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Example of Hyperbolic Systems:

Euler Equations of Fluid Dynamics
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Example of Hyperbolic Systems:

Traffic Flow Equations
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Example of Hyperbolic Systems:
Relativistic Euler Equations
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Example of Hyperbolic Systems:
Magnetohydrodynamics (MHD) 
Equations
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Integration and ODE
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Differentiation: 
Finite Difference Methods

Problem:given a function known only at specific
points (e.g. in space), equally spaced with step size h:

Need to compute the spatial derivative df(x)

dx



Finite Difference Methods

Convention: tabulated values of f(x) are given by

f(x) = fi , f(x+ h) = fi+1 , f(x+ 2h) = fi+2 , ...

f(x− h) = fi−1 , f(x− 2h) = fi−2 , ...
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Finite Difference: 1st derivative

Recall the mathematical definition of the derivative:  

If we use a Taylor expansion for f(x):

Solving for f’(x)     

f(x+ h) ≡ fi+1 = fi + hf
0
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f(x− h) ≡ fi−1 = fi − hf
0
i +

h2

2
f 00i −

h3

6
f 000i + ... (2)

f 0i ≈
fi − fi−1

h
+
h

2
f 00i + ...

df(x)

dx
= lim

h→0

f(x+ h)− f(x)
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Thus we can represent the derivative with

Forward difference:

Backward difference:

1st order accurate: the dominant error ~h
The term              is called truncation error
Exact for lines, f(x) = a + bx
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Finite Difference: 1st derivative



Finite Difference: 1st derivative

Can we do better than 1st order ? YES!! Seek for a 
quadratic expression by using a 3-point stencil. Consider
again Taylor expansion:

Calculating both f(x+h) and f(x-h) and subtracting, one has

fi±1 = fi ± hf
0
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2
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Finite Difference: 1st derivative

Thus we end up with the centered derivative: 

Second-order accurate: the dominant error goes like h^2. 

For a quadratic function f(x) = a + bx + cx^2 the centered
derivative formula gives the exact answer b + 2cx. 
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Finite Difference: 1st derivative

A fourth order approximation can be obtained using a 5-
point stencil:

So that an expression for the 1st derivative can be found:

fi±2 = fi ± 2hf
0
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2f 00i ±
4h3
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12h
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Finite Difference: 2nd derivative

Similar expressions may be found for derivatives of higher
order;
For example, the 2nd derivative can be expressed by:

Proof left as an exercise.

f 00i =
fi+1 − 2fi + fi−1

h2
+O(h2)



Numerical Integration
Inverse problem: given a function known at specific
points:

Want to evaluate
Z b

a

f(x)dx



Numerical Integration: 
Constant rule

The simplest form is to assume f(x) constant over the 
interval being integrated:



Numerical Integration: 
Constant rule

Integrating the Taylor series:

keep only the first term:
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Numerical Integration: 
Trapezoidal Rule:

Using            for the 1st derivative in the 
previous expression,

…one gets
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Numerical Integration: 
Trapezoidal Rule:

The trapezoidal rule
approximates the integral of the 
function over the subinterval [xi, 
xi+1] as the area of the 
trapezoid created by the 
function values at fi and fi+1



Numerical Integration: 
Midpoint Rule

A variant of the Trapezoidal rule is obtained by 
considering Taylor expansion around the midpoint of the 
interval:

The linear term cancels
out!!
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Numerical Integration: 
Simpson Rule

By using the expression for the second derivative in the 
mid-point rule, one obatins the Simpson rule

Based on a quadratic approximation to the function in 
the desired range.
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Numerical Integration: Solving 
Ordinary Differential Equations 

(ODE)
Numerical quadrature can be used to solve ordinary 
differential equations, .e.g.

with initial condition 
The integrand depends on x and y as well;
For example, with the constant rule, one has

This is called the explicit Euler method. It is only 1st 
order  accurate.

dy

dx
= f(x, y) =⇒ yi+1 − yi =
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f(x, y)dx
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yi at x = xi



Numerical Integration: Solving ODE
Higher accuracy can be achieved using, for example, the 
trapezoidal rule:

Problem: the unknown yi+1 appears on both side of the 
equation!!!
Use an estimate (predictor) for yi+1 with Euler method:

called the explicit 2nd order Runge-Kutta or Heun’s 
method. It is 2nd order  accurate. The error is O(h^3).
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An Example

As a simple example, we try to integrate the following ODE

with

and initial condition

We use both 1st order Euler method and the 2nd order
Heun’s method. 

dy

dx
= f(x, y) in x ∈ [0, 10]

f(x, y) = −
y

2
+ 4e−x/2 cos(4x)

y = 0 at x = 0



program ode
implicit none
integer NX, i
parameter (NX = 50) 
double precision xbeg, ybeg, xend, dx
double precision x, y, yp, f0, f

xbeg = 0.0
ybeg = 0.0
xend = 10.0
dx = (xend - xbeg)/NX

c ** initial conditions **

x = xbeg
y = ybeg
write (*,*) x, y, y, exp(-0.5*x)*sin(4.0*x)

c ** solve ODE with Heun method **

do 10 i = 1, NX
f0 = f(x,y)
yp = y + dx*f0      
x  = x + dx
y  = y + 0.5*dx*(f0 + f(x, yp))
write (*,*) x, yp, y, exp(-0.5*x)*sin(4.0*x)

10    continue
end

c **  Your right hand side  **

double precision function f(x,y) 
double precision x,y
f = -0.5*y + 4.0*exp(-0.5*x)*cos(4.0*x)
return
end

#include<stdio.h>
#include<math.h>
#define NX   50
double f(double, double);
int main()
{
int i;
double xbeg, ybeg, xend, dx;
double x, y, yp, f0;

xbeg = ybeg = 0.0;
xend = 10.0;
dx = (xend - xbeg)/(double)NX;

/*  Set initial conditions */

x = xbeg; y = ybeg;
printf ("%f %f %f %f \n",x,y,y,exp(-0.5*x)*sin(4.0*x));

for (i = 1; i <= NX; i++){
f0 = f(x,y);
yp = y + dx*f0;
x += dx;
y += 0.5*dx*(f0 + f(x,yp));
printf ("%f %f %f %f \n",x,yp,y,exp(-0.5*x)*sin(4.0*x));

}
return(0);

}

/* ** Your right hand side ** */

double f(double x, double y)
{  
return (-0.5*y + 4.0*exp(-0.5*x)*cos(4.0*x)); 

}

Fortran Code C Code



An Example
Analytical solution y(x) = e−x/2 sin(4x)


