 = var(Xt)
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(ii) Suppose 5 holds with 0 < β = 2H − 1 < 1. Then

lim
k→∞

ρ(k)/[cρk
−2H−2] = 1 (8)

where

cρ =
cγ

σ2
(9)

and

cγ = 2cfΓ(2 − 2H) sin(πH −
π

2
) (10)

It is important to note that the definition of long-range

dependence by 4 and 5 is an asymptotic definition.
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To summarize...

For a Long Memory Process

ρ(k) ≈ k−α (11)

f(λ) ≈ |λ|−β (12)

and

H =
(2 − α)

2
=

(1 + β)

2
(13)

with 1
2 < H < 1
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Self Similar Processes

A geometric shape is called self-similar in a determinis-

tic way if the same geometric structures are observed,

independently of the distance from which one looks at

the shape.
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In the context of stochastic processes, self-similarity is

defined in terms of the distribution of the process:

Definition: Let Yt be a stochastic process with con-

tinuous time parameter t. Yt is called self-similar with

self-similarity parameter H, if for any positive stretch-

ing factor c, the rescaled process with time scale ct,

ct−HYct, is equal in distribution to the original process

Yt.
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This means that for any sequences of time t1, . . . , tk and

any positive constant c, c−H(Yct1, Yct2, . . . , Yctk) has the

same distribution of (Yt1, Yt2, . . . , Ytk).

Thus, typical sample paths of self-similar process look

qualitatively the same, irrespective of the distance from

which we look at them.

In contrast to deterministic self-similarity, it does not

mean that the same picture repeats itself exactly as

we go closer. It is rather the general impression that

remains the same.
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Self-similarity arises in a natural way from limit theo-

rems for sums of random variables.

Definition: if for any k ≥ 1 and any k time point

t1, . . . , tk, the distribution of (Yt1+c−Yt1+c−1, . . . , Ytk+c−

Ytk+c−1) does not depend on c ∈ R, than we say that

Yt has stationary increments.

Theorem: (i) Suppose that Yt is a stochastic process

such that Y1 6= 0 with positive probability and Yt is

the limit in distribution of the sequence of normalized

partial sums

a−1
n Snt = a−1

n

[nt]
∑

i=1

Xi, n = 1,2, . . . (14)
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Here [nt] denotes the integer part of nt, X1, X2, . . . is a

stationary sequence of random variables, and a1, a2, . . .
is a sequence of positive normalizing constants such

that logas → ∞. Then there exists an H > 0 such that

for any u > 0

lim
n→∞

anu

an
= uH (15)

and Yt is self-similar with self-similarity parameter H,

and has stationary increments.

(ii) All self-similar processes with stationary increments

and H > 0 can be obtained by partial sums as given in

(i).

Part (i) says that whenever a process is the limit of

normalized partial sums of random variables, it is nec-

essarily self-similar.
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Suppose that Yt is a self-similar process with self-similarity

parameter H. The property

Yt =d tHY1 (t > 0) (16)

where =d is equality in distribution, implies the follow-

ing limiting behavior of Yt as t tends to infinity:

1. If H < 0, then Yt →d 0

2. If H = 0, then Yt =d Y1

3. if H > 0 and Yt 6= 0, then |Yt| →d ∞
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Analogously, for t converging to zero, we have:

1. If H < 0 and Yt 6= 0, then |Yt| →d ∞

2. If H = 0, then Yt =d Y1

3. if H > 0 and Yt 6= 0, then Yt →d 0
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If we exclude the trivial case Yt ≡ 0, then these proper-

ties imply that Yt is not stationary unless H = 0.

For the purpose of modelling data that look station-

ary, we need only to consider self-similar processes with

stationary increments. The range of H can then be

restricted to H > 0.
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The form of the covariance function γy(t, s) = cov(Yt, Ys)

of a self-similar process Yt with stationary increments

follows from these two properties. Let us assume that

E[Yt] = 0.

Let s < t and denote by σ2 = E[(Yt − Yt−1)
2] = E[Y 2

1 ]

the variance of the increments process Xt = Yt − Yt−1.

Then

E[(Yt − Ys)
2] = E[(Yt−s − Y0)

2] = σ2(t − s)2H (17)
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The covariance γ(k) of the increments sequence Xi =

Yi − Yi−1, between Xi and Xi+k for k > 0 is

γ(k) =
1

2
{E[(Yk+1−Y0)

2]−E[(Yk−1−Y0)
2]−2E[(Yk−Y0)

2]}

(18)

Using self-similarity, we obtain the formula

γ(k) =
1

2
σ2[(k + 1)2H − 2k2H + (k − 1)2H] (19)
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The correlations are then given by

ρ(k) =
1

2
[(k + 1)2H − 2k2H + (k − 1)2H] (20)

The asymptotic behavior of ρ(k) follows from Taylor

expansion

ρ(k)

[H(2H − 1)k2H−2]
→ 1 (21)

as k → ∞. For 1/2 < H < 1 this means that the

correlations decay to zero so slowly that

∞
∑

k=−∞

ρ(k) = ∞ (22)

The process Xi (i = 1,2, . . . ) has long memory.
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For H = 1/2, all correlations at non-zero lags are zero,

i.e., the observations Xi are uncorrelated.

For 0 < H < 1/2, the correlations are summable. In

fact a more specific equation holds, namely,

∞
∑

k=−∞

ρ(k) = 0 (23)

In practice, this case is rarely encountered and the sum

is equal to some constant c different from zero.
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We will assume that the variance is always finite and

limk→∞ ρ(k) = 0 and then 0 < H < 1.

Under this assumptions, the spectral density of the in-

crements Xi can be calculated directly and expanded

near the origin giving

f(λ) ≈ cf |λ|
1−2H (24)
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To summarize... again

Let Xi be a stationary stochastic process

• 1
2 < H < 1 or 0 < α < 1 or 0 < β < 1 then Xi has

Long Memory (persistent)

• H = 1
2 then correlations are zero

• 0 < H < 1
2 correlations are, in fact, negative and

the process is anti-persistent
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Fractional Brownian Motion and

Gaussian Noise

Suppose that Yt is a self-similar process with stationary

increments (N.B. we do not request stationarity of the

process itself). That the increments Xi = Yi − Yi−1

have zero mean and that they are Gaussian.

For each value of H ∈ (0,1) there is exactly one Gaussian

process Xi that is the stationary increment of a self

similar process Yt. This process is called fractional

Gaussian noise.

The corresponding self-similar process Yt is called frac-

tional Brownian motion denoted by BH(t)
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In the simple case of H = 1/2, Xi are independent nor-

mal variable → B1
2
(t) is an ordinary Brownian motion.

Definition: Let B(t) be a stochastic process with con-

tinuous sample paths and such that

• B(t) is Gaussian

• B(0) = 0 almost surely

• B(t) has independent increments
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• E[B(t) − B(s)] = 0

• var[B(t) − B(s)] = σ2|t − s|

Then B(t) is called Brownian motion.
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Detection of Long Memory

1. Detrended Fluctuation Analysis

2. Rescaled Range Analysis

3. Spectral Analysis
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Detrended Fluctuation Analysis

The method has been used to identify whether long

range correlations exist in many research fields such as

e.g. finance, cardiac dynamics, meteorology etc. etc.

• The signal time series X(i), i = 1,2, . . . , N is first

integrated

Y (k) =
k

∑

i=1

[X(i)− < X >] (25)

where < X > is the mean;
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• The time axis (from 1 to N) is next divided into

non-overlapping boxes of equal size n;

• In each box of length n one looks thereafter for the

best (polynomial, of degree m) trend, zn,m;

• The integrated signal in each box is detrended by

subtracting the local trend;
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• For each box size n, the root mean square deviation

of the (integrated) signal is calculated

Fm(n) ≡

√

√

√

√

√

1

N

N
∑

k=1

[Y (k) − zn,m(i)]2 ; (26)

• the above computation is repeated for a broad range

of scales (box size n) to provide a relationship be-

tween the fluctuation function Fm(n) and the box

size n;
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If the original time series X(i) is long range correlated

(has long memory) the fluctuation function Fm(n) in-

creases following a power law:

Fm(n) ≈ nγ (27)

and the exponent γ is related to the correlation expo-

nent α. It turns out that γ = H.
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Rescaled Range Analysis

• The signal time series X(i), i = 1,2, . . . , N is divided

into l boxes of equal size n;

• In the kth box, (k = 1, . . . , l), there are n elements;

• the local fluctuation at point j in the kth box is

F (k)(n) = X(k)(j)− < X >
(k)
n (28)

where <>n is the mean in the kth box;
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• Let

S(k)(n) =

√

√

√

√

√

1

n

n
∑

j=1

(F (n)(k))2 (29)

• The cumulative departure Y
(k)
m (n) up to the mth

point in the kth box (of size n) is next calculated

Y
(k)
m (n) =

m
∑

j=1

F (k)(n) (30)

for m = 1, . . . , n and in all k boxes

• look for max1≤m≤n Y
(k)
m (n) and min1≤m≤n Y

(k)
m (n)
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• The rescaled range function is then defined by

R(k)(n)

S(k)(n)
=

max1≤m≤n Y
(k)
m (n) − min1≤m≤n Y

(k)
m (n)

√

1
n

∑n
j=1 (F (n)(k))2

for k = 1, . . . , l

• The average of the rescaled range function for boxes

of size n is obtained and denoted by < R/S >n

• Everything is repeated for different n

• for Long Memory processes one expects

< R/S >n≈ nH (31)
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FIG. 1. ~a! Log-log plot of the rescaled range statistic Q(s)
against the window size s for a true long range correlated process
with a50.6, variance 0.25, and a long data set of 8192 points. ~b!

Spectral density of the same data.

FIG. 2. ~a! Log-log plot of the rescaled range statistic Q(s)
against the window size s for a true long range correlated process
with a50.6, variance 0.25, and a short data set of 256 points. ~b!

Spectral density of the same data.

Two examples taken from [2]
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Spectral Analysis

The periodogram (the sample analogon of the spectral

density) is defined as

I(λj) =
1

2πn
|

n
∑

t=1

(Xt− < X >n)e
itλj |2 =

1

2π

n−1
∑

k=−(n−1)

γ̂(k)eitλj

where

γ̂(k) =
1

n

n−|k|
∑

t=1

(Xt− < X >n)(Xt+k− < X >n)

are the sample covariances

It is expected for a long memory process

I(λj) ≈ |λ|1−2H
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