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IN NON-LINEAR EARTH SCIENCES
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Great advances in understanding of the complex
Earth system and in computational tools,
permitting accurate numerical modelling and
forecasting, are transforming the geoscience.

Computational

Earth Earth Sciences

Sciences

Computer
Science

Computational Earth Sciences are a blending of these three areas to obtain a
better understanding of some phenomena through ajudicious match between
the problem, a computer architecture, and algorithms.




Computational approach to problems
of non-linear dynamics of the Earth

is inherently multi-disciplinary:
It requires of its practitioners a firm grounding in
applied mathematics and computer sciencein addition
to acommand of one or more disciplinesin Earth
sciences (geophysics, geology and geomechanics).

« Computer science provides the tools, ranging from
networking and visualization tools to algorithms, that
match modern computer architectures.

» Mathematics provides means to establish credibility
of algorithms, such as error analysis, exact solutions and
expansions, unigueness proofs and theorems.

Mathematical Model of
Geophysical Problem

M any geophysical problems can be described by
mathematical models (MM), i.e, by a set of partial
differential equations and boundary and/or initial
conditions defined in a specific domain.

A MM linksthe causal characteristics of a geophysical
process with its effects.

The causal characteristics of the processinclude, for
example, parametersof theinitial and boundary
conditions, coefficients of the differential equations, and
geometrical parameters of a model domain.




Direct and Inverse Problems

The aim of the direct mathematical problem is to
determine the relationship between the causes and
effects of the geophysical process and hence to find a
solution to the mathematical problem for a given set of
parameters and coefficients.

An inverse problem is the opposite of a direct problem.
An inverse problem is consdered when there is a lack
of information on the causal characteristics (but
information on the effects of the geophysical process
exists).

Inverse Problems

I nver se problems can be subdivided into

(i) timereverse problems (eg., to restore the
development of a geodynamic process)

(ii) coefficient problems (e.g., to determine the
coefficients of the model equations and/or boundary
conditions)

(iii) geometrical problems (eg., to determine the
location of heat sources in a model domain or the
geometry of the model boundary),

(iv) and some others.




Inverse Problems

Jacques Hadamard
(1865 — 1963)

Andrei Tikhonov
(1906 — 1993)

Jacques-LouisLions
(1928 — 2001)

|nver se (Time-Rever se) Problems

The mantleis heated from the core and from inside due
to decay of radioactive elements. Since mantle
convection isdescribed by heat advection and diffusion,
one can ask:

Isit possibleto tell, from the present temperature
estimations of the Earth, something about the Earth’s
temperature in the geological past?

Even though heat diffuson isirreversiblein the
physical sensg, it ispossibleto predict accurately the
heat transfer backwardsin time using data assmilation
techniques without contradicting thebasic
thermodynamic laws.




|nver se (Time-Rever se) Problems

I nverse (time-reverse) problems of geodynamics (thermal
convection in the Earth’s mantle) will be the subject of
the several lectures during the Workshop.

The principal result of such inversion istorestore
dynamics of the Earth'sinterior in the geological past.

In other words, the present observations (mantle
temperature, velocity, etc.) can be assimilated into the
past to constrain theinitial conditionsfor the mantle
temperature and velocity.

Mathematical Statement

v'Governing Equations

v'Boundary and Initial Conditions




Governing Eyuations
v’ Conservation of momentum (Stokes equation)
v State equation
v’ Incompressibility condition

v"Rheological equation (dependence of effective
viscosity on temperature, pressure and stress)

v'Heat balance equation

v’ Advection equation for density, viscosity or
chemical components.

Governing Equations

The equations for conservation of momentum
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the incompressibility condition div @ = 0
the equation for P- and T-dependent viscosity
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Governing Equations

the heat balance equation
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the state equation

p(t,z,T) = p.(t,z)(1 — (T(t,z) — Tp)),

the advection equations for thermally unperturbed density and

viscosity
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Boundary and Initial Conditions

Model domain Q2 = (0,1;) x (0,13) x (0,13).

At the initial time t; = 0:

T(U! I) = Tx:u(m): p*([],:.c) = pE(:c), ﬂ-*(oam) = ”E(x): z € S

At the boundary faces I'(z; = 0) and ['(z; = 1;) (i = 1,2, 3):
Impermeability conditions with perfect slip:

B4, /R =0, <@, >=0 atTl.

7 the outward unit normal vector at a point on the boundary T,
u, the projection of the velocity vector onto the tangent plane
at the same point on I'.

Impermeability conditions with no-slip conditions:

u=0 atT.




Boundary and Initial Conditions

For the temperature on the vectical model boundaries
heat flux = 0 (homogeneous Neumann problem):
INzy=0,21=10;): 8T/8z; =0, t>0,
P(&?g = 0,21?2 = lg) % 6T/8$2 = U, t Z 0.
On the horizontal model boundaries (nonhomogeneous Dirichlet
problem):
I(z3=0): T(@,z1,22,0) =Ti(t,z1,22), t>0,
F(:E;] 23‘3) 3 T(t,Il,.’L‘Q,fg) ZTg(t,LEI,wg), t ZU

Pronerly and Improperly Pased Problems

Inverse problems are often ill-posed. Jacques Hadamard introduced
the idea of well- (and ill-) posed problems in the theory of partial
differential equations (Hadamard 1902).

A mathematical model for a geophysical problem has to be
well-posed in the sense that it has to have the properties of existence,
unigqueness, and stability of a solution to the problem. Problems for
which at least one of these properties does not hold are called
ill-posed.

The requirement of stability isthe most important one. If a problem
lacks the property of stability then its solution is almost impossible to
compute because computations are polluted by unavoidable errors. If
the solution of a problem does not depend continuously on the initial
data, then, in general, the computed solution may have nothing to do
with the true solution.




Improperly Posed Problems

The inverse problem of Earth dynamics (thermal convection in the
mantle) is an ill-posed problem, since the backward heat problem,

describing both heat advection and conduction through the mantle
backwards in time, possesses the properties of ill-posedness.

In particular, the solution to the problem does not depend
continuously on theinitial data. This means that small changes in
the present-day temperature field may result in large changes of
predicted mantle temperatures in the past

Consider 1D diffusion problem backward in time.
T, =T, 0<x<rm, t<0, Examnle
T(t0)=0=T(t7), t<o,
T(0.X) = pn(x), 0<x<7.
At initial time (or final time with respect to the forward problem) we assume that ¢n(x)
takes the following two forms:

Pp()=——sin(4n+1)-x) ad  o(x)=0

an+1
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The following two solutions of the problem correspond to the two chosen functions of ¢
respectively:
To=0 a ¢,(x)=9
1

T, =——exp(-(4n+1)* t)-sin((4n+1)-X) a ¢,(x) =9,
4n+1

Att=-1and x = 7712 we obtain
Tn(—l,;zlz):iexp((4n+1)2)—>oo a n— o
4n+1

Therefore, two closely set initial functions ¢, and ¢, are associated with two
different solutions. Hence, a small error in initial data can resultin largeerrors
in the solution of the backward diffusion problem.




Numerical Approach

v’ Approximation of the mathematical problem
v'"Numerical techniques used

v'Veification

Approximation of the Prohlem
Consider the uniform rectangular grid covering Q:
=(x,x),x¥), 0<i<n,0<j<n,,0<k<n,
The vector potential ¥ is approximated by a linear combina-

tion of tricubic basis functions expressed as products of appro-

priate cubic splines:

5 55 5% @) (21)sP ()P (23), p=1,2.

Yo(t, 21, T2, T3) =2 3
1=0 j=0 k=0

Density and viscosity are approximated by linear combinations
of appropriatetrilinear basis functions at fine grid
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Numerical Techniques
Numerical Method for Solving the Stokes Equation

» Finite element method is used to solve the Stokes equation.

» A system of linear algebraic equations with a positive define
band matrix for unknown coefficients is obtained.

» The coefficients are determined on each time step by solving
the system of linear algebraic equations iteratively by conjugate
gradient or by Gauss-Seidel methods.

Numerical Method for Solving the Advection Equation

» The advection equations has characteristics described by the
system of ordinary differential equations
dx(t)/ dt = u(t, x(t))
» Both density and viscosity retain constant values along the
characteristics

p-(t,X(1) = po(x(0)), (8, X(1)) = £4,(x(0)).

Numerical Techniques
Numerical Method for Solving the Heat Equation

Temperature is approximated by finite-differences:
aT(tny)QerjyXlgf) _ Tk~ Tl

i i
ax, o h=x-x",
9T (t,, %, X}, X5) _ Tl = 205+ T
0%} 2h,

Temperature is computed by an implicit alternating-direction method:

T 62 *
r(k)=TV2T(k)+u-VT(k), 1———2T =r(k),
2 x5

2 2
1_16_ T** :T*’ _Za_ T*** :T**’ T(k+l) :T(k) +T***_
29x%5 209x

Parameter T is chosen in such away as to guarantee the stability of the FDM:

T=1ﬁ, dx=[hf+h22+h32]1/2, U =maxﬂui (x)|:XG§, i=12,3}

8max
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Uerilication
A few testswere done to check the accuracy of the method

- Benchmark with another numerical codes (Busse et al., 1993)
in a reasonable agreement (constant viscosity and
temperature dependent)

- Conservation of massat each time step
relative change of mass about 0.1% per 200 time steps

- Element refinement

- Accuracy of the vector velocity potential

relative error for the grid 30x30x30 remained within
0.3% for right-hand sides having reasonable
numbers of periods
- Comparison with an analytical solution for the Stokes equation
combined with the advection equation for density (Trushkov, 2002).

Parallel Computing using M

P )

-":1; 1 d to send data
|

|

I
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~ Model domain Q s distributed ™,

The model problem is solved R PO
at parallel processors.

12



Two Apnreaches to Numerigal Modeling

Present Mantle convection
temperature

FORWARD PR
MODELLING ¥

Conservation of mass Boundary conditions

and momentum .
(Stokes equation) Mathematical Newtonian rheology

methods (T, P, stress)

Conservation and Conservation of mass

of energy numerical and momentum

(heat equation) algorithms (Stokes equation)

Newtonian rheology Conservation of energy
(T, P, stress) (backward heat equation
Boundary BACKWARD
conditions MODELLING
> Initial
temperature

Data Assimilation

Data assimilation can be defined asthe incorporation of
present (observations) and past data (initial conditions)
in an explicit dynamic model to provide time continuity
and coupling among the physical fields (e.g., velocity,
temperature).

The basic principle of data assimilation isto consider
theinitial condition asa control variable and to
optimize theinitial condition in order to minimizethe
discrepancy between the observations and the solution
of the model.

13



Data Assimilation in Geodynamics

Initial conditions

-
1)
S
g
3 Data
§ Assimilation
~VP +V-(u[Vu+(Vu)')+RaT e=0
V-u=0 ~—
oT /ot +u-VT = V7T +f Model Observations

Why data assimilation:
To restore the temperature, composition, and movements in the
mantle and to predict the Earth’s heat budget evolution
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Montelli et al., Science, 2004
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Why data assimilation:
To understand the origin and evolution of the present high
and low velocity anomalies in a particular region

“ ; Velcances w

100

150

Zhao, PEPI, 2001

Why data assimilation:
To reconstruct structural and geothermal evolutions of sedimentary
basins (particularly, complicated by salt tectonics)

0 Tkm
—

sec

[ e ] sE AR
Salt diapirism in the Pricaspian basin, Russia & K azakhstan

Volozh, Tdbot & Ismail-Zadeh, AAPG Bull., 2003
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Data Assimilation Methods
in Models of the Earth
(ca 1668)

ey Weals

, Primitive method"

The Jesuit scholar
A.Kircher was one of the
first compilers of semi-
scientific knowledge
about the physical
features of the world.

Data Assimilation Methods
in Models of Geodynamics
» Backward advection method (BAD)

Steinberger and O’ Connell, GJI, 1998.
Ismail-Zadeh et al., Tectonophysics, 2001, 2004.

Conrad and Gurnis, G2, 2003.
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Salt Diapirism

Rayleigh-Taylor Problem
Jackson and Tabot, 1994

Salt Diapirism

2.9 2.9
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8 1
Langth, km
(B8)

Seismic profile (A) through the th. part of the Pri jan basin
and its depth-conversion (B) with salt related structures as indicated:

1. salt dome; 2. residual salt high; 3-8, sedimentary layers of salt overburden:
3, Lower Kazanian (258-255 Ma), 4, Upper Kazanian (255-253 Ma);
5, Tatarian {253-245 Ma): 6. Lower Triassic (245-241); 7, Middle Triassic to
Lower Crotaceous (241-80 Ma); and 8, Upper Cretaceous to Quaternary (S0-0 Ma),

Ismail-Zadeh et al., 2001
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Forward M odeling of Salt Diapirism

Evolution of the interface
between salt and its
overburden

Ismail-Zadeh et al., 2004
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Initial state of small perturbations o

overburden

Backward Modeling of Salt Diapirism

Evolution of the interface
between salt and its
overburden

Ismail-Zadeh et al., 2001

BAD method applied
torestore salt structures

0 Ma
L
FI ' L] o
0 24 48 T2 96 120 2 4 & B 10
Density residual, kg m” Height, km
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» Backward advection method (BAD)
Conrad and Gurnis, G, 2003.

(T ConaAD ANp Grai wmane Towocanry 101029001 GEB00 Ceochemiry Cconnas AN GURNI: S Towoceny 10, 10292001 GLB0029%
ik il i
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$Toes 7303 140 140 1300 1890 1008 1700 00 3900

Data Assimilation Methods
in Models of Geotlynamics

 Backward advection method (BAD)
Ismail-Zadeh et a ., Tectonophysics, 2001, 2004.
Conrad and Gurnis, G2, 2003.

* Sequential filtering (SFL)
Hager and O' Connéll, JRG, 1979.
Bungeet a., Phil. Trans. Roy. Soc. A, 2002.

» Variational method (VAR)
Bungeet a., GJI, 2003.
Ismail-Zadeh et ., CMMP, 2003; PEPI, 2004; JGR, 2006.

* Quasi-reversibility method (QRV)
Ismail-Zadeh et ., GJI, 2007.
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