

The Abdus Salam **International Centre for Theoretical Physics**

1864-12

Ninth Workshop on Non-linear Dynamics and Earthquake Predictions

1 - 13 October 2007

Inverse Problems and Data Assimilation in Non-Linear Sciences

Alik T. Ismail-Zadeh

Geophysical Institute University of Karlsruhe Karlsruhe, Germany &

International Institute of Earthquake Prediction Theory & Mathematical Geophysics Moscow, Russia

United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency

THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

Ninth Workshop "Non-Linear Dynamics and Earthquake Prediction" 1 October to 13 October 2007

INVERSE PROBLEMS AND DATA ASSIMILATION

IN NON-LINEAR EARTH SCIENCES

Alik T. Ismail-Zadeh

Geophysical Institute, University of Karlsruhe, Hertzsrt. 16, Karlsruhe 76187, Germany. E-mail: Alik.Ismail-Zadeh@gpi.uka.de

International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, 84/32 Profsoyuznaya ul., Moscow 117997, Russia.

> MIRAMARE-TRIESTE October 2007

Computational approach to problems of non-linear dynamics of the Earth

is inherently **multi-disciplinary**:

it requires of its practitioners a firm grounding in *applied mathematics* and *computer science* in addition to a command of *one or more disciplines in Earth sciences (geophysics , geology and geomechanics)*.

• **Computer science** provides the tools, ranging from networking and visualization tools to algorithms, that match modern computer architectures.

• **Mathematics** provides means to establish credibility of algorithms, such as error analysis, exact solutions and expansions, uniqueness proofs and theorems.

A MM links the causal characteristics of a geophysical process with its effects.

The causal characteristics of the process include, for example, parameters of the initial and boundary conditions, coefficients of the differential equations, and geometrical parameters of a model domain.

Direct and Inverse Problems

The aim of the *direct mathematical problem* **is to determine the relationship between the** *causes* **and** *effects* **of the geophysical process and hence to find a solution to the mathematical problem for a given set of parameters and coefficients.**

An *inverse problem* **is the opposite of a direct problem. An inverse problem is considered when there is a lack of information on the causal characteristics (but information on the effects of the geophysical process exists).**

Inverse (Time-Reverse) Problems

Inverse (time-reverse) problems of geodynamics **(thermal convection in the Earth's mantle) will be the subject of the several lectures during the Workshop.**

The principal result of such inversion is to restore dynamics of the Earth's interior in the geological past.

In other words, the present observations (mantle temperature, velocity, etc.) can be *assimilated* **into the past to constrain the initial conditions for the mantle temperature and velocity.**

Mathematical Statement

 \checkmark Governing Equations

 \checkmark Boundary and Initial Conditions

Governing Equations

the heat balance equation

$$
\frac{\partial}{\partial t}(\rho cT) + \langle \vec{u}, \nabla(\rho cT) \rangle = \text{div}\left(k \nabla T\right) + \mu \Phi + \rho Q,
$$

where

$$
\Phi = \frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} (e_{ij})^2,
$$

the state equation

$$
\rho(t,x,T)=\rho_*(t,x)(1-\alpha(T(t,x)-T_0)),
$$

the advection equations for thermally unperturbed density and viscosity

$$
\frac{\partial \rho_*}{\partial t}+<\bigtriangledown \rho_*, \vec{u}>=0, \quad \frac{\partial \mu_*}{\partial t}+<\bigtriangledown \mu_*, \vec{u}>=0,
$$

Boundary and Initial Conditions Model domain $\Omega = (0, l_1) \times (0, l_2) \times (0, l_3)$. At the **initial time** $t_0 = 0$: $T(0,x) = T_*^0(x), \quad \rho_*(0,x) = \rho_*^0(x), \quad \mu_*(0,x) = \mu_*^0(x), \quad x \in \Omega.$ At the **boundary faces** $\Gamma(x_i = 0)$ and $\Gamma(x_i = l_i)$ $(i = 1, 2, 3)$: Impermeability conditions with perfect slip: $\frac{\partial \vec{u}_{\tau}}{\partial \vec{n}} = 0, \langle \vec{u}, \vec{n} \rangle = 0 \text{ at } \Gamma.$ \vec{n} the outward unit normal vector at a point on the boundary Γ , \vec{u}_{τ} the projection of the velocity vector onto the tangent plane at the same point on Γ . Impermeability conditions with no-slip conditions: $\vec{u} = 0$ at Γ .

Boundary and Initial Conditions

For the **temperature** on the vectical model boundaries heat flux = 0 (homogeneous Neumann problem):

$$
\Gamma(x_1 = 0, x_1 = l_1): \quad \partial T/\partial x_1 = 0, \quad t \ge 0,
$$

$$
\Gamma(x_2 = 0, x_2 = l_2): \quad \partial T/\partial x_2 = 0, \quad t \ge 0.
$$

On the horizontal model boundaries (nonhomogeneous Dirichlet problem):

$$
\Gamma(x_3 = 0): \quad T(t, x_1, x_2, 0) = T_1(t, x_1, x_2), \quad t \ge 0,
$$

$$
\Gamma(x_3 = l_3): \quad T(t, x_1, x_2, l_3) = T_2(t, x_1, x_2), \quad t \ge 0.
$$

Properly and Improperly Posed Problems

Inverse problems are often ill-posed. Jacques Hadamard introduced the idea of *well- (and ill-) posed* problems in the theory of partial differential equations (Hadamard 1902).

A mathematical model for a geophysical problem has to be *well-posed* in the sense that it has to have the properties of existence, uniqueness, and stability of a solution to the problem. Problems for which at least one of these properties does not hold are called *ill-posed*.

The requirement of stability is the most important one. If a problem lacks the property of stability then its solution is almost impossible to compute because computations are polluted by unavoidable errors. If the solution of a problem does not depend continuously on the initial data, then, in general, the computed solution may have nothing to do with the true solution.

Improperly Posed Problems

The inverse problem of Earth dynamics (thermal convection in the mantle) is an ill-posed problem, since the backward heat problem, describing both heat advection and conduction through the mantle backwards in time, possesses the properties of ill-posedness.

In particular, the solution to the problem does not depend continuously on the initial data. This means that small changes in the present-day temperature field may result in large changes of predicted mantle temperatures in the past

Consider 1D diffusion problem backward in time.
 $T_t = T_{xx}$, $0 \le x \le \pi$, $t \le 0$, Example $T_t = T_{xx}$, $0 \le x \le \pi$, $t \le 0$, $T(t,0) = 0 = T(t,\pi)$, $t \leq 0$, $T(0, x) = \varphi_n(x)$, $0 \le x \le \pi$. At initial time (or final time with respect to the forward problem) we assume that $\varphi_n(x)$ takes the following two forms: $\varphi_n(x) = \frac{1}{4n+1} \sin((4n+1) \cdot x)$ and $\varphi_0(x) \equiv 0$ Note that $\max_{0 \le x \le \pi} |\varphi_n(x) - \varphi_0(x)| \le \frac{1}{4n+1} \to 0 \quad \text{at} \quad n \to \infty$ The following two solutions of the problem correspond to the two chosen functions of φ respectively: $T_0 \equiv 0$ at $\varphi_n(x) = \varphi_0$ $T_n = \frac{1}{4n+1} \exp(-(4n+1)^2 \cdot t) \cdot \sin((4n+1) \cdot x)$ at $\varphi_n(x) = \varphi_n$ At $t = -1$ and $x = \pi/2$ we obtain $T_n(-1, \pi/2) = \frac{1}{4n+1} \exp((4n+1)^2) \to \infty$ at $n \to \infty$ Therefore, two closely set initial functions φ_n and φ_0 are associated with two

different solutions. Hence, **a small error in initial data can result in large errors in the solution of the backward diffusion problem**.

Numerical Approach

 \checkmark Approximation of the mathematical problem

 \checkmark Numerical techniques used

 \checkmark Verification

Approximation of the Problem

Consider the uniform rectangular grid covering Ω :

 $\Omega_{ijk} = (x_1^i, x_2^j, x_3^k), \quad 0 \le i \le n_1, 0 \le j \le n_2, 0 \le k \le n_3.$

The vector potential $\vec{\psi}$ is approximated by a linear combination of tricubic basis functions expressed as products of appropriate cubic splines:

$$
\psi_p(t, x_1, x_2, x_3) \approx \sum_{i=0}^{n_1} \sum_{j=0}^{n_2} \sum_{k=0}^{n_3} \psi_{ijk}^{(p)}(t) s_i^{(p)}(x_1) s_j^{(p)}(x_2) s_k^{(p)}(x_3), \quad p = 1, 2.
$$

Density and viscosity are approximated by linear combinations of appropriate trilinear basis functions at fine grid

$$
\rho_*(t,x_1,x_2,x_3) \approx \sum_{i=0}^{n_1} \sum_{j=0}^{n_2} \sum_{k=0}^{n_3} \rho_{ijk}(t) \tilde{s}_i^{(1)}(x_1) \tilde{s}_j^{(2)}(x_2) \tilde{s}_k^{(3)}(x_3),
$$

$$
\mu_*(t,x_1,x_2,x_3) \approx \sum_{i=0}^{n_1} \sum_{j=0}^{n_2} \sum_{k=0}^{n_3} \mu_{ijk}(t) \tilde{s}_i^{(1)}(x_1) \tilde{s}_j^{(2)}(x_2) \tilde{s}_k^{(3)}(x_3).
$$

Numerical Techniques

Numerical Method for Solving the Stokes Equation

 \triangleright Finite element method is used to solve the Stokes equation. \triangleright A system of linear algebraic equations with a positive define band matrix for unknown coefficients is obtained.

 \triangleright The coefficients are determined on each time step by solving the system of linear algebraic equations iteratively by conjugate gradient or by Gauss–Seidel methods.

Numerical Method for Solving the Advection Equation

 \triangleright The advection equations has characteristics described by the system of ordinary differential equations

 $dx(t)/dt = u(t, x(t))$

 \triangleright Both density and viscosity retain constant values along the characteristics characteristics

$$
\rho_*(t, x(t)) = \rho_0(x(0)), \quad \mu_*(t, x(t)) = \mu_0(x(0)).
$$

Numerical Techniques

Numerical Method for Solving the Heat Equation

Temperature is approximated by finite-differences:

$$
\frac{\partial T(t_n, x_1^i, x_2^j, x_3^k)}{\partial x_1} = \frac{T_{i+1,j,k}^n - T_{i-1,j,k}^n}{2h_1}, \quad h_1 = x_1^i - x_1^{i-1},
$$

$$
\frac{\partial^2 T(t_n, x_1^i, x_2^j, x_3^k)}{\partial x_1^2} = \frac{T_{i+1,j,k}^n - 2T_{i,j,k}^n + T_{i-1,j,k}^n}{2h_1}
$$

Temperature is computed by an implicit alternating-direction method:

$$
r^{(k)} = \tau \nabla^2 T^{(k)} + \mathbf{u} \cdot \nabla T^{(k)}, \quad \left[1 - \frac{\tau}{2} \frac{\partial^2}{\partial x_3^2}\right] T^* = r^{(k)},
$$

$$
\left[1 - \frac{\tau}{2} \frac{\partial^2}{\partial x_2^2}\right] T^{**} = T^*, \quad \left[1 - \frac{\tau}{2} \frac{\partial^2}{\partial x_1^2}\right] T^{***} = T^{**}, \quad T^{(k+1)} = T^{(k)} + T^{***}.
$$

Parameter τ is chosen in such a way as to guarantee the stability of the FDM:

$$
\tau = \frac{1}{8} \frac{dx}{u_{\text{max}}}, \quad dx = \left[h_1^2 + h_2^2 + h_3^2 \right]^{1/2}, \quad u_{\text{max}} = \max \left\{ u_i(x) \middle| : x \in \overline{\Omega}, \ i = 1, 2, 3 \right\}
$$

The Jesuit scholar *A.Kircher* was one of the first compilers of semiscientific knowledge about the physical features of the world.

Data Assimilation Methods in Models of Geodynamics

• **Backward advection method** (**BAD**)

Steinberger and O'Connell, *GJI,* 1998.

Ismail-Zadeh et al., *Tectonophysics***, 2001, 2004.**

Conrad and Gurnis, *G3***, 2003.**

