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Example of Hyperbolic Systems:
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Example of Hyperbolic Systems:

Traffic Flow Equations
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Example of Hyperbolic Systems:

Relativistic Euler Equations
Viu(put) =0
VvV, =0

leg p, £t = 0.0




Example of Hyperbolic Systems:

Magnetohydrodynamics (MHD)
Equations
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Differentiation:
Finite Difference Methods

- Problem:given a function known only at specific
points (e.g. in space), equally spaced with step size h:

f(x0) f(xO+h)

x0-2h x0-h x0 x0+h x0+2h

1 - Need to compute the spatial derivative df (z)

dx




Finite Difference Methods

- Convention: tabulated values of f(x) are given by

f(x)=Ffi, flx+h)=fix1, [flz+2h)=fiia, ..
flx—h)=fi—1, [flxz—2h)=fi2, ..
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Finite Difference: 1st derivative

] Recall the mathematical definition of the derivative:

df (@) . fle+h) — f@)

dx h—0 h

- If we use a Taylor expansion for f(x):

h2 h3
flx+h)=fix1=fi+hfi + ?f{’—k Ff,i’”—k
2 3
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Finite Difference: 1st derivative

1 Thus we can represent the derivative with

. / 7 — J h /7
Forward difference: fl =~ f“h L S 1+
Backward difference: I~ L _hfi—l + gf;' + ...

] 1st order accurate: the dominant error ~h
J The term IS called truncation error
] Exact for lines, f(x) = a + bx



Finite Difference: 1st derivative

1 Can we do better than 1st order ? YES!! - Seek for a
guadratic expression by using a 3-point stencil. Consider
again Taylor expansion:

h2 Ny h3

fixr = fiEhfi + = f +

. S

] Calculating both f(x+h) and f(x-h) and subtracting, one has

) _ f. 2
le _ fZ—l—l thl—l o %fiﬂl + O(hS)



Finite Difference: 1st derivative

J Thus we end up with the centered derivative:

/ fi—|—1 _ fi—l h2 124 3
g ! h

] Second-order accurate: the dominant error goes like h"2.

] For a quadratic function f(x) = a + bx + cx”2 the centered
derivative formula gives the exact answer b + 2cx.



Finite Difference: 1st derivative

1 A fourth order approximation can be obtained using a 5-

point stencil:

4h3

fixa = fi £ 2hf] + 2R f' & Tfim + O(h*)

] So that an expression for the 1st derivative can be found:

fi =

Ji—o —8fi1 +8fix1 — 2fito

12h

+ O(h?)




Finite Difference: 2nd derivative

1 Similar expressions may be found for derivatives of higher
order;

J For example, the 2nd derivative can be expressed by:

fi” _ fi—|-1 T 2f’i -+ fi—l

5 + O(h?)

J Proof left as an exercise.



Numerical Integration

J Inverse problem: given a function known at specific
points:
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Numerical Integration:
Constant rule

] The simplest form is to assume f(x) constant over the
Interval being integrated:

A

Xo X=Xy +Ax



Numerical Integration:
Constant rule

J Integrating the Taylor series:

/7

/x+ Fz)de — /w+ [fi b (2 — ) + f; (# — 25)2 + } da

h? h3
= hfi+ S fi + = [ + O(hY)

1 keep only the first term:

/ x+ f(x)dx = hf; + O(h?)




Numerical Integration:
Trapezoidal Rule:

d Using f] = fi“h_ /i

previous expression,

Ti4+1 h3 y
/ f(x)dx = hf; + +?fi + ...

+ O(h) forthe 1st derivative in the

...one gets

/‘ o f(x)dx =~ g (fi + fix1) + O(R?)




Numerical Integration:
Trapezoidal Rule:

J The trapezoidal rule L )
approximates the integral of the o
function over the subinterval [xi, \
Xi+1] as the area of the N\ Area= (x_-x)(t+ )2

trapezoid created by the
function values at fi and fi+1
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Numerical Integration:
Midpoint Rule

A variant of the Trapezoidal rule is obtained by
considering Taylor expansion around the midpoint of the
interval:

Tit1/2 Tiqy1/2 , f(/ 5
/ f(a:')dac: / [fz—FfZ(ZU—CL'z)—F ‘ (CIZ‘—ZIZ‘z) —|—} dx
Li—1/2 Ti—1/2 2
|

= hf; + O(h®) /

J The linear term cancels

out!! /

Xo - Y2Ax xo + V2Ax



Numerical Integration:
Simpson Rule

J By using the expression for the second derivative in the
mid-point rule, one obatins the Simpson rule

Lit+1/2 h
/ f(x)dx: 6 (fi—1/2_|_4fi_|_f7;-|-1/2) —|—O(h5)
Li—1/2

] Based on a quadratic approximation to the function in
the desired range.



Numerical Integration: Solving
Ordinary Differential Equations
(ODE)

J Numerical quadrature can be used to solve ordinary
differential equations, .e.g.

TTi4+1
— = f(a:,y) — Yi+1 — Yi — / f(%?ﬂda?

with initial condition ¥: at x = x;
] The integrand depends on x and y as well;
- For example, with the constant rule, one has

i1
Yi+1 — Yi — / f(an y)diU ~ f(iUia yi)Aw -+ O(ACUQ)

This Is called the explicit Euler method. It is only 1st
order accurate.



Numerical Integration: Solving ODE

1 Higher accuracy can be achieved using, for example, the
trapezoidal rule:

i1 A
Yit1l — Yi = / f(x,y)dx ~ Taz Lf (@i yi) + f(@it1, yit1)] + O(Az?)
J Problem: the unknown yi+1 appears on both side of the
equation!!!
1 Use an estimate (predictor) for yi+1 with Euler method:

Yir1 = Yi + [z, yi) Az + O(Az?)

Ax "
Yi+1 = Yi + 5 [f(ﬂfz', yi) + f(xiy1, y’i—|—1) + O(A;I:Q)} + O(Axg)

called the explicit 2nd order Runge-Kutta or Heun’s
method. It iIs 2nd order accurate. The error is O(h"3).



An Example

1 As a simple example, we try to integrate the following ODE

Y = fla,y) i xe[0,10]

] with

f(x,y) = —% + 4e~%/2 cos(4x)

] and initial condition

y=0 at xx=0

J We use both 1st order Euler method and the 2nd order
Heun’s method.



Fortran Code

program ode

implicit none

integer NX, i

parameter (NX = 50)

double precision xbeg, ybeg, xend, dx
double precision x, y, yp, fO, f

xbeg = 0.0

ybeg = 0.0

xend =10.0

dx = (xend - xbeg)/NX

¢ ** initial conditions **

X = xbeg
y = ybeg
write (*,%) x, Yy, Yy, exp(-0.5*x)*sin(4.0*x)

¢ ** solve ODE with Heun method **

do 10i =1, NX
fo = f(x,y)
yp =y + dx*f0
X =X +dx
y =y + 0.5%dx*(f0 + f(x, yp))
write (*,*) x, yp, Y, exp(-0.5*x)*sin(4.0*x)
10 continue
end

c ** Your right hand side **

double precision function f(x,y)
double precision x,y

f = -0.5*y + 4.0*exp(-0.5*x)*cos(4.0*x)
return

end

C Code

#include<stdio.h>
#include<math.h>
#define NX 50
double f(double, double);
int main()
{. .
inti;
double xbeg, ybeg, xend, dx;
double x, y, yp, f0;

xbeg =ybeg = 0.0;
xend = 10.0;
dx = (xend - xbeg)/(double)NX;

/* Set initial conditions */

x = xbeg; y = ybeg;
printf (" %f %f %f %f \n" ,x,y,y,exp(-0.5*x)*sin(4.0*x));

for (i =1; i <= NX; i++){

fo = f(x,y);

yp =y + dx*f0;

X +=dx;

y += 0.5*dx*(f0 + f(x,yp));

printf (" %f %f %f %f \n" ,x,yp,y,exp(-0.5*x)*sin(4.0*x));
}

return(0);

}

[***Your right hand side ** */

double f(double x, double y)
{

return (-0.5*y + 4.0*exp(-0.5*x)*cos(4.0*x));
}




An Example

1 Analytical solution y(z) = e */? sin(4z)

exp{JXKE.O}*sin(4LO*x}
EULER —+—
1 b HEUN —3%— .




