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IN NON-LINEAR EARTH SCIENCES
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Karlsruhe University, Germany / Russian Academy of Sciences, Moscow
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Great advances in understanding of the complex 
Earth system and in computational tools, 

permitting accurate numerical modelling and 
forecasting, are transforming the geoscience. 

Computational Earth Sciences are a blending of these three areas to obtain a 
better understanding of some phenomena through a judicious match between 

the problem, a computer architecture, and algorithms.
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Computational approach to problems 
of non-linear dynamics of the Earth

is inherently multi-disciplinary: 
it requires of its practitioners a firm grounding in 
applied mathematics and computer science in addition 
to a command of one or more disciplines in Earth 
sciences (geophysics , geology and geomechanics). 

• Computer science provides the tools, ranging from 
networking and visualization tools to algorithms, that 
match modern computer architectures. 

• Mathematics provides means to establish credibility 
of algorithms, such as error analysis, exact solutions and 
expansions, uniqueness proofs and theorems.

Many geophysical problems can be described by 
mathematical models (MM), i.e., by a set of partial 
differential equations and boundary and/or initial 
conditions defined in a specific domain. 

A MM links the causal characteristics of a geophysical 
process with its effects. 

The causal characteristics of the process include, for 
example, parameters of the initial and boundary 
conditions, coefficients of the differential equations, and 
geometrical parameters of a model domain. 

Mathematical Model of 
Geophysical Problem
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The aim of the direct mathematical problem is to 
determine the relationship between the causes and 
effects of the geophysical process and hence to find a 
solution to the mathematical problem for a given set of 
parameters and coefficients. 

An inverse problem is the opposite of a direct problem. 
An inverse problem is considered when there is a lack 
of information on the causal characteristics (but 
information on the effects of the geophysical process 
exists). 

Direct and Inverse Problems

Inverse problems can be subdivided into

(i) time-reverse problems (e.g., to restore the 
development of a geodynamic process)

(ii) coefficient problems (e.g., to determine the 
coefficients of the model equations and/or boundary 
conditions)

(iii) geometrical problems (e.g., to determine the 
location of heat sources in a model domain or the 
geometry of the model boundary), 

(iv) and some others. 

Inverse Problems
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Jacques Hadamard
(1865 – 1963) 

Andrei Tikhonov
(1906 – 1993)

Jacques-Louis Lions
(1928 – 2001)

The mantle is heated from the core and from inside due 
to decay of radioactive elements. Since mantle 
convection is described by heat advection and diffusion, 
one can ask: 

Is it possible to tell, from the present temperature 
estimations of the Earth, something about the Earth’s 
temperature in the geological past? 

Even though heat diffusion is irreversible in the 
physical sense, it is possible to predict accurately the 
heat transfer backwards in time using data assimilation 
techniques without contradicting the basic 
thermodynamic laws. 

Inverse (Time-Reverse) Problems
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Inverse (time-reverse) problems of geodynamics (thermal 
convection in the Earth’s mantle) will be the subject of 
the several lectures during the Workshop.

The principal result of such inversion is to restore
dynamics of the Earth‘s interior in the geological past.

In other words, the present observations (mantle 
temperature, velocity, etc.) can be assimilated into the 
past to constrain the initial conditions for the mantle 
temperature and velocity. 

Inverse (Time-Reverse) Problems

Governing Equations

Boundary and Initial Conditions
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Conservation of momentum (Stokes equation)

State equation 

Incompressibility condition

Rheological equation (dependence of effective 
viscosity on temperature, pressure and stress)

Heat balance equation 

Advection equation for density, viscosity or 
chemical components .

for P- and T-dependent viscosity 
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Inverse problems are often ill-posed. Jacques Hadamard introduced 
the idea of well- (and ill-) posed problems in the theory of partial 
differential equations (Hadamard 1902). 

A mathematical model for a geophysical problem has to be 
well-posed in the sense that it has to have the properties of existence, 
uniqueness, and stability of a solution to the problem. Problems for 
which at least one of these properties does not hold are called 
ill-posed. 

The requirement of stability is the most important one. If a problem 
lacks the property of stability then its solution is almost impossible to 
compute because computations are polluted by unavoidable errors. If 
the solution of a problem does not depend continuously on the initial 
data, then, in general, the computed solution may have nothing to do 
with the true solution.
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The inverse problem of Earth dynamics (thermal convection in the 
mantle) is an ill-posed problem, since the backward heat problem, 
describing both heat advection and conduction through the mantle
backwards in time, possesses the properties of ill-posedness. 

In particular, the solution to the problem does not depend 
continuously on the initial data. This means that small changes in 
the present-day temperature field may result in large changes of 
predicted mantle temperatures in the past 

Consider 1D diffusion problem backward in time.
xxt TT = , π≤≤ x0 , 0≤t ,
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Therefore, two closely set initial functions ϕn and ϕ0 are associated with two
different solutions. Hence, a small error in initial data can result in large errors
in the solution of the backward diffusion problem.
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Approximation of the mathematical problem

Numerical techniques used

Verification

Density and viscosity are approximated by linear combinations 
of appropriate trilinear basis functions at fine grid

Consider the uniform rectangular grid covering Ω:

1 2 3 1 2 3( , , ),    0 ,0 ,0 .i j k
ijk x x x i n j n k nΩ = ≤ ≤ ≤ ≤ ≤ ≤
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Numerical Method  for Solving the Stokes Equation

Finite element method is used to solve the Stokes equation. 
A system of linear algebraic equations with a positive define 

band matrix for unknown coefficients is obtained. 
The coefficients are determined on each time step by solving 

the system of linear algebraic equations iteratively by conjugate 
gradient or by Gauss–Seidel methods. 

Numerical Method for Solving the Advection Equation

The advection equations has characteristics described by the 
system of ordinary differential equations

( ) / ( , ( ))dx t dt t x t= u

* 0 * 0( , ( )) ( (0)),    ( , ( )) ( (0)).t x t x t x t xρ ρ µ µ= =

Both density and viscosity retain constant values along the 
characteristics
Both density and viscosity retain constant values along the 
characteristics

Numerical Method for Solving the Heat Equation

Temperature is approximated by finite-differences:
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Temperature is computed by an implicit alternating-direction method:
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A few tests were done to check the accuracy of the method

- Benchmark with another numerical codes (Busse et al., 1993)
in a reasonable agreement (constant viscosity and
temperature dependent)

- Conservation of mass at each time step 
relative change of mass about 0.1% per 200 time steps

- Element refinement
- Accuracy of the vector velocity potential 

relative error for the grid 30x30x30 remained within
0.3% for right-hand sides having reasonable 
numbers of periods

- Comparison with an analytical solution for the Stokes equation 
combined with the advection equation for density (Trushkov, 2002).

The model problem is solved 
at parallel processors. 
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Data assimilation can be defined as the incorporation of 
present (observations) and past data (initial conditions) 
in an explicit dynamic model to provide time continuity 
and coupling among the physical fields (e.g., velocity, 
temperature). 

The basic principle of data assimilation is to consider 
the initial condition as a control variable and to 
optimize the initial condition in order to minimize the 
discrepancy between the observations and the solution 
of the model. 

Data Assimilation
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Data Assimilation in Geodynamics

To restore the temperature, composition, and movements in the 
mantle and to predict  the Earth’s heat budget evolution

Montelli et al., Science, 2004
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To understand the origin and evolution of the present high 
and low velocity anomalies in a particular region

Zhao, PEPI, 2001

To reconstruct structural and geothermal evolutions of sedimentary 
basins (particularly, complicated by salt tectonics)

Salt diapirism in the Pricaspian basin, Russia & Kazakhstan

Volozh, Talbot & Ismail-Zadeh, AAPG Bull., 2003
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The Jesuit scholar 
A.Kircher was one of the 
first compilers of semi-

scientific knowledge 
about the physical 

features of the world. 

„Primitive method“ (ca. 1668)

• Backward advection method (BAD)

Steinberger and O’Connell, GJI, 1998. 

Ismail-Zadeh et al., Tectonophysics, 2001, 2004.

Conrad and Gurnis, G3, 2003.
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Ismail-Zadeh et al., 2001Jackson and Talbot, 1994
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Ismail-Zadeh et al., 2001
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salt

overburden

Evolution of the interface 
between salt and its 

overburden

Forward Modeling of Salt Diapirism

Ismail-Zadeh et al., 2004
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Backward Modeling of Salt Diapirism

Initial state of small perturbations

salt

overburden

Evolution of the interface 
between salt and its 

overburden

Ismail-Zadeh et al., 2001

BAD method applied 
to restore salt structures
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• Backward advection method (BAD)
Conrad and Gurnis, G3, 2003.

• Backward advection method (BAD)
Ismail-Zadeh et al., Tectonophysics, 2001, 2004.
Conrad and Gurnis, G3, 2003.

• Sequential filtering (SFL) 
Hager and O‘Connell, JRG, 1979.
Bunge et al., Phil. Trans. Roy. Soc. A , 2002. 

• Variational method (VAR)
Bunge et al., GJI, 2003.
Ismail-Zadeh et al., CMMP, 2003;  PEPI, 2004;  JGR, 2006.

• Quasi-reversibility method (QRV)
Ismail-Zadeh et al., GJI, 2007.
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