Computational Astrophysics

- Andrea Mignone -

Università di Torino
INAF Osservatorio Astronomico di Torino

Outine

1. Basic Discretization Methods
2. The Linear Advection Equation
3. Systems of Linear Advection Equations
4. Nonlinear Extension
5. Euler Equations
6. MHD Equations

Example of Hyperbolic Systems:

Euler Equations of Fluid Dynamics

Example of Hyperbolic Systems:

Traffic Flow Equations

$$
\frac{\partial q}{\partial t}+\frac{\partial}{\partial x}\left(u_{\max } q(1-q)\right)=0
$$

Example of Hyperbolic Systems:

Relativistic Euler Equations

$$
\begin{gathered}
\nabla_{\mu}\left(\rho u^{\mu}\right)=0 \\
\nabla_{\mu} T^{\mu \nu}=0
\end{gathered}
$$

Example of Hyperbolic Systems:

Magnetohydrodynamics (MHD)
Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \\
& \frac{\partial(\rho \mathbf{v})}{\partial t}+\nabla \cdot\left(\rho \mathbf{v v}^{\mathbf{t}}+p \mathbf{I}\right)=(\nabla \times \mathbf{B}) \times \mathbf{B} \\
& \frac{\partial E_{h d}}{\partial t}+\nabla \cdot\left[\left(E_{h d}+p\right) \mathbf{v}\right]=-(\mathbf{v} \times \mathbf{B}) \cdot(\nabla \times \mathbf{B}) \\
& \frac{\partial \mathbf{B}}{\partial t}-\nabla \times(\mathbf{v} \times \mathbf{B})=0 \\
& \hline
\end{aligned}
$$

1 - Basic Discretization Methods

Numerical Differentiation, Integration and ODE

- Andrea Mignone -

Università di Torino
INAF Osservatorio Astronomico di Torino

Differentiation: Finite Difference Methods

\square Problem: given a function known only at specific points (e.g. in space), equally spaced with step size h:

$\square \rightarrow$ Need to compute the spatial derivative

$$
\frac{d f(x)}{d x}
$$

Finite Difference Methods

\square Convention: tabulated values of $f(x)$ are given by

$$
\begin{aligned}
f(x)=f_{i}, & f(x+h)=f_{i+1},
\end{aligned} \quad f(x+2 h)=f_{i+2}, \ldots
$$

Finite Difference: 1st derivative

\square Recall the mathematical definition of the derivative:

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

\square If we use a Taylor expansion for $f(x)$:

$$
\begin{align*}
& f(x+h) \equiv f_{i+1}=f_{i}+h f_{i}^{\prime}+\frac{h^{2}}{2} f_{i}^{\prime \prime}+\frac{h^{3}}{6} f_{i}^{\prime \prime \prime}+\ldots \tag{1}\\
& f(x-h) \equiv f_{i-1}=f_{i}-h f_{i}^{\prime}+\frac{h^{2}}{2} f_{i}^{\prime \prime}-\frac{h^{3}}{6} f_{i}^{\prime \prime \prime}+\ldots \tag{2}
\end{align*}
$$

\square Solving for $\mathrm{f}^{\prime}(\mathrm{x}) \quad \rightarrow$

$$
f_{i}^{\prime} \approx \frac{f_{i+1}-f_{i}}{h}-\frac{h}{2} f_{i}^{\prime \prime}+\ldots
$$

$$
f_{i}^{\prime} \approx \frac{f_{i}-f_{i-1}}{h}+\frac{h}{2} f_{i}^{\prime \prime}+\ldots
$$

Finite Difference: 1st derivative

\square Thus we can represent the derivative with

- Forward difference:

$$
f_{i}^{\prime} \approx \frac{f_{i+1}-f_{i}}{h}-\frac{h}{2} f_{i}^{\prime \prime}+. . .
$$

> Backward difference:

$$
f_{i}^{\prime} \approx \frac{f_{i}-f_{i-1}}{h}+\frac{h}{2} f_{i}^{\prime \prime}+\ldots
$$

\square 1st order accurate: the dominant error ~h
\square The term $\frac{h}{2} f^{\prime \prime}(x)$ is called truncation error
\square Exact for lines, $f(x)=a+b x$

Finite Difference: 1st derivative

\square Can we do better than 1st order ? YES!! \rightarrow Seek for a quadratic expression by using a 3-point stencil. Consider again Taylor expansion:

$$
f_{i \pm 1}=f_{i} \pm h f_{i}^{\prime}+\frac{h^{2}}{2} f_{i}^{\prime \prime} \pm \frac{h^{3}}{3!} f_{i}^{\prime \prime \prime}+\ldots
$$

\square Calculating both $f(x+h)$ and $f(x-h)$ and subtracting, one has

$$
f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}-\frac{h^{2}}{6} f_{i}^{\prime \prime \prime}+O\left(h^{3}\right)
$$

Finite Difference: 1st derivative

\square Thus we end up with the centered derivative:

$$
f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h}-\frac{h^{2}}{6} f_{i}^{\prime \prime \prime}+O\left(h^{3}\right)
$$

\square Second-order accurate: the dominant error goes like $\mathrm{h}^{\wedge} 2$.
\square For a quadratic function $f(x)=a+b x+c x^{\wedge} 2$ the centered derivative formula gives the exact answer $b+2 c x$.

Finite Difference: 1st derivative

\square A fourth order approximation can be obtained using a 5point stencil:

$$
f_{i \pm 2}=f_{i} \pm 2 h f_{i}^{\prime}+2 h^{2} f_{i}^{\prime \prime} \pm \frac{4 h^{3}}{3} f_{i}^{\prime \prime \prime}+O\left(h^{4}\right)
$$

\square So that an expression for the 1st derivative can be found:

$$
f_{i}^{\prime}=\frac{f_{i-2}-8 f_{i-1}+8 f_{i+1}-2 f_{i+2}}{12 h}+O\left(h^{4}\right)
$$

Finite Difference: 2nd derivative

\square Similar expressions may be found for derivatives of higher order;
\square For example, the 2nd derivative can be expressed by:

$$
f_{i}^{\prime \prime}=\frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}}+O\left(h^{2}\right)
$$

\square Proof left as an exercise.

Numerical Integration

\square Inverse problem: given a function known at specific points:

$\square \rightarrow$ Want to evaluate

$$
\int_{a}^{b} f(x) d x
$$

Numerical Integration: Constant rule

\square The simplest form is to assume $f(x)$ constant over the interval being integrated:

Numerical Integration: Constant rule

\square Integrating the Taylor series:

$$
\begin{aligned}
\int_{x_{i}}^{x_{i+1}} f(x) d x & =\int_{x_{i}}^{x_{i+1}}\left[f_{i}+f_{i}^{\prime}\left(x-x_{i}\right)+\frac{f_{i}^{\prime \prime}}{2}\left(x-x_{i}\right)^{2}+\ldots\right] d x \\
& =h f_{i}+\frac{h^{2}}{2} f_{i}^{\prime}+\frac{h^{3}}{6} f_{i}^{\prime \prime}+O\left(h^{4}\right)
\end{aligned}
$$

\square keep only the first term:

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x=h f_{i}+O\left(h^{2}\right)
$$

Numerical Integration: Trapezoidal Rule:

\square Using $f_{i}^{\prime}=\frac{f_{i+1}-f_{i}}{h}+O(h)$ for the 1st derivative in the previous expression,

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x=h f_{i}+\frac{h^{2}}{2} f_{i}^{\prime}+\frac{h^{3}}{6} f_{i}^{\prime \prime}+\ldots
$$

... one gets

$$
\int_{x_{i}}^{x_{i+1}} f(x) d x \approx \frac{h}{2}\left(f_{i}+f_{i+1}\right)+O\left(h^{3}\right)
$$

Numerical Integration: Trapezoidal Rule:

\square The trapezoidal rule approximates the integral of the function over the subinterval [xi, $x i+1]$ as the area of the trapezoid created by the function values at fi and fi+1

Numerical Integration: Midpoint Rule

\square A variant of the Trapezoidal rule is obtained by considering Taylor expansion around the midpoint of the interval:
$\int_{x_{i-1 / 2}}^{x_{i+1 / 2}} f(x) d x=\int_{x_{i-1 / 2}}^{x_{i+1 / 2}}\left[f_{i}+f_{i}^{\prime}\left(x-x_{i}\right)+\frac{f_{i}^{\prime \prime}}{2}\left(x-x_{i}\right)^{2}+\ldots\right] d x$ $=h f_{i}+O\left(h^{3}\right)$
\square The linear term cancels out!!

Numerical Integration: Simpson Rule

\square By using the expression for the second derivative in the mid-point rule, one obatins the Simpson rule

$$
\int_{x_{i-1 / 2}}^{x_{i+1 / 2}} f(x) d x=\frac{h}{6}\left(f_{i-1 / 2}+4 f_{i}+f_{i+1 / 2}\right)+O\left(h^{5}\right)
$$

\square Based on a quadratic approximation to the function in the desired range.

Numerical Integration: Solving Ordinary Differential Equations (ODE)

\square Numerical quadrature can be used to solve ordinary differential equations, .e.g.

$$
\frac{d y}{d x}=f(x, y) \quad \Longrightarrow \quad y_{i+1}-y_{i}=\int_{x_{i}}^{x_{i+1}} f(x, y) d x
$$

with initial condition y_{i} at $x=x_{i}$
\square The integrand depends on x and y as well;
\square For example, with the constant rule, one has

$$
y_{i+1}-y_{i}=\int_{x_{i}}^{x_{i+1}} f(x, y) d x \approx f\left(x_{i}, y_{i}\right) \Delta x+O\left(\Delta x^{2}\right)
$$

This is called the explicit Euler method. It is only 1st order accurate.

Numeric al Integration: Solving ODE

\square Higher accuracy can be achieved using, for example, the trapezoidal rule:
$y_{i+1}-y_{i}=\int_{x_{i}}^{x_{i+1}} f(x, y) d x \approx \frac{\Delta x}{2}\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}\right)\right]+O\left(\Delta x^{3}\right)$
\square Problem: the unknown yi+1 appears on both side of the equation!!!
\square Use an estimate (predictor) for yi+1 with Euler method:

$$
\begin{aligned}
y_{i+1}^{*} & =y_{i}+f\left(x_{i}, y_{i}\right) \Delta x+O\left(\Delta x^{2}\right) \\
y_{i+1} & =y_{i}+\frac{\Delta x}{2}\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i+1}, y_{i+1}^{*}\right)+O\left(\Delta x^{2}\right)\right]+O\left(\Delta x^{3}\right)
\end{aligned}
$$

called the explicit 2nd order Runge-Kutta or Heun's method. It is 2 nd order accurate. The error is $\mathrm{O}\left(\mathrm{h}^{\wedge} 3\right)$.

An Example

\square As a simple example, we try to integrate the following ODE

$$
\frac{d y}{d x}=f(x, y) \quad \text { in } \quad x \in[0,10]
$$

\square with

$$
f(x, y)=-\frac{y}{2}+4 e^{-x / 2} \cos (4 x)
$$

\square and initial condition

$$
y=0 \quad \text { at } \quad x=0
$$

\square We use both 1st order Euler method and the 2nd order Heun's method.

Fortran Code

program ode

implicit none
integer NX,
parameter ($\mathrm{NX}=50$)
double precision xbeg, ybeg, xend, dx
double precision $x, y, y p, f 0, f$
xbeg $=0.0$
ybeg $=0.0$
xend $=10.0$
dx = (xend - xbeg)/NX
c** initial conditions **
$x=x b e g$
$y=y b e g$
write (*,*) $x, y, y, \exp \left(-0.5^{*} x\right)^{*} \sin \left(4.0^{*} x\right)$
c ** solve ODE with Heun method **
do $10 \mathrm{i}=1$, NX
$\mathrm{f0}=\mathrm{f}(\mathrm{x}, \mathrm{y})$
$y p=y+d x * f 0$
$x=x+d x$
$y=y+0.5^{*} d x^{*}(f 0+f(x, y p))$
write (*,*) x, yp, y, exp(-0.5*x)*sin(4.0*x)
10 continue
end
c ** Your right hand side **
double precision function $f(x, y)$
double precision x, y
$\mathrm{f}=-0.5^{*} \mathrm{y}+4.0^{*} \exp \left(-0.5^{*} \mathrm{x}\right)^{*} \cos \left(4.0^{*} x\right)$
return
end

```
#include<stdio.h>
#include<math.h>
#define NX 50
double f(double, double);
int main()
{
    int i;
    double xbeg, ybeg, xend, dx;
    double x, y, yp,f0;
    xbeg = ybeg = 0.0;
    xend = 10.0;
    dx = (xend - xbeg)/(double)NX;
/* Set initial conditions */
    x = xbeg; y = ybeg;
    printf ("%f %f %f %f ln",x,y,y,exp(-0.5*x)*sin(4.0*x));
    for (i=1; i <= NX; i++){
    f0 = f(x,y);
    yp = y + dx*f0;
    x += dx;
    y += 0.5*dx*(f0 + f(x,yp));
    printf ("%f %f %f %f ln",x,yp,y,exp(-0.5*x)*sin(4.0*x));
}
return(0);
}
|* ** Your right hand side ** */
double f(double x, double y)
{
return (-0.5*y + 4.0*exp(-0.5*x)*}\operatorname{cos}(4.\mp@subsup{0}{}{*}x))
}
```


An Example

\square Analytical solution

$$
y(x)=e^{-x / 2} \sin (4 x)
$$

