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Abstract

Modern seismic tomographic images of the Earth’s interior facilitate the inference of the complex trajectories of present-day
convective flow in the upper mantle. Quantitative reconstruction of both the observed mantle structure and temperature field
backwards in time requires a numerical tool for solving the inverse problem of thermal convection at infinite Prandtl number.
In this paper we present a variational approach to three-dimensional numerical restoration of thermoconvective mantle flow
with temperature-dependent viscosity. This approach is based on a search for the mantle temperature and flow in the geological
past by minimizing differences between present-day mantle temperature derived from seismic velocities (or their anomalies)
and that predicted by forward models of mantle flow for an initial temperature guess. The past mantle temperatures so obtained
can be employed as constraints on forward models of mantle dynamics. To demonstrate the applicability of this technique,
we restore numerically a fluid dynamic model of the evolution of upper mantle plumes and show that the initial shape of
the plumes can be accurately reconstructed. We then model the evolution of the plumes forward in time (plume upbuilding)
starting from the restored state to the state they were before the restoration and demonstrate the high accuracy of the model
predictions. We also show that the neglect of thermal diffusion in the backward modeling of thermal plumes (in order to
simplify the numerical procedure) results in erroneous restorations of the plumes.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The reconstruction of mantle plumes and litho-
spheric slabs to earlier stages of their evolution is
a major challenge in geodynamics. High-resolution
seismic tomographic studies open possibilities for de-
tailed observations of present-day mantle structures
(e.g., Grand et al., 1997; van der Voo et al., 1999;
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Ritsema and Allen, 2003) and for derivations of man-
tle temperature from seismic velocities or velocity
anomalies (e.g., Sobolev et al., 1996; Goes et al.,
2000). An accurate reconstruction would allow the test
of geodynamic models by simulating the evolution of
plumes or slabs starting from the restored state and
comparing the derived forward state to observations.

For clarity of subsequent discussion, we introduce
a few mathematical definitions used in the paper. A
mathematical model for a geophysical problem has
to be well-posed in the sense that it has to have the
properties of existence, uniqueness, and stability of a
solution to the problem (Hadamard, 1923). Problems
for which at least one of these properties does not hold
are called ill-posed. The requirement of stability is the
most important one. If a problem lacks the property
of stability then its solution is almost impossible to
compute because numerical computations are polluted
by unavoidable errors. If the solution of a problem
does not depend continuously on the initial data, then,
in general, the computed solution may have nothing
to do with the true solution.

The inverse problem of thermal convection in the
mantle is an ill-posed problem, since the backward
heat problem, describing both heat advection and dif-
fusion through the mantle backwards in time, pos-
sesses the properties of ill-posedness (Kirsch, 1996).
In particular, the solution to the problem does not de-
pend continuously on the initial data. This means that
small changes in the present-day temperature field may
result in large changes of predicted mantle tempera-
tures in the past (see Appendix A for an explanation
of this statement in the case of the one-dimensional
diffusion equation).

If heat diffusion is neglected, the solution of
the advection equation backwards in time does not
present computational difficulties. A numerical ap-
proach to the solution of the inverse problem of the
Rayleigh–Taylor (gravitational) instability was pro-
posed by Ismail-Zadeh (1999) and was developed
later for a dynamic restoration of plume (diapiric)
structures to their earlier stages (Ismail-Zadeh et al.,
2001a). Kaus and Podladchikov (2001) and Korotkii
et al. (2002) applied the approach to study 3D
Rayleigh–Taylor overturns forward and backward in
time. Both direct (forward in time) and inverse (back-
ward in time) problems of the gravitational advection
are well-posed. This is because the time-dependent

advection equation (for density or temperature) has
the same form of characteristics for the direct and
inverse velocity field (the vector velocity reverses its
direction, when time is reversed). Therefore, numeri-
cal algorithms used to solve the direct problem of the
gravitational instability of the geological structures
can also be used in studies of the inverse problems
by replacing positive timesteps with negative ones.

Steinberger and O’Connell (1997, 1998) and
Conrad and Gurnis (2003) modeled the mantle flow
backwards in time from present-day mantle density
heterogeneities inferred from seismic observations.
However, they ignored thermal diffusion in the mantle
(and hence the respective term in the heat equation)
and employed the advection equation in the model-
ing. We demonstrate that this approach (neglect of
heat diffusion in backward modeling) is not valid.

There is a sizeable literature on the numerical solu-
tion of the backward heat equation (e.g., Buzbee and
Carasso, 1973; Colton, 1979; Elden, 1982; Ames and
Epperson, 1997; Lu, 1997; Moszynski, 2001; see
also Tikhonov and Arsenin, 1977, and Kirsch, 1996,
for additional references). These methods are based
on a regularization of the numerical solution. Bunge
et al. (2003) and Ismail-Zadeh et al. (2003a,b) have
independently developed variational approaches for
solving the inverse problem of mantle convection. The
major differences between the two approaches are that
Bunge et al. (2003) applied the variational method
to a set of equations describing mantle convection,
whereas Ismail-Zadeh et al. (2003a) applied the varia-
tional method to the heat equation, because time enters
only into this equation and the backward heat problem
is ill-posed. Ismail-Zadeh et al. (2003a) determine the
temperature in the geological past and then the con-
vective backward flow from the Stokes and continuity
equations. (We will discuss other differences between
these two approaches to solving the inverse problem
of mantle convection later in the paper.)

In Section 1 we present a mathematical statement
of the three-dimensional direct and inverse problems
of thermal convection with temperature-dependent
viscosity. In Section 2 we describe the variational
approach to search for mantle temperature in the ge-
ological past based on estimations of its present-day
temperature. The approach is based on reducing the
problem to minimization of the objective functional
describing the difference between the present-day
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mantle temperature and that predicted by forward
models of mantle flow for an initial temperature
guess. The optimum solution to the minimization
problem is provided by iteratively solving coupled
direct and conjugate (adjoint) problems for the heat
equation. The variational approach to solving the
backward heat problem has been known in applied
mathematics and geophysics (atmosphering model-
ing and oceanography, see e.g. Bennett (1992) and
Kalnay (2003)), but so far has not been used in stud-
ies of mantle thermoconvective flow. In Section 3
we describe numerical techniques used in solving the
inverse problem of mantle convection. We demon-
strate the applicability of the numerical approach to
restoration of mantle plumes and show the effect of
heat diffusion on results of the backward modeling in
Section 4. We discuss the physical and mathematical
meaning of the time-reversible processes in Section 5
and present conclusions in Section 6.

2. Mathematical statement of the problem

We assume that the mantle behaves as a New-
tonian fluid at geological time scales and consider
the slow thermoconvective flow of a heteroge-
neous incompressible fluid at infinite Prandtl num-
ber with a temperature-dependent viscosity in a
three-dimensional rectangular domain Ω = (0, x1 =
l1) × (0, x2 = l2) × (0, x3 = l3 = h) heated from
below; x = (x1, x2, x3) are the spatial coordinates;
the x3-axis is vertical and positive upward. Thermo-
convective flow is described by the heat, momentum
(Stokes), and continuity equations. In the Boussinesq
approximation these dimensionless equations take the
form (Chandrasekhar, 1961):

∂T

∂t
+ u · ∇T − ∇2T = 0, (1)

−∇P + ∇ · [µ(T)(∇u + (∇u)Tr)] + Ra T e = 0, (2)

∇ · u = 0, (3)

for x ∈ Ω and t ∈ (ϑ1, ϑ2), where T , u, P , µ, and t
are temperature, velocity, pressure, viscosity, and time
respectively; superscript Tr means transpose; and e =
(0, 0, 1) is the unit vector. The Rayleigh number is
defined as Ra = αgρ0�Th3/µ0κ where α the ther-
mal expansivity; g the acceleration due to gravity; ρ0

and µ0 are the reference typical density and viscosity,
respectively; �T is the temperature contrast between
the lower and upper boundaries of the model domain;
and κ is the thermal diffusivity. In Eqs. (1)–(3) length,
temperature, and time are normalized by h, �T , and
h2/κ, respectively. We do not consider the chemical
convection in the mantle. The formulation of the in-
verse problem of thermo-chemical convection and the
numerical approach to the solution of the problem are
described by Ismail-Zadeh et al. (2003a).

At the boundary Γ of the model domain Ω we
set the impenetrability and perfect slip conditions:
n · ∇utg = 0 and n · u = 0, where n is the outer
normal vector and utg is the tangential component of
velocity. We assume the heat flux through the vertical
boundaries ofΩ to be zero: n·∇T = 0. The upper and
lower boundaries are assumed to be isothermal sur-
faces, and hence T = Tu at x3 = h, T = Tl at x3 = 0,
where Tu and Tl are constant, and �T = Tl − Tu > 0.
To solve the direct and inverse problems of thermal
convection, we assume that the temperature is known
at the initial time t = ϑ1 and at the final (in terms of
the direct problem) time t = ϑ2, respectively.

Thus, the direct (or inverse) problem of the thermal
convection is to determine velocity, u = u(t, x), pres-
sure, P = P(t, x), and temperature, T = T(t, x), satis-
fying Eqs. (1)–(3) at t ≥ ϑ1 (or t ≤ ϑ2), the prescribed
boundary conditions, and the temperature condition at
t = ϑ1 (or t = ϑ2).

3. Variational approach to solving the backward
heat problem

In this section, we present a variational approach
to an approximate solution to the backward heat
problem. Consider the following objective (quadratic)
functional

J(ϕ)= ‖T(ϑ2, · ;ϕ)− χ(·)‖2

=
∫
Ω

|T(ϑ2, x;ϕ)− χ(x)|2dx, (4)

where T(ϑ2, x;ϕ) is the solution of the forward heat
equation (1) with the appropriate boundary and ini-
tial conditions at final time ϑ2, which corresponds to
some (unknown as yet) initial temperature distribution
ϕ = ϕ(x); χ(x) = T(ϑ2, x; T0) is the known temper-
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ature distribution at the final time for the initial tem-
perature T0 = T0(x); and ‖ · ‖ is the norm in space
L2(Ω). We seek a minimum of the objective func-
tional with respect to the initial temperature, ϕ. The
functional has its unique global minimum at value ϕ =
T0, and J(T0) = 0, ∇J(T0) = 0. The uniqueness of
the global minimum of the objective functional fol-
lows from the uniqueness of the solution of the rel-
evant boundary-value problem for the heat equation
and a strong convexity of the functional (Tikhonov
and Samarskii, 1990).

To find a minimum of the objective functional we
employ the gradient method (Vasiliev, 2002)

ϕk+1 = ϕk − αk∇J(ϕk), ϕ0 = T∗,
k= 0, 1, 2, . . . , (5)

αk = min{1/(k + 1); J(ϕk)/‖∇J(ϕk)‖}, (6)

where T∗ is an initial temperature guess. It can be
shown that the gradient of functional J is represented
as ∇J(ϕ) = Ψ(ϑ1, · ) (see Appendix B), where Ψ is
the solution to the following boundary problem con-
jugated (adjoint) to the respective boundary problem
for Eq. (1):

∂Ψ/∂t + u · ∇Ψ + ∇2Ψ = 0, x ∈ Ω, t ∈ (ϑ1, ϑ2),

σ1Ψ + σ2∂Ψ/∂n = 0, x ∈ Γ, t ∈ (ϑ1, ϑ2),

Ψ(ϑ2, x)

= 2(T(ϑ2, x;ϕ)− χ(x)), x ∈ Ω,
(7)

where σ1 and σ2 are some smooth functions or con-
stants satisfying the condition σ2

1 + σ2
2 �= 0. Selecting

σ1 and σ2 we can obtain corresponding boundary con-
ditions. Problem (7) is ill-posed for positive timesteps
and well-posed for negative timesteps.

The solution algorithm for the backward heat
problem is based on the following three steps (k =
0, 1, 2, . . . , n, . . . ):

(i) solve the forward heat equation (1) in the time
interval [ϑ1, ϑ2], x ∈ Ω, with the boundary con-
ditions defined and initial temperature T(ϑ1, x) =
ϕk(x) in order to find T(ϑ2, x;ϕk);

(ii) solve problem (7) backwards in time and deter-
mine ∇J(ϕk) = Ψ(ϑ1, x;ϕk); and

(iii) determine αk from (6) and then update the initial
temperature, i.e., find ϕk+1 from (5).

Fig. 1. Relative reductions of the objective functional J (solid line)
and the norm of the gradient of the objective functional ‖∇J‖
(dashed line) as functions of the number of iterations.

Computations are terminated when

δϕn = J(ϕn)+ ‖∇J(ϕn)‖2 < ε, (8)

where ε is a small constant. The temperature ϕn is then
considered to be the approximation of the target value
of the initial temperature T0. If δϕn ≥ ε, we return to
step (i) and make the next iteration.

The performance of the algorithm is evaluated
in terms of the number of iterations n required to
achieve a prescribed relative reduction of δϕn (in our
numerical experiments we assumed ε = 10−8). Fig. 1
presents the evolution of the objective functional
J(ϕn) and the norm of the gradient of the objective
functional ‖∇J(ϕn)‖ versus the number of iterations
at time about (ϑ2 +ϑ1)/2. For other time steps we ob-
serve a similar evolution of J and ‖∇J‖. Numerical
tests demonstrate that if the initial guess for temper-
ature is a smooth function, then iterations converge
rapidly (only 5–10 iterations); otherwise, the itera-
tions converge very slowly (100 and more iterations).

Implementation of minimization algorithms re-
quires the evaluation of both the objective functional
(4) and its gradient ∇J . Each evaluation of the ob-
jective functional requires an integration of the model
Eq. (1) with the appropriate boundary and initial con-
ditions, whereas the gradient is obtained through the
backward integration of the adjoint Eq. (7). The per-
formance analysis shows that the CPU time required
to evaluate the gradient J is about the CPU time re-
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quired to evaluate the objective functional itself, and
this is because the direct and adjoint heat problems
are described by the same equations.

Information on the properties of the Hessian matrix
(∇2J) is important in many aspects of minimization
problems (Daescu and Navon, 2003). To obtain suffi-
cient conditions for the existence of the minimum of
the problem, the Hessian matrix must be positive def-
inite at T0 (optimal initial temperature). However, an
explicit evaluation of the Hessian matrix in our case
is prohibitive due to the number of variables.

We used the Boussinesq approximation, and hence
the viscous dissipation as a heat source term in the
heat equation was neglected. If viscous dissipation is
included in the heat equation and viscosity depends
on temperature, then the suggested method for back-
ward modeling of the heat equation should be modi-
fied, because the adjoint problem for the heat equation
becomes more complicated. However, the dissipation
number, Di = µ0κ/(CPρ0�Th2) (where CP is heat
capacity at constant pressure) is small enough (about
10−7 for the upper mantle) that the viscous dissipation
term can be neglected.

Thus, the solution of the backward heat problem is
reduced to solutions of series of forward problems,
which are known to be well-posed (Tikhonov and
Samarskii, 1990). The algorithm can be used to solve
the problem over any subinterval of time in [ϑ1, ϑ2].

4. Numerical approach to solving the inverse
problem of mantle convection

In this section, we describe briefly the numerical
methods we use in the study. See Ismail-Zadeh et al.
(2001b) for more detail.

4.1. Numerical method for solving the Stokes
equation

To facilitate computations, Eqs. (2) and (3) are sim-
plified by introducing a two-component representation
of the vector velocity potential

u = curl �ψ, �ψ = (ψ1, ψ2, 0). (9)

We represent the vector velocity potential as a linear
combination of tricubic basis splines and apply the
Eulerian finite element method to Eqs. (2) and (3)

with the appropriate boundary conditions. To simplify
analysis, we rewrite the problem in variational form.
To solve the problem numerically, the model domain
Ω is discretized introducing the uniform rectangular
grid

0 = x0
i < x

1
i < . . . < x

ni−1
i < x

ni
i = li, i = 1, 2, 3,

with grid points Ωijk = (xi1, x
j

2, x
k
3), 0 ≤ i ≤ n1, 0 ≤

j ≤ n2, and 0 ≤ k ≤ n3. At each grid point Ωijk, we
define a tricubic basis element ωlijk = ωlijk(x1, x2, x3),
l = 1, 2 as the tensor product of one-dimensional cu-
bic basis elements (Ahlberg et al., 1967). The con-
struction of bases consisting of tricubic elements ωlijk
is described by Ismail-Zadeh et al. (1998).

The vector potential is approximated by the combi-
nations

ψl(t,x1,x2,x3) ≈
∑
i,j,k

ψlijk(t)ω
l
ijk(x1, x2, x3),

l = 1, 2, (10)

and viscosity is approximated by using trilinear basis
elements φijk(x1, x2, x3):

µ(T(t, x1, x2, x3)) ≈
∑
i,j,k

µijk(t)φijk(x1, x2, x3).

The coefficients ψlijk are determined at each time
step by solving a set of linear algebraic equations
with a symmetric positive definite band matrix. The
set is solved iteratively by conjugate gradient or
Gauss–Seidel methods. The relevant software was
designed for implementing the codes on parallel com-
puters. A detailed analysis of particular implementa-
tions of iterative methods for sets of linear algebraic
equations is presented by Tsepelev et al. (1999).

4.2. Numerical method for solving the heat equation

Temperature is computed by finite-difference meth-
ods. To do this, we define a regular grid in Ω (we use
a grid finer by a factor of three than that employed to
approximate the vector potential). The first and sec-
ond order derivatives with respect to coordinates in
the heat equation are approximated by central finite
differences. The velocity in the heat equation is deter-
mined from (9) and (10).
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We employ an implicit alternating-direction method
(Marchuk, 1994) to compute temperature. Essentially,
temperature T n+1 at time t = tn+1 is found as

rn = τ(∇2T n + u · ∇T n),
[

1 − τ

2

∂2

∂x2
3

]
T ∗ = rn,

[
1 − τ

2

∂2

∂x2
2

]
T ∗∗ = T ∗,

[
1 − τ

2

∂2

∂x2
1

]
T ∗∗∗ = T ∗∗,

T n+1 = T n + T ∗∗∗,

where τ is the time step. In the modeling, the parameter
τ is chosen in such a way as to guarantee the stability
of the finite difference method, namely:

τ = 1

8

dx

umax
, dx = [h2

1 + h2
2 + h2

3]1/2,

umax = max{|ui(x)| : x ∈ Ω̄, i = 1, 2, 3},
where hk = xik − xi−1

k . To compute T n+1, n2n3 +
n1n3 + n1n2 tridiagonal systems are solved, and the
corresponding number of independent modules can be
organized to perform parallel computations of these
systems by a tridiagonal method. The representation
of the vector velocity potential based on cubic splines
employed here makes it possible to compute both ad-
vection and diffusion of temperature simultaneously
by finite-difference methods.

4.3. The algorithm for numerical solution of the
inverse problem of mantle convection

We define a uniform partition of the time axis at
points tn = ϑ2 − τn, where τ is the time step, and n
successively takes integer values from 0 to some nat-
ural number m = (ϑ2 − ϑ1)/τ. At each subinterval of
time [tn+1, tn], the solution of the problem backwards
in time consists of the following basic steps.

Step 1. Given the temperature T = T(tn, ·) at t = tn
we solve a set of linear algebraic equations derived
from Eqs. (2) and (3) and the appropriate boundary
conditions to find the velocity potential �ψ = �ψ(tn, ·).

Step 2. Eq. (9) is used to determine the velocity u =
u(tn, ·; T), corresponding to temperature T = T(tn, ·),
from the vector potential.

Step 3. The ‘advective’ temperature Ta = Ta(tn+1, ·)
is determined by solving the advection heat equation
(neglecting the diffusion term) backwards in time, and
steps 1 and 2 are then repeated to find the velocity
ua = u(tn+1, ·; Ta), corresponding to the ‘advective’
temperature.

Step 4. The velocities ua and u are used in the direct
problem (Eq. (1)) combined with the boundary condi-
tions) and the conjugate problem (7), respectively, to
find temperature T = T(tn+1, ·) at t = tn+1.

Compared to the previous algorithm of Ismail-Zadeh
et al. (2003a), step 3 is introduced here to accelerate
the convergence of temperature iterations in solving
the direct and conjugate heat problems (to satisfy
inequality (8) in a few iterations at fixed ε, see Fig. 1).

After these algorithmic steps, we obtain tempera-
ture T = T(tn, ·), velocity potential �ψ = �ψ(tn, ·), and
velocity u = u(tn, ·) corresponding to t = tn, n =
0, . . . , m. Based on the obtained results, we can use
interpolation to reconstruct, when required, the entire
process on the time interval [ϑ1, ϑ2] in more detail.
The time step is chosen automatically so that the max-
imal displacement of material points does not exceed
a sufficiently small preset value.

Thus, at each subinterval of time we apply the vari-
ational method to the heat equation only, iterate the
direct and conjugate problems for the heat equation
in order to find temperature, and determine backward
flow from the Stokes and continuity equations twice
(for ‘advective’ and ‘true’ temperatures). Compared
to the variational approach by Bunge et al. (2003), our
numerical approach is computationally less expensive,
because we do not involve the Stokes equation into
the iterations between the direct and conjugate prob-
lems (the numerical solution of the Stokes equation is
the most time consuming calculation). Moreover, our
approach admits the use of temperature-dependent
viscosity.

5. Restoration model of mantle plumes

In the modeling, we consider thermal plumes to
be formed at the depth of 648 km, approximately the
boundary between the lower mantle and upper mantle.
To verify the validity of our numerical approach, we
start our simulations by computing a forward model
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Fig. 2. Temperature-dependent viscosity used in the modeling.

of the evolution of the thermal plumes and then we
restore the evolved plumes to their earlier stages.

We assume the following dimensional model pa-
rameters: α = 3 × 10−5 K−1, �T = 2000 K, ρ0 =
3.4 × 103 kg m−3, and κ = 0.8 × 10−6 m2 s−1

(Schubert et al., 2001); the reference mantle viscosity
is µ0 = 1021 Pa s (Forte and Mitrovica, 2001); h =
720 km, and l1 = l2 = 3h, and therefore, the Rayleigh
number is Ra = 9.5 × 105. At initial time t = 0 we
assume that the upper mantle temperature increases
linearly with depth.

We consider the mantle viscosity µ to be
temperature-dependent (Busse et al., 1993):

µ(T) = exp[Q/(T +G)−Q/(0.5 +G)], (11)

whereQ = [225/ln(r)]−0.25ln(r),G = [15/ln(r)]−
0.5, and r = 20 is the effective viscosity ratio between
the upper and lower boundaries of the model domain.
The temperature dependence of this viscosity func-
tion is shown in Fig. 2. We adopt this viscosity law
for the sake of simplicity in the model and for bench-
marking of our numerical codes (Busse et al., 1993),
although the methodology described here is valid for
more general viscosity relationships (Ismail-Zadeh
et al., 2003a). The chosen temperature (and depth)
dependent viscosity profile has no minimum associ-
ated with the asthenospheric layer, while an inver-
sion of the main convection-related geophysical data
(free-air gravity, plate divergence, r.m.s. topography)
suggests the existence of a low-viscosity channel at
depths of 100–300 km with an average viscosity of

about 1020 Pa s (Forte and Mitrovica, 2001). A more
realistic viscosity profile will influence the evolution
of mantle plumes, but it will not affect results of the
restoration of mantle plumes.

In order to initiate the growth of thermal plumes, we
prescribe a small thermal perturbation on the horizon-
tal plane x3 = 0.1 (depth 648 km) at the initial time.
The time the plumes take to develop depends on the
amplitude of the initial perturbation. Hence, we com-
puted the evolution of plumes to the stage presented
in Fig. 3a and considered this stage as an initial con-
figuration of the plumes in our forward modeling.

The model domain was divided into 37 × 37 × 29
rectangular finite elements. The vector potential is ap-
proximated by tricubic splines on the elements, while
temperature, velocity, and viscosity are represented on
a more refined grid 112 × 112 × 88. The evolution
of the thermal plumes was modeled forward in time
(Fig. 3a–e). We interrupted the computations at a cer-
tain time (at 75 Myr), when the plumes had devel-
oped a mushroom geometry (Fig. 3e). The final state
of the plumes in the forward model was used as the
initial state of the plumes in backward (or restoration)
models. In the following we refer to the final state
of the thermal plumes in the forward modeling as the
‘present’ state of the plumes.

We apply the suggested numerical approach to re-
store the plumes from their ‘present’ state to the state
they were in Late Cretaceous times (75 Myr ago). To
achieve the accuracy ε = 10−8 (see Eq. (8)) we per-
formed up to 10 iterations at each subinterval of time
depending on the choice of the initial temperature
guess, T∗. Despite the number of necessary iterations,
a performance analysis demonstrated that the total
execution time for the numerical restoration of the
evolution of the plumes was only about a factor of
three (depending on the number of iterations) larger
than the time required for the forward modeling of
the plumes. The restoration method developed by
Bunge et al. (2003) is an order of magnitude more
computationally expensive.

Fig. 4 (left panel) shows the restored states of the
plumes and the temperature residuals δT

δT(x1, x2)

=
[∫ l3

0

(
T(x1, x2, x3)− T̃ (x1, x2, x3)

)2
dx3

]1/2
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Fig. 3. Mantle plumes in the forward modeling at successive times: from 75 Myr ago (a) to the ‘present’ state of the plumes (e). The
plumes are represented here and in Figs. 4–6 by isothermal surfaces at 1840 K.

between the temperature T̃ predicted by the forward
model and the temperature T restored to the same age.
The temperature residuals are within a thousandth of a
degree for the initial restoration period (from present
to about 26 Myr), and the maximum residual reaches
about δT = 25◦ at the restoration time of 75 Myr. The
computations show that the errors (temperature residu-
als) get larger the farther restorations move backwards
in time. For the heat problem, it has been shown that
the size of the time domain enters into the estimation
of the rate of convergence, and hence this size influ-
ences the errors.

To demonstrate effects of heat diffusion (and its ab-
sence) on the temperature restoration, we computed
the thermal plumes backwards in time using the heat
advection equation (with no heat diffusion). The right
panel of Fig. 4 presents the results of the modeling.
The shapes of the restored mantle plumes become no-
tably different from that of ‘true’ plumes (plumes mod-
eled forwards in time) after 26 Myr. The temperature
residuals (with no heat diffusion considered) are one
to three orders of magnitude larger than those when
heat diffusion is considered, and the minimum resid-
ual is about 100 K at the restoration time of 75 Myr.
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Fig. 4. Restored mantle plumes in the backward modeling and restoration errors (temperature residuals) at successive times: from the
‘present’ to 75 Myr ago. The left two panels present the model results in the case when diffusion is included in the heat transfer, and the
right two panels are for the case in which diffusion is neglected.

Thus, we have demonstrated that the neglect of heat
diffusion in the backward modeling leads to an inac-
curate restoration of mantle plumes.

Even though the coefficient of heat diffusion is
small, the neglect of diffusion in the heat equation
results in a different solution to the heat problem be-
cause of the reduction in the order of the differential
equation (Tikhonov and Samarskii, 1990). Moreover,
when mantle convection is computed forwards in

time using the heat diffusion equation and diffusion
is ignored in the backward modeling of the same
mantle convection, results are inconsistent and even
unphysical.

The comparison between ‘true’ (modeled forwards
in time) and restored (modeled backwards in time)
plumes is quite natural from the computational point
of view, but not from the geophysical point of view,
because the mantle structure in the past (initial ‘true’
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Fig. 5. Mantle plumes restored from the ‘present’ to 75 Myr ago (left panel), upbuilt plumes back to their ‘present’ state (central panel),
and the restoration errors (right panel) in the case when diffusion is included.

plumes) is unknown. Hence, we perform another nu-
merical experiment on the accuracy of the restoration
technique. We start from the ‘present’ structure of the
plumes, apply the suggested technique to restore the
past structure, run a forward model of the restored
plumes, and compare the ‘present’ structure and the
one recovered after the forward modeling. Fig. 5
presents the results of this modeling which show that
the restoration works quite well: temperature residuals
(difference between the temperature of the restored

mantle plumes and that of the plumes of the same
age in the forward model) are within hundredths of a
degree.

We have also performed similar computations with
the heat diffusion equation replaced by the heat advec-
tion equation during the backward modeling. Fig. 6
shows the results of restoration of the ‘present’ state
of the plumes to 75 Myr ago and upbuilding of the
restored plumes to the present time. The temperature
residuals are larger (by several orders of magnitude)
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Fig. 6. Mantle plumes restored from the ‘present’ to 75 Myr ago (left panel), upbuilt plumes back to their ‘present’ state (central panel),
and the restoration errors (right panel) in the case when diffusion is neglected.

than those for the case when diffusion is considered
in the backward modeling. Remarkably, the upbuilt
‘present’ state of the plumes in these two cases (with
and without diffusion in backward modeling) are very
similar in appearance, giving the false impression that
reconstructions are satisfactory even with zero diffu-
sion. Our analysis demonstrates that (i) the ‘present’
structures restored to the past are different for these
two cases and (ii) the restoration errors (temperature

residuals) are large when diffusion is neglected com-
pared to when diffusion is included in the heat transfer.

6. Discussion

Conduction and convection are two major mecha-
nisms for the transfer of heat. Conductive heat trans-
fer in the mantle is a diffusion process occurring due
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to collisions of molecules which transmit their kinetic
energies to other molecules. Convective heat transfer
is associated with the mantle motion due to buoyancy
and plays a dominant part in the general transport of
heat from the deep interior of the Earth to the surface.
In addition to transport by conduction and convection,
a hot material produces blackbody radiation, and heat
is diffused if the light emitted by one particle is par-
tially scattered or absorbed by high-frequency transi-
tions in neighboring molecules. However, according
to Hofmeister (1999) the radiative contribution is rel-
atively small across the mantle (10–15% of the total
thermal conductivity).

If heat diffusion is negligible, the thermal convec-
tion in the mantle is time-reversible. “If you have a lot
of particles doing something, and then you suddenly
reverse the speed, they will completely undo what
they did before . . . If I reverse the time, the forces are
not changed, and so the changes in velocity are not
altered at corresponding distances. So each velocity
then has a succession of alterations made in exactly
the reverse of the way that they were made before,
and it is easy to prove that the law of gravitation is
time-reversible”. With these words, the famous physi-
cist R. Feynman introduced the time reversibility in
gravity problems during the Messenger lectures on
the character of physical laws he delivered at Cornell
University in 1964 (Feynman, 1965).

Conductive heat transfer (heat diffusion) is a more
complicated phenomenon. It is practically impossible
to collect diffused heat back to the place from where
it was diffused. Consider a simple example. If a ‘cold’
room is heated by a heater installed in the room, it
becomes warmer in a few hours period. If the heater is
switched off, it is ridiculous to expect that the diffused
heat will return back to the heater or we could estimate
the initial temperature of the heater from the current
room temperature.

Similar processes occur in the Earth. The mantle
is heated from the core and from inside due to decay
of radioactive elements. Since mantle convection is
described by heat advection and diffusion, one can ask:
is it possible to tell, from the ‘present’ temperature
estimations of the Earth, something about the Earth’s
temperature in the geological past?

Even though heat diffusion is irreversible in the
physical sense, we can accurately predict the heat
transfer backwards in time using the mathematical de-

scription of backward heat advection and diffusion
without contradicting the basic thermodynamic laws.
In this paper we have suggested a numerical method
for modeling the backward heat equation in order to
solve the inverse problem of thermal convection in
the mantle. We do not solve directly the approximate
backward heat equation, but rather we search for ini-
tial temperature conditions for the approximate for-
ward heat equation.

There is a major physical limitation of the restora-
tion of mantle plumes. If a thermal feature created,
let us say, a billion years ago by a boundary layer in-
stability has completely diffused away by the present,
it is impossible to restore the feature which was more
prominent in the past. The time to which a present
thermal structure in the upper mantle can be restored
should be restricted by the characteristic thermal
diffusion time, the time when the temperatures of the
evolved structure and the ambient mantle are nearly
indistinguishable: τdiff = d2

diff/36κ, where ddiff is the
diffusion distance (see Turcotte and Schubert (2002);
p. 155, Eq. 4–113 at T → T1, where T1 is the ambient
temperature). A maximum restoration time is therefore
scale dependent, with larger structures being restorable
to times further in the past. For a structure the size
of the upper mantle thickness (ddiff = 650 km),
the time of restoration should be limited to about
470 Myr.

A part of the geophysical community may main-
tain a skepticism about the inverse modeling of ther-
mal convection. This skepticism may partly have its
roots in our poor knowledge of the Earth’s present
structure and its physical properties which cannot
allow for rigorous numerical paleoreconstructions
of the Earth’s evolution. Even considering simpli-
fied present-day structure and thermal state of the
Earth, the backward modeling of thermomechanical
evolution of the Earth is a computational challenge
and several numerical problems (e.g., restorations
to the distant past, about 400 Myr; more realistic
rheology; temperature-dependent thermal diffusiv-
ity) should be solved before the technique becomes
applicable for whole mantle convection reconstruc-
tion. An increase in the accuracy of seismic to-
mography inversions and geodetic measurements,
improvements in the knowledge of gravity and
geothermal fields, and more complete experimen-
tal data on the physical and chemical properties
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of mantle rocks will facilitate mantle reconstruc-
tions.

Physicists like to think that all you have to do is say:
‘These are the conditions, now what happens next?’
(Feynman, 1965), and hence the physicists prefer a for-
ward modeling of phenomena. On the other hand, ge-
ologists like to predict a geological evolution based on
discoveries on the Earth’s surface, and therefore they
prefer a modeling backwards in time. In geophysics
these two approaches (forward and backward model-
ing) can be combined using applied mathematics as
a tool in numerical modeling of the thermoconvective
evolution of the Earth.

We have shown in this paper that a prominent
present-day thermal feature in the mantle can be
traced back into the geological past. A mathematical
model of the thermal convection in the Earth’s man-
tle is described by a set of equations, and we have
demonstrated here that the set of equations can be
solved numerically backwards in time. Our restora-
tion methodology works well for the mathematical
model, and we show its efficiency in the framework
of this model.

We have also showed that the suggested method for
backward modeling of thermal convection works well
for the temperature-dependent viscosity (11). For in-
creased values of the temperature dependence of vis-
cosity (for more than three orders of magnitude vis-
cosity contrast), the inversion scheme might become
more sensitive to errors in backtracking the thermal
state, and a more accurate inversion scheme might
have to be developed.

7. Conclusions

The main motivation for this research comes from
the rapid progress made by seismic tomographers in
imaging deep Earth structure. Restoration of seismi-
cally imaged structures backwards in time could pro-
vide an important way to test a range of geodynamic
hypotheses. We have suggested a variational approach
to the numerical solution of the inverse problem of
thermal convection with infinite Prandtl number. We
have tested the numerical approach by restoring a
model of thermal plumes. The results of the restora-
tion models together with the error estimates demon-
strate the practicality of the suggested technique. We

have also demonstrated that restored ‘present’ struc-
tures are different when heat diffusion is neglected.
The restoration errors (temperature residuals) are large
when diffusion is neglect.

The current solution algorithm for the inverse mod-
eling of thermal convection allows us to restore tem-
perature for about a hundred million years into the
past based on the knowledge of the present temper-
ature distribution in the mantle. This algorithm does
not allow for the thermal restoration of the upper man-
tle to an age of several hundred million years (within
the limit of the characteristic thermal diffusion time).
This is associated with a coarseness of the grid used
in modeling the heat equation, and we are working on
improving the algorithm to allow grid refinement.

In addition to the application of the backward
modeling technique to problems of mantle plume and
lithospheric slab restorations, the technique can be
employed to predict paleotemperatures in sedimentary
basins. The temperature estimations in the geologi-
cal past can help in the forecasting of hydrocarbon
generation, maturation, migration, and location in the
basins.

The suggested numerical algorithm can be incor-
porated into many existing mantle convection codes
in order to simulate the evolution of mantle struc-
tures backwards in time. The methodology opens a
new possibility for restoration of mantle plumes, sub-
ducting lithosphere, plate movements, and thermo-
convective mantle flow in general. Of course, real
mantle plumes display more complex patterns and
evolution, but our simple models represent an essen-
tial step in understanding how mantle plumes (and
other mantle structures) might be reconstructed to the
past.
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Appendix A. On the stability of the solution to
the one-dimensional backward diffusion equation

Consider the following boundary-value problem for
the one-dimensional backward diffusion equation:

∂u(t, x)/∂t = ∂2u(t, x)/∂x2, 0 ≤ x ≤ π, t ≤ 0,

u(t, 0) = 0 = u(t, π), t ≤ 0,

u(0, x) = φn(x), 0 ≤ x ≤ π.

At the initial time we assume that the function φn(x)
takes the following two forms:

φn(x) = 1

4n+ 1
sin ((4n+ 1)x)

and

φ0(x) ≡ 0.

Note that

max
0≤x≤π

|φn(x)− φ0(x)| ≤ 1

4n+ 1
→ 0 at n→ ∞.

The following two solutions of the problem corre-
spond to the two chosen functions of φn(x), respec-
tively:

un(t, x) = 1

4n+ 1
exp(−(4n+ 1)2t) sin ((4n+ 1)x)

at φn(x) = φn
and

u0(t, x) ≡ 0 at φn(x) = φ0.

At t = −1 and x = π/2 we obtain

un(−1, π/2) = 1

4n+ 1
exp((4n+ 1)2)→ ∞

at n→ ∞.

At large n two closely set initial functions φn and φ0
are associated with the two strongly different solutions
at t = −1 and x = π/2. Hence, a small error in the
initial data can result in very large errors in the solution
to the backward problem, and therefore the solution is
unstable, and the problem is ill-posed.

Appendix B. Derivation of the gradient of
objective functional J

We consider the objective functional defined by
(4) and determine the gradient of the functional (see
Ismail-Zadeh et al. (2003a) for more details). An in-
crement of the functional can be represented in the
form:

J(ϕ + h)− J(ϕ)=
∫
Ω

|T(ϑ2, x;ϕ + h)− χ(x)|2dx

−
∫
Ω

|T(ϑ2, x;ϕ)− χ(x)|2dx

= 2
∫
Ω

(T(ϑ2, x;ϕ)−χ(x))z(ϑ2, x)dx

+
∫
Ω

z(ϑ2, x)
2dx,

where h(x) is a small heat increment to the unknown
initial temperature ϕ(x), and z = T(t, x;ϕ + h) −
T(t, x;ϕ) is the solution to the following forward heat
problem

∂z/∂t + u · ∇z− ∇2z = 0, x ∈ Ω, t ∈ (ϑ1, ϑ2),

σ1z+ σ2∂z/∂n = 0, x ∈ Γ, t ∈ (ϑ1, ϑ2),

z(ϑ1, x) = h(x), x ∈ Ω.
(B.1)

We show below that

2
∫
Ω

(T(ϑ2, x;ϕ)− χ(x))z(ϑ2, x)dx

=
∫
Ω

Ψ(ϑ1, x)h(x)dx,

where Ψ(t, x) = 2(T(t, x;ϕ)− χ(x)) is the solution to
the conjugate boundary problem (7). Indeed,∫
Ω

Ψ(ϑ2, x)z(ϑ2, x)dx

=
∫
Ω

∫ ϑ2

ϑ1

∂

∂t
(Ψ(t, x)z(t, x)) dxdt

+
∫
Ω

Ψ(ϑ1, x)h(x)dx.

Considering the fact that Ψ = Ψ(t, x) and z = z(t, x)

are the solutions to (7) and (B.1) respectively, and the
velocity u satisfies Eq. (3) and the boundary conditions
specified, we obtain
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∫
Ω

∫ ϑ2

ϑ1

∂

∂t
(Ψ(t, x)z(t, x))dtdx

=
∫ ϑ2

ϑ1

∫
Ω

{
∂

∂t
Ψ(t, x)z(t, x)+Ψ(t, x)∂z(t, x)

∂t

}
dxdt

=
∫ ϑ2

ϑ1

∫
Ω

z(t, x)
[
−u · ∇Ψ − ∇2Ψ

]
dxdt

+
∫ ϑ2

ϑ1

∫
Ω

Ψ(t, x)
[
−u · ∇z+ ∇2z

]
dxdt

=
∫ ϑ2

ϑ1

∫
Γ

{Ψ ∇z · n − z ∇Ψ · n} dΓ dt

+
∫ ϑ2

ϑ1

∫
Ω

{∇Ψ · ∇z− ∇z · ∇Ψ} dxdt

+
∫ ϑ2

ϑ1

∫
Ω

{zΨ ∇ · u + Ψ u · ∇z
−Ψ u · ∇z} dxdt

−
∫ ϑ2

ϑ1

∫
Γ

zΨ u · n dΓ dt = 0.

Hence, we can derive that:

J(ϕ + h)− J(ϕ)=
∫
Ω

Ψ(ϑ1, x)h(x)dx

+
∫
Ω

z(ϑ2, x)
2dx

=
∫
Ω

Ψ(ϑ1, x)h(x)dx+ o(‖h‖).

And therefore, we obtain that the gradient of the ob-
jective functional is represented as

∇J(ϕ) = Ψ(ϑ1, ·).
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[1] We investigate the effects of thermal diffusion on the evolution of mantle plumes by
means of three-dimensional numerical modeling forward and backward in time. Mantle
plumes are fed by a hot, low-viscous material from the thermal boundary layer. The
material of the plumes is mainly advected toward the Earth’s surface with some effects
of thermal diffusion. However, the feeding can become weaker with time, and then
thermal diffusion can take over and control the evolution of the plumes. Numerical
experiments forward in time show that a week feeding of mantle plumes by the hot
material from the boundary layer results in the diffusive disappearance of plume tails
first and plume heads later. This is the most likely explanation for the seismically detected
low-velocity mantle structures (mantle plumes) with prominent heads and almost
invisible tails at midmantle depths. We develop restoration models (backward in time) to
recover strong features of mantle plumes in the geological past after they have dissipated
due to thermal diffusion and analyze effects of thermal diffusion and temperature-
dependent viscosity on the reconstruction of the mantle plumes. We investigate the
impact of thermal diffusion on the performance of our restoration (variational data
assimilation) algorithm. For a given range of Rayleigh number Ra and two values of the
viscosity ratio r (between the upper and lower boundaries of the model domain) we show
that (1) the residuals between the temperature predicted by the forward model and that
reconstructed by the backward modeling become larger and (2) the restoration process
becomes poorer as Ra decreases and r increases. We assimilate temperature obtained from
high-resolution seismic tomography data for the southeastern Carpathians and show
that present diffused mantle structures can be restored to their prominent state in the
Miocene times. We discuss the problems of smoothness of model input and output data,
errors associated with the modeling, and some other challenges in the data assimilation for
thermoconvective flow in the mantle.

Citation: Ismail-Zadeh, A., G. Schubert, I. Tsepelev, and A. Korotkii (2006), Three-dimensional forward and backward numerical

modeling of mantle plume evolution: Effects of thermal diffusion, J. Geophys. Res., 111, B06401, doi:10.1029/2005JB003782.

1. Introduction

[2] Mantle plumes are among the most spectacular fea-
tures of mass and heat transport from the mantle to the
Earth’s surface. Thermal plumes in the mantle plausibly
originate near either the core-mantle boundary or the upper
mantle–lower mantle transition due to instabilities in the
hot thermal boundary layers that could exist at these
locations. Although some mantle plumes appear to last for

more than 150 Myr, they are nonetheless transient features:
no tracks older than the Mesozoic are well established [e.g.,
Condie, 2001; Jellinek and Manga, 2002]. Direct observa-
tional evidence of mantle plumes comes from seismic
tomography, which provides constraints on temperature
and composition of present mantle structures [e.g., Ritsema
et al., 1999; Montelli et al., 2004]. Our understanding of
mantle plume dynamics comes from numerical (Schubert et
al. [2001] provide an overview) and laboratory [e.g.,
Davaille, 1999] experiments.
[3] Numerical models of mantle plume evolution have

been mainly carried out forward in time, i.e., from the onset
of plumes to late stages of maturity. The main drawback of
these models is that the initial conditions (conditions in the
geological past) for the models are unknown. However,
temperature and flow at the time of plume onset can be
inferred from the present mantle temperature and flow using
data assimilation based on combined forward and backward
numerical modeling of plume evolution. The main motiva-
tion for the data assimilation comes from the rapid progress
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made by seismic tomographers in imaging deep Earth
structure. Restoration of seismically imaged structures back-
ward in time could provide an important way to test a range
of geodynamics hypotheses.
[4] Data assimilation is defined as the incorporation of

present (observations) and past (initial conditions) data in an
explicit dynamical model to provide time continuity and
coupling among the physical fields. The basic principle of
data assimilation is to consider the initial condition as a
control variable and to optimize the initial condition in order
to minimize the discrepancy between the observations and
the solution of the model. Data related to a thermoconvec-
tive mantle flow can be assimilated by using sequential
filtering, variational technique, and some others methods
[e.g., Ghil and Malanotte-Rizzoli, 1991; Wunsch, 1996;
Talagrand, 1997]. In sequential filtering a numerical model
is computed forward in time for the interval for which
observations have been made, updating the model each time
where observations are available. Bunge et al. [1998, 2002]
used this approach to compute mantle circulation models.
Despite sequential data assimilation well adapted to mantle
circulation studies, each individual observation influences
the model state at later times. Information propagates from
the geological past into the future, although our knowledge
of the Earth’s mantle at earlier times is much poor than that
at present.
[5] The use of variational data assimilation in solid Earth

dynamics (to estimate initial mantle temperature and flow in
the geological past) has been put forward by Bunge et al.
[2003] and Ismail-Zadeh et al. [2003a, 2003b]. This idea is
based on a variational technique applied to solve the
coupled heat, momentum and continuity equations in order
to find the model representation that is most consistent with
the observations. That best estimate can then be used to
analyze geodynamic processes or initialize a model setup
more accurately. Ismail-Zadeh et al. [2004] presented a data
assimilation algorithm for numerical restoration of a three-
dimensional model of present prominent mantle plumes to
past stages and showed a high-accuracy in recovering the
initial configurations of these plumes. The two major
objectives of this study are (1) to estimate effects of thermal
diffusion and temperature-dependent viscosity on the evo-
lution of mantle plumes and (2) to recover the structure of
mantle plumes prominent in the past from that of present
plumes weakened by thermal diffusion.
[6] Conduction and convection are two major mecha-

nisms for the transfer of heat. Conductive heat transfer in
the mantle is a diffusion process occurring due to collisions
of molecules, which transmit their kinetic energies to other
molecules. Convective heat transfer is associated with the
mantle motion due to buoyancy and plays a dominant part
in the general transport of heat from the deep interior of the
Earth to the surface. The thermal conductivity of mantle
material depends on pressure and temperature. A model for
thermal conductivity in the sublithospheric mantle, based on
the experimental study (photon lifetimes obtained from
infrared reflectivity) by Hofmeister [1999], shows that the
thermal conductivity increases with depth from about 2 to
7 W m�1 K�1. In addition to transport by conduction and
convection, a hot material produces blackbody radiation,
and heat is diffused if the light emitted by one particle is
partially scattered or absorbed by high-frequency transi-

tions in neighboring molecules. Badro et al. [2004]
showed experimentally a substantial increase in radiative
thermal conductivity in the lower mantle. The change in
the radiative conductivity of lower mantle minerals will
influence the lower mantle dynamics and plume evolu-
tion, because the increase in thermal conductivity results
in a decrease of the Rayleigh number and hence in an
increase of thermal diffusion.
[7] We briefly describe the model setup and numerical

method in section 2 and the variational data assimilation
approach to the reconstruction of mantle plumes in section 3
(details of this approach are given by Ismail-Zadeh et al.
[2004]). We present three-dimensional forward numerical
models of mantle plume weakening due to thermal diffusion
and analyze the influence of thermal diffusion and viscosity
ratio on the evolution of mantle plumes in section 4. These
diffused plume structures are then restored to their promi-
nent state in the past, and we analyze the effects of thermal
diffusion and viscosity on the reconstruction of mantle
plumes in section 5. The efficiency of the data assimilation
technique is illustrated in section 6 in terms of the number
of iterations required to obtain the target temperature and
flow velocity in the past. In section 7.1 we discuss how the
numerical results on fading mantle plumes can explain the
recent seismic tomography observations of low-velocity
anomalies extending down to midmantle depths. We show
in section 7.2 the applicability of the numerical reconstruc-
tion method (data assimilation approach) to ‘‘real’’ (that is,
imaged by seismic tomography) mantle structures, and
present conclusions in section 8.

2. Model Problem and Numerical Approach

[8] We study the problem of mantle plume evolution in
the three-dimensional model domain W = [0, x1 = 3h] � [0,
x2 = 3h] � [0, x3 = h], where x = (x1, x2, x3) are the
Cartesian coordinates and h is the depth of the domain. We
assume that the mantle behaves as a Newtonian incom-
pressible fluid with a temperature-dependent viscosity and
infinite Prandtl number. Rising mantle plumes are modeled
as hot fluid jets ascending into the relatively cold ambient
fluid heated from below. The mantle flow is described by
heat, motion, and continuity equations [Chandrasekhar,
1961]. To simplify the governing equations, we make the
Boussinesq approximation [Boussinesq, 1903] keeping the
density constant everywhere except for buoyancy term in
the equation of motion. We note that a variable (tempera-
ture-dependent) density [Ismail-Zadeh et al., 2003a] and an
internal heating [Bunge et al., 2003] can be also used in the
forward and backward modeling of thermoconvective man-
tle circulation. In the Boussinesq approximation the dimen-
sionless equations take the form

@T=@t þ u � rT ¼ r2T ; t 2 0;Jð Þ; x 2 W; ð1Þ

rP ¼ div h Tð ÞE½ � þ RaTe; E ¼ @ui=@xj þ @uj=@xi
� �

;

e ¼ 0; 0; 1ð Þ;
ð2Þ

divu ¼ 0; t 2 0;Jð Þ; x 2 W: ð3Þ
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Here T, t, u = (u1, u2, u3), P, and h are dimensionless
temperature, time, velocity, pressure, and viscosity, respec-
tively. The Rayleigh number is defined as Ra =
agrrefDTh

3href
�1k�1, where a is the thermal expansivity, g

is the acceleration due to gravity, rref and href are the
reference typical density and viscosity, respectively; DT is
the temperature contrast between the lower and upper
boundaries of the model domain; and k is the thermal
diffusivity. In equations (1)–(3), length, temperature, and
time are normalized by h, DT, and h2k�1, respectively.
[9] At the boundary of the model domain we set the

impenetrability condition with perfect slip conditions: @ut/
@n = 0, u � n = 0, where n is the outward unit normal vector
at a point on the model boundary, and ut is the projection of
the velocity vector onto the tangent plane at the same point
on the model boundary. We assume zero heat flux through
the vertical boundaries of the box. The upper and lower
boundaries are isothermal surfaces, and we set T = 0 and T =
1 at these boundaries, respectively.
[10] Equations (1)–(3) together with the boundary con-

ditions describe a thermoconvective mantle flow. To solve
the problem forward or backward in time we assume the
temperature to be known at the time of plume onset (t = 0)
or at the present time (t = J).
[11] Temperature in the heat equation (1) is approximated

by finite differences and determined by the semi-Lagrangian
method, which allows for relatively large time steps, high
accuracy, and low numerical diffusion [McDonald, 1984]. A
numerical solution to the Stokes equations (2) is based on
the introduction of a two-component vector velocity poten-
tial and on the application of the Eulerian finite element
method with a tricubic-spline basis for computing the
potential [Ismail-Zadeh et al., 2001]. Such a procedure
results in a set of linear algebraic equations with a symmet-
ric positive-definite banded matrix. We solve the set of
equations by the conjugate gradient method [Fletcher and
Reeves, 1964]. The numerical algorithm was designed to be
implemented on parallel computers. The reader is referred to
Ismail-Zadeh et al. [2001, 2004] for more detail.

3. Variational Data Assimilation

[12] Data assimilation techniques has been pioneered by
meteorologists and used very successfully to improve op-
erational weather forecasts [e.g., Kalnay, 2003]. Data as-
similation has also been widely used in oceanography [e.g.,
Bennett, 1992] and in hydrological studies [e.g.,McLaughlin,
2002]. However, the application of themethod to problems of
mantle dynamics is still in its infancy.
[13] The variational data assimilation is based on a search

of the best fit between the forecast model state and the
observations by minimizing an objective functional (a
normalized residual between the target model and observed
variables) over space and time. To minimize the objective
functional over time, an assimilation time interval is defined
and an adjoint model is typically used to find the derivatives
of the objective functional with respect to the model states.
The variational data assimilation is well suited for smooth-
ing problems (we discuss the problem of smoothness of the
initial data and solution in Appendix A).
[14] The method for variational data assimilation can be

formulated with a weak constraint where errors in the model

formulation are taken into account as control parameters
(generalized inverse) [Bunge et al., 2003] or with a strong
constraint where the model is assumed to be perfect except
for the errors associated with the initial conditions [Bunge et
al., 2003; Ismail-Zadeh et al., 2003a]. There are several
sources of errors in forward and backward modeling of
thermoconvective mantle flow, which we discuss in Appen-
dix B. The generalized inverse of mantle convection con-
siders model errors, data misfit and the misfit of parameters
as control variables. Unfortunately the generalized inverse
presents a tremendous computational challenge and is
difficult to solve in practice. Hence Bunge et al. [2003]
considered a simplified generalized inverse imposing a
strong constraint on errors (ignoring all errors except for
the initial condition errors). Therefore the strong constraint
makes the problem computationally tractable.
[15] We consider the following objective functional

J(j) = kT(J, � ; j) � c(�)k2, where parallels denote
the norm in the space L2 (W) (the Hilbert space with the
norm defined as kyk = [

R
Wy

2(x)dx]1/2). Since in what
follows the dependence of solutions of the thermal
boundary value problems on initial data is important,
we introduce these data explicitly into the mathematical
representation of temperature. Here T(J, � ;j) is the
solution of the thermal boundary value problem (1) at
the final time J, which corresponds to some (unknown as
yet) initial temperature distribution j(x); c(x) = T(J, x;
T0) is the known temperature distribution at the final
time, which corresponds to the initial temperature T0(�).
The functional has its unique global minimum at valuej� T0
and J(T0) � 0, rJ(T0) � 0. To find the minimum of the
functional we employ the gradient method (k = 0, . . ., j, . . .):

jkþ1 ¼ jk � bkrJ jkð Þ; ð4Þ

bk ¼ min 1= k þ 1ð Þ; J jkð Þ= rJ jkð Þk kf g; j0 ¼ T*; ð5Þ

where T* is an initial temperature guess. The minimization
method belongs to a class of limited-memory quasi-Newton
methods [Zou et al., 1993], where approximations to the
inverse Hessian matrices are chosen to be the identity
matrix. The gradient of the objective functional rJ(jk)
decreases steadily with the number of iterations, and it
provides the convergence of the method. Meanwhile the
absolute value of bk increases with the number of iterations,
and it can result in instability of the iteration process
[Samarskii and Vabischevich, 2004]. To avoid the instabil-
ity, we use equation (5) to minimize the parameter bk.
[16] The minimization algorithm requires the calculation

of the gradient of the objective functional, rJ. This can be
done through the use of the adjoint problem for the model
equations (1)–(3) with the relevant boundary and initial
conditions. In the case of the heat problem, the adjoint
problem can be represented in the following form:

@Z=@t� u � rZ ¼ r2Z; t ¼ J� t 2 �J; 0ð Þ;

Z 0; xð Þ ¼ 2 T J; x;jð Þ � c xð Þð Þ; x 2 W;
ð6Þ

with uniform boundary conditions. The solution Z(J,�) to this
adjoint problem is the gradient of the objective functional, and
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the gradient is derived by using the Fréchet derivative of the
functional [see Ismail-Zadeh et al., 2004, Appendix B]. The
correctness of the solution has been verified by the gradient
accuracy test [Navon et al., 1992, equation 2.20].
[17] We define a uniform partition of the time axis at

points tn = J � ndt, where dt is the time step, and n
successively takes integer values from 0 to some natural
number m = J/dt. At each subinterval of time [tn+1, tn], the
search of the temperature T and flow velocity u at t = tn+1
consists of the following basic steps.
[18] 1. Given the temperature T = T(tn, x) at t = tn we

solve a set of linear algebraic equations derived from
equations (2) and (3) with the appropriate boundary con-
ditions in order to determine the velocity u.
[19] 2. The ‘‘advective’’ temperature Tadv = Tadv(tn+1, x) is

determined by solving the advection heat equation back-
ward in time, neglecting the diffusion term in equation (1).
This can be done by replacing positive time steps by
negative ones [see Ismail-Zadeh et al., 2003b].
[20] Given the temperature T = Tadv at t = tn+1 steps 1 and 2

are then repeated to find the velocity uadv = u(tn+1, x; Tadv).
[21] 3. The heat equation (1) is solved with appropriate

boundary conditions and initial condition j0 (x) = Tadv
(tn+1, x) forward in time using velocity uadv in order to find
T(tn, x; j0).
[22] 4. The adjoint equation (6) is then solved backward

in time with appropriate boundary conditions and initial
condition T(tn, x) = T(tn, x; j0) using velocity u in order to
determine rJ(j0).
[23] 5. The coefficient b0 is determined from equation (5),

and the temperature is updated (i.e., j1 is determined) from
equation (4).
[24] Steps 3 to 5 are repeated for jj and bj (j = 1, 2, 3, . . .)

until djj = J(jj) + krJ(jj)k2 < e, where e is a small
constant. Temperature jj is then considered to be the
approximation to the target value of the initial temperature
T(tn+1, x). Finally, step 1 is used to determine the flow
velocity u(tn+1, x; T(tn+1, x)).
[25] Step 2 introduces a preconditioner to accelerate the

convergence of temperature iterations in steps 3 to 5 at high
Rayleigh number. At low Ra, step 2 is omitted and uadv is
replaced by u.

4. Forward Modeling of Mantle Plume Diffusion

[26] Mantle plumes evolve in three distinguishing stages:
(1) immature, i.e., an origin and initial rise of the plumes;
(2) mature, i.e., plume-lithosphere interaction, gravity
spreading of plume head and development of overhangs
beneath the bottom of the lithosphere, and partial melting of
the plume material [e.g., Ribe and Christensen, 1994;
Moore et al., 1998]; and (3) overmature, i.e., slowing down
of the plume rise and fading of the mantle plumes due to
thermal diffusion [Davaille and Vatteville, 2005]. The
ascent and evolution of mantle plumes depend on the
properties of the source region (that is, the thermal boundary
layer) and the viscosity and thermal diffusivity of the
ambient mantle. The properties of the source region deter-
mine temperature and viscosity of the mantle plumes.
Structure, flow rate, and heat flux of the plumes are
controlled by the properties of the mantle through which
the plumes rise. While properties of the lower mantle (e.g.,

viscosity, thermal conductivity) are relatively constant dur-
ing about 150 Myr lifetime of most plumes, source region
properties can vary substantially with time as the thermal
basal boundary layer feeding the plume is depleted of hot
material. Complete local depletion of this boundary layer
cuts the plume off from its source. It is the subsequent
evolution of the plume that interests us here.
[27] We study only the late stage of the mantle plume

evolution associated with the fading of the plume due to
thermal diffusion and model the evolution of mantle plumes
deprived of source material through numerical experiments
of three-dimensional thermal convection in a bottom heated
box. The mantle behaves as a Newtonian fluid on geological
timescales, and a dimensionless temperature-dependent vis-
cosity law [Busse et al., 1993] given by

h Tð Þ ¼ exp
M

T þ G
� M

0:5þ G

� �

is used in the modeling, where M = [225/ln(r)] � 0.25 ln(r),
G = 15/ln(r) � 0.5 and r is the viscosity ratio between the
upper and lower boundaries of the model domain. We
model the evolution of mantle plumes for two viscosity
profiles: r = 20 and r = 200. The temperature-dependent
viscosity profile has its minimum at the core-mantle
boundary. A more realistic viscosity profile [e.g., Forte
and Mitrovica, 2001] will influence the evolution of mantle
plumes, though it will not influence the restoration of the
plumes. The model domain is divided into 37 � 37 � 29
rectangular finite elements to approximate the vector
velocity potential by tricubic splines, and a uniform grid
112 � 112 � 88 is employed for approximation of
temperature, velocity, and viscosity.
[28] Initially, we model the evolution of mature mantle

plumes to obtain initial temperature data for models of
mantle plume diffusion. With a = 3 � 10�5 K�1, rref =
4000 kg m�3, DT = 3000 K, h = 2800 km, href = 8 � 1022

Pa s, and k = 10�6 m�2 s�1, the initial Rayleigh number is
Ra = 9.5 � 105. While plumes evolve in the convecting
heterogeneous mantle, at the initial time we assume that the
plumes develop in a laterally homogeneous temperature
field and hence consider that the mantle temperature in
the model increases linearly with depth.
[29] Mantle plumes are generated by random temperature

perturbations at the top of the thermal source layer associ-
ated with the core-mantle boundary (Figure 1a). The mantle
material in the basal source layer flows horizontally toward
the plumes. The reduced viscosity in this basal layer
promotes the flow of the material to the plumes. Vertical
upwelling of hot mantle material is concentrated in low-
viscosity conduits near the centerlines of the emerging
plumes (Figures 1b and 1c). The plumes move upward
through the model domain, gradually forming structures
with well-developed heads and tails. The plumes diminish
in size with time (Figure 1d), and the plume tails disappear
before the plume heads (Figures 1e and 1f). We note that the
figures present a hot isothermal surface of the plumes. If
colder isotherms are considered, the disappearance of the
isotherms will occur later. However, anyhow, hot or cold
isotherms are plotted, plume tails will vanish before their
heads. Results of recent laboratory experiments [Davaille
and Vatteville, 2005] support strongly our numerical find-
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ings that plumes start disappearing from bottom up and fade
away by thermal diffusion.
[30] At different stages in the plume decay one sees quite

isolated plume heads, plume heads with short tails, and
plumes with nearly pinched off tails. Different amounts of
time are required for different mantle plumes to vanish into
the ambient mantle, the required time depending on the
geometry of the plume tails. Temperature loss is greater for
sheet-like tails than for cylindrical tails. The tails of the
cylindrical plumes (e.g., Figure 1c, in the left part of the
model domain) are still detectable after about 155 Myr.
However, at this time the sheet-like tail of the large plume in
the right part of the model domain (Figure 1c) is already
invisible and only its head is preserved in the uppermost
mantle (Figure 1f). Two-dimensional numerical experiments
of steady state convection [Leitch et al., 1996] reveal a
significant change in the centerline temperature of sheet-like

plume tails compared to the cylindrical plume tail due to
heat conduction in the horizontal direction.

5. Recovering Prominent Mantle Plumes From
Their Weakened Present Stage

[31] We use the numerical approach described in section 3
to reconstruct the prominent state of the plumes (Figure 1d) in
the past from their ‘‘present’’ weak state (Figure 1f). Figure 2
illustrates the reconstructed states of the plumes (Figures 2e–
2g) and the temperature residuals dT (Figures 2h–2j) be-
tween the temperature T(x) predicted by the forward model
and the temperature eT (x) reconstructed to the same age:

dT x1; x2ð Þ ¼
Zh
0

T x1; x2; x3ð Þ � eT x1; x2; x3ð Þ
� �2

dx3

24 351=2

:

Figure 1. Mantle plumes in the forward modeling at successive diffusion times: from (a) 335 Myr ago
to (f) the ‘‘present’’ state of the plumes. The plumes are represented here and in Figures 2 and 3 by
isothermal surfaces at 3000 K.
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[32] To study the effect of thermal diffusion on the resto-
ration of mantle plumes, we develop several independent
experiments on mantle plume restoration assigning several
Ra values less than the initial Ra by one to 3 orders of
magnitude at two values of viscosity ratio r. Figure 3 presents
the case of r = 200 and Ra = 9.5 � 103 and shows several
stages in the diffusive decay of the mantle plumes.
[33] The dimensional temperature residuals are within a

few degrees for the initial restoration period (Figures 2i and
3h). The computations show that the errors (temperature
residuals) get larger the farther the restorations move back-
ward in time (e.g., dT� 300 K at the restoration time of more
than 300Myr, r = 200, and Ra = 9.5� 103). Compared to the
case of Ra = 9.5� 105, one can see that the residuals become
larger as the Rayleigh number decreases or thermal diffusion
increases and viscosity ratio increases.
[34] We introduce the critical temperature residual dTcr =

0.2 DT such that the quality of mantle structure recovery is
estimated to be bad if dT > dTcr. The quality of the restoration

depends on the dimensionless Peclet number Pe = humaxk
�1,

where umax is the maximum flow velocity. According to the
numerical experiments, the Peclet number corresponding to
the critical temperature residual dTcr = 600 K is Pe = 10; Pe
should not be less than about 10 for a high-quality plume
restoration.
[35] In numerical experiments backward in time we

observe an increase in the noise of the restored temperatures
with time. Samarskii et al. [1997] studied a one-dimensional
backward heat diffusion problem and showed that the
solution to this problem becomes noisy if the initial tem-
perature guess is slightly perturbed, and the amplitude of
this noise increases with the initial perturbations of the
temperature guess. They suggest using a special filter to
reduce the noise and illustrate the efficiency of the filter.
This filter is based on the replacement of iterations (4) by
the following iterative scheme:

B jkþ1 � jk

� � ¼ �bkrJ jkð Þ; ð7Þ

Figure 2. Mantle plume diffusion (r = 20 and Ra = 9.5 � 105) in the forward modeling at successive
diffusion times: (a–d) from 120 Myr ago to the ‘‘present’’ state of the plumes. (e–g) Restored mantle
plumes in the backward modeling and (h–j) restoration errors.
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where By = y � r2y. Unfortunately, employment of this
filter increases the number of iterations to obtain the target
temperature and it becomes quite expensive computation-
ally, especially when the model is three-dimensional.
Therefore our approach to this problem is to run the model
backward to the point of time when the noise becomes
relatively large.

6. Performance of the Numerical Algorithm

[36] Here we investigate the impact of diffusion on the
performance of our restoration algorithm for various Ra and
r. The performance of the algorithm is evaluated in terms of
the number of iterations n required to achieve a prescribed
relative reduction of djn. Figure 4 presents the evolution of
the objective functional J(jn) and the norm of the gradient
of the objective functional krJ(jn)k versus the number of
iterations at time about 0.5q. For other time steps we
observe a similar evolution of J and krJk.

[37] Both the objective functional and the norm of its
gradient show a quite rapid decrease after about 7 iterations
for Ra = 9.5 � 105 and r = 20 (curves 1). The same rapid
convergence as a function of adjoint iterations is observed
in the Bunge et al. [2003] case. As Ra decreases and thermal
diffusion increases (curves 2–4) the performance of the
algorithm becomes poor: more iterations are needed to
achieve the prescribed e. All curves illustrate that the first
4 to 7 iterations contribute mainly to the reduction of djn.
The convergence drops after a relatively small number of
iterations. The curves approach the horizontal line with an
increase in the number of iterations, because bk tends to zero
with a large number of iterations (see equation (5)). The
increase of krJk at k = 2 is associated with uncertainty of
this gradient at k = 1.
[38] Implementation of minimization algorithms requires

the evaluation of both the objective functional and its
gradient. Each evaluation of the objective functional
requires an integration of the model equation (1) with the

Figure 3. Mantle plume diffusion (r = 200 and Ra = 9.5 � 103) in the forward modeling at successive
diffusion times: (a–d) from 305 Myr ago to the ‘‘present’’ state of the plumes. (e–g) Restored mantle
plumes in the backward modeling and (h–j) restoration errors.
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appropriate boundary and initial conditions, whereas the
gradient is obtained through the backward integration of the
adjoint equations (6). The performance analysis shows that
the CPU time required to evaluate the gradient J is about the
CPU time required to evaluate the objective functional
itself, and this is because the direct and adjoint heat
problems are described by the same equations.
[39] Despite its simplicity, the minimization algorithm

used in this study provides for a rapid convergence and
good quality of optimization at high Rayleigh numbers (low
thermal diffusion). The convergence rate and the quality of
optimization become worse with the decreasing Rayleigh
number. The use of the limited-memory quasi-Newton
algorithm L-BFGS [Liu and Nocedal, 1989] might provide
for a better convergence rate and quality of optimization
[Zou et al., 1993]. Meanwhile, we note that although an
improvement of the convergence rate by using another
minimization algorithm (e.g., L-BFGS) will reduce the
computational expense associated with the solving of the
problem under question, this reduction would be not signif-
icant, because the large portion (about 70%) of the computer
time is spent to solve the three-dimensional (3-D) Stokes
equations.

7. Discussion

7.1. Mantle Plume Heads Yes, Tails No

[40] A plume is hot, narrow mantle upwelling that is
invoked to explain hot spot volcanism. In a temperature-
dependent viscosity fluid such as the mantle, a plume is
characterized by a mushroom-shaped head and a thin tail.
Upon impinging under a moving lithosphere, such a mantle
upwelling should therefore produce a large amount of melt
and successive massive eruption, followed by smaller but
long-lived hot spot activity fed from the plume tail [Morgan,
1972; Richards et al., 1989; Sleep, 1990]. Meanwhile, slowly
rising plumes (a buoyancy flux of less than 103 kg s�1)

coming from the core-mantle boundary should have cooled
so much that they would not melt beneath old lithosphere
[Albers and Christensen, 1996].
[41] A mantle plume is a well-established geological

structure in computer modeling and laboratory experiments.
Numerical experiments on dynamics of mantle plumes
[Trompert and Hansen, 1998; Zhong, 2005] showed that
the number of plumes increases and the rising plumes
become thinner with an increase in Rayleigh number.
Disconnected thermal plume structures appear in thermal
convection at Ra greater than 107 [Hansen et al., 1990;
Malevsky et al., 1992]. At high Ra (in the hard turbulence
regime) thermal plumes are torn off the boundary layer by
the large-scale circulation or by nonlinear interactions
between plumes [Malevsky and Yuen, 1993]. Plume tails
can also be disconnected when the plumes are tilted by plate
scale flow [e.g., Olson and Singer, 1985; Steinberger and
O’Connell, 1998]. Here we discuss an alternative mecha-
nism for the disconnected mantle plume heads and tails.
[42] Mantle plumes are generated at the top of the thermal

boundary layer (TBL), which is produced by conductive
heating of the material at the core-mantle boundary (or upper
and lower mantle boundary). When the TBL becomes
unstable, any perturbation of the TBL top leads to upwelling.
Injection of hot material from the source TBL layer into the
colder mantle generates strong plumes that are fed for a while
from the layer. Colder material overlying the source layer
(e.g., portions of lithospheric slabs subducted to the core-
mantle boundary) replaces hot material at the locations where
the source material is fed into mantle plumes. Some time is
required to recover the volume of source material depleted
due to plume feeding [Howard, 1966]. Because the volume of
upwelling material is comparable to the volume of the TBL
feeding the mantle plumes, hot material could eventually be
exhausted, and mantle plumes would be starved thereafter.
[43] We evaluate the volume Vp of source material that

moves into a single plume from the core-mantle boundary

Figure 4. Relative reductions of (left) the objective functional J and (right) the norm of the gradient of J
as functions of the number of iterations. Curves indicate 1, r = 20, Ra = 9.5 � 105; 2, r = 20, Ra = 9.5 �
102; 3, r = 200, Ra = 9.5 � 103; and 4, r = 200, Ra = 9.5 � 102.
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over the time interval tp (required by the plume to reach the
base of the lithosphere), and compare that with the volume
VTBL of the TBL material conductively generated over the
same time interval tp. For plume height hp = 2600 km and
tail radius rp ranging from 100 to 200 km, the volume Vp =
p rp

2 hp is estimated to be 0.8 to 3.3 � 108 km3.
[44] The velocity of plume upwelling

wp ¼ agQ
4pchp

 !1=2

can be estimated analytically from a solution to the
boundary layer equations for the steady state flow above a
source of heat in a fluid whose viscosity is a temperature-
dependent [Olson et al., 1993]. The velocity wp and the time
tp (=hp/wp) depend on the plume viscosity hp as a function
of depth and the heat flux Q = Bc/a, where B is the
buoyancy flux of the plume and c is specific heat. For the
typical mantle values given in section 4 (Table 1), B = 3000
to 6000 kg s�1, and hp = 1020 to 1021 Pa s, the volume VTBL =
4
3
p[(rc + dr)3 � rc

3] (rc is the radius of the Earth’s core, and

dr ¼ pktp
� �1=2¼ 4p3k2h2ph

gB

" #1=4

is the TBL thickness) would range from about 6.3 � 108

to 1.4 � 109 km3 for the time range of 11 to 48 Myr and
the dr range of about 35 to 70 km.
[45] The seismic tomography study [Montelli et al., 2004]

has revealed 32 present mantle plumes with radii ranging
from 100 to 400 km. Even if only half of the seismically
imaged plumes are assumed to have deepmantle roots,we can
conclude that the material of the TBL is insufficient to
simultaneously feed them. This suggests that only a few
mantle plumes can be fed from the TBL at any time and that
other plumes are in a phase of thermal diffusive decay. While
the discrimination of low-velocity anomalies (seen in seismic
tomography models) in active and less active plumes is a

challenging problem, laboratory and numerical experiments
can provide us with the information.
[46] Recent laboratory experiments on convective insta-

bilities in a layer of fluid with temperature-dependent
viscosity and heated from below have shown the generation
and evolution of thermal plumes and the transient features
of the plumes [Davaille and Vatteville, 2005; Silveira et al.,
2006]. The temperature difference applied at the lower
boundary was chosen such that the Rayleigh number is
comparable to that of the Earth’s mantle. Initially, a TBL
forms at the hot boundary, its thickness increasing by
diffusion. When the local Rayleigh number based on the
TBL thickness reaches a critical value, the TBL becomes
unstable and breaks up to produce plumes [Howard, 1966].
A plume reaches the top boundary and spreads laterally.
Once the hot TBL has been emptied, the plume tail begins
to disappear from the bottom up, leaving only the cooling
and shrinking sublithospheric overhangs. The cycle of
plume development repeats once the critical thickness of
the TBL is reached. The analogue experiments have shown
that the mean velocity of the fluid decreases with the
maturity of the plumes and hence thermal diffusion
becomes a major agent in the heat transfer.
[47] Our numerical results on the diffusive decay of

mantle plumes with depleted source regions are in a good
agreement with the results of the laboratory experiments.
They may have important implications for the interpretation
of seismic tomographic images of mantle plumes. Finite
frequency seismic tomography images [Montelli et al.,
2004] show that a number of plumes extend to midmantle
depths but are not visible below these depths. From seis-
mological point of view, the absence of the plume tails
could be explained as a combination of several factors
[Romanowicz and Gung, 2002]: elastic velocities are sensi-
tive to composition as well as temperature; the effect of
temperature on velocities decreases with increasing pressure
[Karato, 1993]; and wavefront healing effects make it
difficult to accurately image low-velocity bodies [Nolet
and Dahlen, 2000]. The ‘‘disappearance’’ of the plume tails
can hence be explained as effects of poor tomographic
resolution at deeper levels. Apart from this, our results
demonstrate the plausibility of finding a great diversity in
the morphology of seismically imaged mantle plumes,
including plume heads without tails and plumes with tails
that are detached from their sources.
[48] The mathematical model of mantle plume dynamics

described by a set of equations (1)–(3) is simple, and many
complications are omitted. A viscosity increase from the
upper to the lower mantle is not included in the model,
although it is suggested by studies of the geoid [Ricard et
al., 1993], postglacial rebound [Mitrovica, 1996], and joint
inversion of convection and glacial isostatic adjustment data
[Mitrovica and Forte, 2004]. The adiabatic heating/cooling
term in the heat equation can provide more realistic distri-
bution of temperature in the mantle, especially near the
thermal boundary layer. Our model does not include phase
transformations [e.g., Liu et al., 1991; Honda et al., 1993a,
1993b; Harder and Christensen, 1996], although the phase
changes can influence the evolution of mantle plumes
retarding/accelerating their ascent. The coefficient of ther-
mal expansion [e.g., Chopelas and Boehler, 1989; Hansen
et al., 1991, 1993] and the coefficient of thermal conduc-

Table 1. Model Parameters and Values

Symbol Parameter Value

h depth of domain, km 2800
g acceleration due to gravity, m s�2 9.8
P pressure, Pa
r viscosity ratio 20, 200
t 2 [0, J] time, years
T temperature, K
Tref reference temperature, K 3270
Tsurf surface temperature, K 270
T0 initial dimensionless temperature
T* initial dimensionless temperature guess
DT = Tref � Tsurf temperature drop, K 3000
dT dimensionless temperature residual
u = (u1, u2, u3) velocity, cm yr�1

Pe Peclet number
Ra Rayleigh number
a thermal expansivity, K�1 3 � 10�5

c dimensionless temperature at time t = J
k thermal diffusivity, m2 s�1 10�6

h viscosity, Pa s
href reference viscosity, Pa s 8 � 1022

rref reference density, kg m�3 4000
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tivity [e.g., Hofmeister, 1999] are not constant in the mantle
and vary with depth and temperature. Moreover, if Badro et
al. [2004] findings of a significant increase in the radiative
thermal conductivity at high pressure are relevant to the
lower mantle, plume tails should diffuse away even faster
than it is predicted by our models.
[49] Mantle plumes exist within the large-scale convec-

tive flow, which may disrupt the plumes before they diffuse
thermally [e.g., Richards and Griffiths, 1988]. Steinberger
[2000] performed numerical experiments to clarify an
interplay between a large-scale mantle flow and mantle
plume and hot spot dynamics and showed that during the
rise plume tails can be tilted toward large-scale mantle
upwellings. Meanwhile, we believe that the possible defor-
mation of plume tails should not significantly alter our
results on thermal diffusion of the plumes.
[50] Several reasons constrain us to consider in the

present study the simplified mathematical model as the first
(principal) step to sophisticated models. The use of the
variational data assimilation techniques for the problems of
mantle convection began only recently [Bunge et al., 2003;
Ismail-Zadeh et al., 2003a]. This technique requires deri-
vation of adjoint equations (to estimate initial temperature
conditions in the mantle) each time when the set of the
equations is changed. The cost to be paid is in software
development since an adjoint model has to be developed.
Moreover, since we analyze effects of thermal diffusion on
the fate of mantle plumes, we avoid many complications and
considered only the most essential component of mantle
plume dynamics, namely, temperature-dependent viscosity.
While inclusion of these complications and other model
refinements are worthwhile, our experiments do show that
thermal diffusion plays an important role in the fate of mantle
plumes and it provides an explanation for the ‘‘variety’’ of
mantle plumes observed in seismic tomographic images.

7.2. Assimilation of Present Temperature Derived
From Seismic Tomography

[51] The variational assimilation of synthetic data (mantle
plumes generated by computer simulations) showed a
possibility to restore strong features of the plumes after
their thermal diffusion. In this section we illustrate how real
(no synthetic) present crust/mantle temperature can be
assimilated into the geological past. For this aim we use
recent teleseismic body wave tomography data, which
image the lithosphere and asthenosphere for the southeast-
ern Carpathians [Martin et al., 2005]. We should note that
the region is not associated with a mantle plume activity and
chosen because of high-resolution seismic tomography data
made available to the authors.
[52] The seismic tomographic model of the region consists

of eight layers of different thickness (from 15 to 50 km),
which are each subdivided laterally into 42 � 42 km2 blocks
[Martin et al., 2005]. To restrict numerical errors in our data
assimilation we smooth the velocity anomaly data using
spline interpolations between the blocks and the layers. To
convert the P wave seismic velocity anomalies beneath the
region into temperature we model initially synthetic P wave
seismic velocities considering the effects of anharmonicity
(composition), anelasticity and partial melting on the seismic
velocities [Ismail-Zadeh et al., 2005]. The anharmonic (fre-
quency-independent and nonattenuating) part of the synthetic

velocities is calculated on the basis of published data on
laboratory measurements of density and elastic parameters of
the main rock-forming minerals [Bass, 1995] at various
thermodynamic conditions for the composition of the crust
and mantle (57.9% Ol, 16.3% CPx, 13.5% Opx, and
12.3% Gt [Green and Falloon, 1998]) and the slab (69%
Ol, 10% CPx, 19% Opx, and 2% Gt [Agee, 1993]). Once
the synthetic velocities are calculated for a first-guess
temperature, an iteration process is used to find the
‘‘true’’ temperature, minimizing the difference between
the synthetic and ‘‘observed’’ (in seismic tomography
experiments) velocities. The temperature in the shallow
levels of the region is constrained from measured surface
heat flux corrected for paleoclimate changes and for the
effects of sedimentation [Demetrescu et al., 2001]. Figure 5a
illustrates several depth slices of the present temperature
model derived from the seismic tomography data.
[53] We assimilate the present temperature data into the

geological past to restore the prominent thermal features of
the Earth’s structures in the region. We use the following
parameters in this case study: h = 670 km, the aspect ratio
(ratio between horizontal and vertical lengths of the model)
is 1.5, r = 1000, DT = 1700 K, rref = 3400 kg m�3, href =
1021 Pa s, Ra = 5.2 � 105. Other parameters are the same
(see Table 1). The equations and boundary conditions are
defined in sections 2 and 3. To reduce the numerical noise in
the data assimilation, we regularize the solution by using the
quasi-reversibility method by Lattes and Lions [1969].
Figure 5b shows the temperature restored to 22 Myr ago.
[54] Early Miocene subduction beneath the Carpathian

arc and subsequent gentle continental collision transported
cold and dense lithospheric material into the hotter mantle
[Sperner and The CRC 461 Team, 2005]. The cold (blue)
region seen at the 20 km slice of the restored temperature
(Figure 5b) can be interpreted as a crustal portion of a
lithospheric slab. The structure is almost invisible at the
relevant slice of the present temperature, because the slowly
descending cold slab has been warmed up (and hence has
faded away) due to thermal diffusion since an active slab
subduction in the region has ended about 10 Myr ago
[Csontos et al., 1992]. Thermal conduction in the shallow
Earth (where viscosity is high) plays a significant part in
heat transfer compared to thermal convection. The deeper
we look into the region (see the slices at depths of 60 km
and 130 km in Figure 5b), the larger are effects of thermal
advection compared to diffusion: the cold (dense) litho-
sphere has moved upward to the place where it has been in
the Miocene times. At 280 km depth a shape of the colder
slab is clearly visible at the slice of the present temperature
(Figure 5a) and practically invisible at the slice of the
restored temperature (Figure 5b), because the slab did not
reach the depth 22 Myr ago.
[55] Thus the assimilation of the present temperature

derived from seismic tomography data shows that promi-
nent thermal mantle structures can be restored from their
present diffused stage.

8. Conclusion

[56] In this paper, models of mantle plume weakening due
to thermal diffusion have been analyzed. Injection of hot
material from the thermal source layer into the colder
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mantle generates strong plumes that are fed from the source
layer for a while. However, the feeding from the source
layer can weaken with time and then thermal diffusion takes
over and controls the subsequent evolution of the mantle
plumes. The plumes begin to diffuse away and the plume
tails are the first structures to disappear. The tails of
different plumes vanish at different times depending on
the geometry of the tails. The morphological diversity of the
plumes predicted by the numerical experiments is similar to
the plume diversity observed in seismic tomographic
images [Montelli et al., 2004; Zhao, 2004].
[57] We have also studied how the restoration process

(data assimilation algorithm) works in recovering strong
features of mantle plumes after they have weakened by
thermal diffusion and in the presence of a large depth
gradient of mantle viscosity. The restoration process
becomes poor as both diffusion and viscosity gradient
increase. For a given range of Rayleigh number and two
values of the viscosity gradient, the convergence rate of the
objective functional shows a large variation, which implies
that the performance is very sensitive to the magnitude of
both diffusion and viscosity gradient.
[58] The present temperature obtained from high-resolu-

tion teleseismic tomography data for the southeastern Carpa-
thians has been assimilated into the geological past. Results
of this case study suggest that the data assimilation can be
used to restore initial mantle temperatures and can allow
revealing prominent thermal structures in the mantle from
their present diffused stage. A part of the geophysical
community may maintain skepticism about the assimilation
of present mantle-related data to the geological past. This

skepticismmay partly have its roots in our poor knowledge of
the Earth’s present structure and its physical properties,
which cannot allow for rigorous numerical paleoreconstruc-
tions of the mantle evolution. An increase in the accuracy of
seismic tomography inversions and geodetic measurements,
improvements in the knowledge of gravity and geothermal
fields, and more complete experimental data on the physical
and chemical properties of mantle rocks will facilitate mantle
reconstructions.

Appendix A: Challenges in Variational Data
Assimilation for Thermoconvective Flow in the
Mantle

[59] Although the variational data assimilation technique
described above can theoretically be applied to many prob-
lems in mantle and lithosphere dynamics, a practical imple-
mentation of the technique for modeling of real geodynamic
processes backward in time (to restore the temperature and
flow pattern in the past) is not a simple task. Smoothness of
the initial data (present temperature) and of the target tem-
perature (restored temperature in the past) is an important
factor in backwardmodeling.Moreover, a choice of the initial
temperature guess j0 in iteration scheme (4) is not trivial.

A1. On the Smoothness of the Initial Temperature

[60] The solution T(J, � ; j) of the heat problem (1) is a
sufficiently smooth function and belongs to space L2 (W).
The present temperature cd derived from the seismic
tomography is a representation of the exact temperature c
of the Earth and so it must also belong to this space and

Figure 5. Present and restored (to 22 Myr ago) temperature beneath the southeastern Carpathians at
depths of 20, 60, 130, and 280 km. (a) Temperatures derived from P wave velocity anomalies.
(b) Temperature restored by data assimilation. Isolines present the surface topography.
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hence be rather smooth; otherwise, the objective functional
J cannot be defined. Therefore before any assimilation of
the present temperature data can be attempted, the data must
be smoothed. The smoothing of the present temperature
improves the convergence of the iterations. However, there
are still some numerical issues associated with the solution
of the improperly posed problem (we remind the reader that
the inverse problem of thermal convection is improperly
posed [e.g., Tikhonov and Arsenin, 1977]).
[61] If the initial temperature guess j0 is a smooth

function, all successive temperature iterations jk in scheme
(4) should be smooth functions too, because the gradient of
the objective functional rJ is a smooth function since it is
the solution to the adjoint problem (6). The temperature
iterations jk are disturbed by small computational errors,
which are inherent in any numerical experiment (see Ap-
pendix B). These perturbations grow with time unless the
iteration scheme (7) or a similar one [Samarskii and
Vabischevich, 1995] is used as discussed in section 5.
Another possibility is to use the quasi-reversibility method
[Lattes and Lions, 1969] to regularize a temperature field or
high-order adjoint techniques [Alekseev and Navon, 2001].
[62] A choice of the initial temperature guess j0 (smooth

versus discontinuous functions) influences the convergence
of the iterations. There are however no general ‘‘recipes’’
for the choice of the initial temperature guess, and this
depends mainly on the experience of computer modelers in
solving such numerical problems.

A2. On the Smoothness of the Target Temperature

[63] If mantle temperature in the geological past was not a
smooth function of space variables, recovery of this tem-

perature using the technique described in this paper is not
effective because the iterations converge very slowly to the
target temperature. Here we explain the problem of recov-
ering the initial mantle temperature at the time of plume
onset on the basis of three one-dimensional model tasks:
restoration of a smooth, piecewise smooth and discontinu-
ous target function. We note that the temperature in the
Earth’s mantle is not a discontinuous function but its shape
can be close to a step function.
[64] We consider that the dynamics of a physical system

is described by the Burgers equation ut + uux = uxx, 0 � t �
1, 0 � x � 2p with the boundary conditions u(t, 0) = 0, u(t,
2p) = 0, 0 � t � 1 and the condition uq = u(1, x; u0), 0 � x
� 2p at t = 1, where the variable u can denote temperature.
The problem is to recover the function u0 = u0 (x), 0 � x �
2p at t = 0 (the state in the past) from the function uq = uq(x),
0 � x � 2p at t = 1 (its present state). The finite difference
approximations and the variational method are applied to
the Burgers equation with the appropriate boundary and
initial conditions.
A2.1. Task 1
[65] Consider the sufficiently smooth function u0 = sin (x),

0 � x � 2p. The functions u0 and uq are shown in Figure
A1a. Figures A1b and A1c illustrate the iterations jk using
the iterative scheme similar to (4) for k = 0, 4, 6 and the
residual r6(x) = u0 (x) � j6 (x), 0 � x � 2p, respectively.
We see that iterations converge rather rapid for the
sufficiently smooth target function.
A2.2. Task 2
[66] Now consider the continuous piecewise smooth

function u0 = 3x/(2p), 0 � x � 2p/3 and u0 = 3/2 � 3x/
(2p), 2p/3� x� 2p. Figure A1 presents the functions u0 and

Figure A1. Recovering function u0 from the smooth guess function uq. (a–c) The sufficiently smooth u0;
(d–f) continuous piecewise smooth function u0; and (g–k) discontinuous function u0. Plots of u0 and uq are
presented in Figures A1a, A1d, and A1g; successive approximations to u0 at Figures A1b, Figures A1e,
Figures A1h, and Figures A1j; and the residual functions in Figures A1c, Figures A1f, Figures A1i, and
Figures A1k.

B06401 ISMAIL-ZADEH ET AL.: THERMAL DIFFUSION OF MANTLE PLUMES

12 of 15

B06401



uq (Figure A1d), the successive approximations jk for k = 0,
4, 1000 (Figure A1e), and the residual r1000 (x) = u0 x) �
j1000 (x), 0 � x � 2p (Figure A1f), respectively. This
example shows that a large number of iterations is required
to reach the target function.
A2.3. Task 3
[67] Consider the discontinuous function u0, which takes

1 at 2p/3 � x � 4p/3 and 0 in other points of the closed
interval 0 � x � 2p. Figure A1 presents the functions u0 and
uq (Figure A1g), the successive approximations jk for k = 0,
500, 1000 (Figure A1h), and the residual r1000 (x) = u0 (x) �
j1000 (x), 0 � x � 2p (Figure A1e), respectively. We see
that convergence to the target temperature is very poor.
[68] To improve the convergence to the target function, a

modification of the variational method based on a priori
information about a desired solution was suggested by
Korotkii and Tsepelev [2003]. Figure A1j shows the suc-
cessive approximations ejk for k = 0, 30, 500, and Figure
A1k shows the residual er500 (x) = u0(x) � ej500 (x), 0 � x �
2p, respectively. The approximations ejk based on the
method of gradient projection [Vasiliev, 2002] converge to
the target solution better than approximations generated by
equation (4).

Appendix B: Errors in Forward and
Backward Modeling

[69] A numerical model has three kinds of variables: state
variables, input variables, and parameters. State variables
describe the physical properties of the medium (velocity,
pressure, temperature) and depend on time and space. Input
variables have to be provided to the model (initial or
boundary conditions), most of the time these variables are
not directly measured but they can be estimated through
data assimilation. Most models contain also a set of param-
eters (e.g., viscosity, thermal diffusivity), which have to be
tuned to adjust the model to the observations. All the
variables can be polluted by errors.
[70] There are three kinds of systematic errors in numer-

ical modeling of geodynamical problems: model, discreti-
zation, and iteration errors. Model errors are associated with
the idealization of Earth dynamics by a set of conservation
equations governing the dynamics. The model errors are
defined as the difference between the actual Earth dynamics
and the exact solution of the mathematical model. Discre-
tization errors are defined as the difference between the
exact solution of the conservation equations and the exact
solution of the algebraic system of equations obtained by
discretizing these equations. Also, iteration errors are de-
fined as the difference between the iterative and exact
solutions of the algebraic system of equations. It is impor-
tant to be aware of the existence of these errors, and even
more to try to distinguish one from another.
[71] Apart from the errors associated with the numerical

modeling, another two components of errors are essential
when mantle temperature data are assimilated into the past:
(1) data misfit associated with the uncertainties in the
present temperature distribution in the Earth’s mantle and
(2) errors associated with the uncertainties in initial and
boundary conditions. Since there are no direct measure-
ments of mantle temperatures, the temperatures can be
estimated indirectly either from seismic wave (and their

anomalies), geochemical analysis or through the extrapola-
tion of surface heat flow observations. Many models of
mantle temperature are based on the conversion of seismic
tomography data into temperature. Meanwhile, a seismic
tomography image of the Earth’s mantle is a model indeed
and incorporates its own model errors. Another source of
uncertainty comes from the choice of mantle compositions
in the modeling of mantle temperature from the seismic
velocities. Therefore, if the present mantle temperature
models are biased, information on temperature can be
improperly propagated to the geological past.
[72] The temperature at the lower boundary of the model

domain we used in forward and backward numerical mod-
eling is, of course, an approximation to the real temperature,
which is unknown and may change over time at this
boundary. Hence errors associated with the knowledge of
the temperature (or heat flux) evolution at the core-mantle
boundary are another essential component of errors, which
can be propagated into the past during the data assimilation.
[73] In numerical modeling sensitivity analysis assists in

understanding the stability of the model solution to small
perturbations in input variables or parameters. For instance,
if we consider mantle temperature in the past as a solution to
the backward model, what will be its variation if there is
some perturbation on the inputs of the model (e.g., present
temperature data)? The gradient of the objective functional
with respect to input parameters in variational data assim-
ilation gives the first-order sensitivity coefficients. The
second-order adjoint sensitivity analysis presents some
challenge associated with cumbersome computations of
the product of the Hessian matrix of the objective functional
with some vector [Le Dimet et al., 2002], and hence it is
omitted in our study. Hier-Majumder et al. [2006] per-
formed the first-order sensitivity analysis for two-dimen-
sional problems of thermoconvective flow in the mantle.
See Cacuci [2003] and Cacuci et al. [2005] for more detail
on sensitivity and uncertainty analysis.
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