

1866-9

School on Pulsed Neutrons: Characterization of Materials

15 - 26 October 2007

Accelerator generated Probes as Tools for Materials Science

Kurt Clausen Paul Scherrer Institut, PSI CH-5232 Villigen Switzerland

Accelerator generated Probes as tools for Materials Science

PAUL SCHERRER INSTITUT

Imaging, Microscopy, Diffraction \rightarrow Structure

Energy wavelength relation

15 October 2007 – outline:

- Muons
 - Sources
 - A local probe
- Fotons a very short introduction
 - Synchrotron X-rays, X-ray Free electron lasers (XFEL)
 - A few examples structure real time experiments \rightarrow fs

SHORT BREAK

• Neutrons

Proton accelerator Complex PSI

600 MeV proton beam 2 mA proton current,

CW Muon Source at PSI:

2 – 60 mm Graphite target in proton beam.

Generation of Pions that decays into Muons (Pon lifetime 26 ns).

4 sources worldwide, Triumf Canada, J-Parc Japan, ISIS UK and PSI Switzerland

IAEA School on Pulsed Neutrons: Characterization of Materials

Muon Sources (operating, under construction)

Muon lifetime 2.2 µsec

				Gap if double		Proton beam
			Pulse - length	pulse	Power for	size at Muon
Facility	Energy (MeV)	Freq (Hz)	(nano sec)	(nano_sec)	Muons (kW)	target
J-PARC	3000	25	130	598	< 50	> 10 cm^2
ISIS	800	50	80	330	5	few cm ²
TRIUMF	500	CW	CW	CW	< 53	few mm ²
PSI	590	CW	CW	CW	350	few mm ²

CW Source – event rate ~ 40 kHz (1 Muon at a time in the sample)

Ideal Pulsed Source - ~ 2 nsec pulses at ~ 10 kHz

Muons beams generated via pions have pulse length in excess of 26 nsec (pion lifetime) Pulsed Neutron Sources too low rep rates, too long pulses too large proton beam size

Except for pump probe experiments CW sources are in general preferential

PSI ~10⁶ surface Muons/mm²/sec (at least a factor 100 above competitors)

LEM (Low Energy Muons) basically only feasible at PSI Potential for microbeam ~ 0.1*0.1 mm² (Scanning or very small samples) Muon production from pions

Charge state π^+ π^- Mean lifetime (s) 26×10^{-9} 26×10^{-9} Spin00Mass (MeV)139.57139.57Decay mode $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$

100% polarised "*surface*" positive muons (~4MeV) are generally used for condensed matter studies

Implantation of Muons in the Probe

Detection of the decay positron

Distribution of heights

incl areas with no plants...

IAEA School on Pulsed Neutrons: Characterization of Materials

.....which stands for <u>Mu</u>on <u>S</u>pin <u>R</u>elaxation, <u>R</u>otation <u>R</u>esonance

relaxation describes the time-dependent loss of polarisation of the muon spins by internal fields either in zero applied field or in a field applied parallel to the initial muon spin direction

rotation describes the dephasing of muon spins by local magnetic fields with an applied field transverse to the muon spin direction

resonance is associated with RF induced transitions (*cf NMR*)

Wilhelm Conrad Röntgen, "Father" of X-rays

Hand of Bertha Röntgen exposure 20 min, 8 Nov 1895

Cracking bones a hundred years later.....

This is called tomography

IAEA School on Pulsed Neutrons: Characterization of Materials

Friso van der Veen, PSI

J.Als-Nielsen, Des Mc Morrow

Structural biology

Diffraction pattern

Structure of membrane protein succinate dehydrogenase (SDH),

V. Yankovskaya, S. Iwata et al Science 299 (2003) 700

Origin of synchrotron radiation

Friso van der Veen, PSI

SC technology / NC technology

A Wrulich, PSI haracterization of Materials

Kurt Clausen, Trieste 15.10.2007

I will not mention --- resonant diffraction, spectroscopy, EXAFS and other aborbtion techniques and

But a few examples of using the pulsed character of the electrons circulating in the synchrotron...

X-ray pulses from single electron bunches in storage ring

Typical duration of electron bunch : 20-60 ps

An example: Dynamics of nanostructured magnetic objects Make movies of magnetic particles μm & sub-ns

J. Raabe, C. Quitmann et al

IBM / HITACHI (2005) Microdrive, 6 GByte, Pentium IV: 3GHz

IAEA School on Fuised Neutrons. Characterization of Materials

Generating 50-100 fs pulses by electron beam slicing:

R.W.Schoenlein et al. Science 287 (2000), 2237

IAEA School on Pulsed Neutrons: Characterization of Materials

X-ray diffraction from Bi crystal G. Ingold, S. Johnson *et al*

Images with ever increasing speed

- 2005: Movies of magnetic domains. Every 100 picoseconds a new image!
- 2006: Follow vibrations in solids and structural changes in molecules in 1000 times smaller time steps (in femtosecond range).

>2010: DREAM: Use X-ray lasers to image single molecules in a few femtoseconds ???.

Friso van der Veen and Kurt Clausen, PSI

Brilliance of some sources

THEORY predicts that intense and short X-ray pulses may allow high resolution imaging of biomolecules

sample injed

A wonderful dream

X-fel pulse

but is it realistic?

Concept: Capture an image with a short and intense X-ray pulse, *before* the sample has time to respond (explode)

A Wrulich and Kurt Clausen, PSI

X-ray diffraction pattern

eckert, Hajdu

A Wrulich, PSI haracterization of Materials

light wave Kurt Clausen, Trieste 15.10.2007

IAEA School on Pulsed Neutrons: Characterization of Materials

Brilliance of some sources

PAUL SCHERRER INSTITUT

Coherent X-ray Imaging & Future XFEL Sources

IAEA School on Pulsed Neutrons: Characterization of Materials

Franz Pfeiffer, PSI

Future: Atomic Resolution from Single Macromolecules ?

N. Neulze et al., Nature 400, 752 (2000), 5. Flajuu et al., 550 144, 219 (2005), 11. Chapman et al., Nat. Flag

IAEA School on Pulsed Neutrons: Characterization of Materials

Franz Pfeiffer, PSI

Thomson scattering for a single molecule:

 $I_{\text{scat}} = (I_{\text{in}}/A_{\text{in}}) \Omega_{\text{det}} r_{\text{e}}^2 N^2$

 $I_{in} \sim 2 \times 10^{11}$ ph/pulse, $A_{in} = (10 \ \mu m)^2 \pi$, $\Omega_{det} = 10^{-6} [A_{det} = 1 \ mm^2, R_{det} = 1 \ m]$ $r_e = 2.82 \times 10^{-15}$ m, gain = 2 x 10⁵ (optimistic)

$$\begin{array}{ll} & \downarrow & \downarrow_{scat} \sim 5 \ge 10^{-15} \ (1 \ electron) & => 1 \ge 10^{-9} \\ & \downarrow_{scat} \sim 5 \ge 10^{-9} \ (10^3 \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \sim 5 \ge 10^{-3} \ (10^6 \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \sim 5 \ge 10^{-3} \ (10^9 \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \sim 5 \ge 10^{-3} \ (10^9 \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \sim 5 \ge 10^{-3} \ (10^9 \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \sim 5 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \sim 5 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \simeq 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \simeq 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \simeq 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \simeq 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \\ & \downarrow_{scat} \simeq 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 1 \ge 10^{-3} \ (10^{-3} \ electrons) & => 10^{-3} \ (10^{-3} \ elect$$

q⁻⁴ ~ q⁻⁶ intensity decay !

IAEA School on Pulsed Neutrons: Characterization of Materials

Franz Pfeiffer, PSI

X-ray Diffractive Imaging of Single Macromolecules

IAEA School on Pulsed Neutrons: Characterization of Materials

Franz Pfeiffer, PSI

10 Å Resolution from Single Macromolecules

10 Å Resolution from Single Macromolecules

IAEA School on Pulsed Neutrons: Characterization of Materials

Franz Pfeiffer, PSI

Diffractive x-ray imaging of single macromolecules could provide insight into conformational changes of known sub-structures at 10-20 Å resolution (Atomic resolution NOT achievable)

Coherent protein nano-crystallography could provide atomic resolution and overcome existing limitations due to radiation damage (sub micron i.e nano size crystals)

X-FEL in other fields – science case still in its infancy …
 Plasma state YES,
 >fs processes?

IAEA School on Pulsed Neutrons: Characterization of Materials

Franz Pfeiffer and Kurt Clausen, PSI

15 October 2007 – outline:

- A short repetition
- Why Neutrons sources are weak and expensive but properties unique
- Why spallation sources
- Spallation Sources status and projects
 - ISIS \rightarrow TS2
 - PSI
 - SNS
 - J-PARC
 - ESS

Three forms of carbon – very different materials

Graphite

Diamond

Buckyballs

IAEA School on Pulsed Neutrons: Characterization of Materials

Structure and dynamics determines "function"

Superconductors or organic ferromagnets

IAEA School on Pulsed Neutrons: Characterization of Materials

Neutrons and Neutron Sources

1932 The neutron was discovered in by Chadwick in the UK

1936

Coherent neutron diffraction (Bragg scattering by crystal lattice planes) was first demonstrated by two groups in Europe in order to better understand neutrons themselves

> 1945

The possibility of using the scattering of neutrons as a probe of materials developed with the availability of copious quantities of slow neutrons from reactors. Enrico Fermi's group in Chicago used Bragg scattering to measure nuclear cross-sections.

1994 Nobel Prize in Physics – B Brockhouse and C Shull

IAEA School on Pulsed Neutrons: Characterization of Materials

Using time of flight

$$\lambda = \frac{\mathbf{h}}{\mathbf{m} \cdot \mathbf{L}} \cdot \mathbf{t} \qquad \qquad |\underline{\mathbf{k}}| = \frac{2 \cdot \pi}{\lambda}$$

IAEA School on Pulsed Neutrons: Characterization of Materials

The same number of fotons/neutrons will be emitted from:

- 1 W *light bulp* of 2 eV visible light
- 6 kW conventional *X-ray source* of 12 keV radiation
- 100 MW *nuclear reactor* (200 MeV per neutron)

The source size for the reactor is of dimensions m³ for the others mm³.

A large number of presentations in the following two weeks will demonstrate that neutrons in many areas are complementary, in some areas competitive and in others unique.

Neutrons : weak source strength – powerful tool for science!

Outside the nucleus, <u>free neutrons</u> are unstable and have a <u>mean lifetime</u> of 885.7±0.8 seconds (about 15 minutes)

The quark structure of the neutron.	
Composition:	one up, two down
Family:	Fermion
Group:	Quark
Interaction:	Gravity, Electromagnetic, Weak, Strong
Antiparticle:	Antineutron
Discovered:	James Chadwick ^[1]
Symbol:	n
Mass:	1.674 927 29(28) × 10 ⁻²⁷ kg 939.565 560(81) MeV/c² 1.008665 u
Electric charge: 0 C	
Spin:	1/2

Uniqueness of Neutrons

(•) 1. Neutrons see the Nuclei

2. Neutrons see Elementary Magnets

3. Neutrons see light Atoms next to Heavy Ones

4. Neutrons measure the Velocity of Atoms

5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

Neutron Scattering Length [fm]

 $1 \text{ fm} = 0.1 \text{x} 10^{-12} \text{ cm}$

IAEA School on Pulsed Neutrons: Characterization of Materials

Kurt Clausen, Trieste 15.10.2007

Isotopic contrasting.

IAEA School on Pulsed Neutrons: Characterization of Materials

Kurt Clausen, Trieste 15.10.2007

Poly(D,L-lactide) Nanocapsules

Andrea Rübe¹, Gerd Hause², Karsten Mäder¹, Joachim Kohlbrecher^{3*}

¹Institute of Pharmaceutical Technology and Biopharmacy, Martin-Luther-University Halle-Wittenberg ²Microscopy Unit, Biocenter of the University, Halle/Saale ³Laboratory for Neutron Scattering, Paul Scherrer Institute

- Einschluss von lipophilen Wirkstoffen in die innere Ölphase möglich
- Tensidschicht umgibt Nanokapseln, um sie im Wasser zu stabilisieren

J Kohlbrecher PSI

IAEA School on Pulsed Neutrons: Characterization of Materials

Kurt Clausen, Trieste 15.10.2007

Biomembranes and Interfaces

Reflectivity of a single interface (Fresnel reflectivity)

$$R = r r^{*}$$

$$r = A'_{I}/A_{I} = (Q_{0}-Q_{I})/(Q_{0}+Q_{I}) \text{ reflection coefficient}$$
with $Q_{i} = (Q_{0}^{2}-Q_{c}^{2})^{1/2}$

$$R_F(Q) = \left| \frac{1 - \left[1 - \left(Q_c / Q_0\right)^2\right]^{1/2}}{1 + \left[1 - \left(Q_c / Q_0\right)^2\right]^{1/2}} \right|^2$$

for $Q_0 > Q_c$

$$R_F(Q) \approx (Q_c / Q_0)^4$$

IAEA School on Pulsed Neutrons: Characterization of Materials

T Gutberlet PSI

Reflectivity of two interfaces

$$R(Q) = \frac{r_1^2 + r_2^2 + 2r_1r_2\cos(2Q_1d)}{1 + r_1^2r_2^2 + 2r_1r_2\cos(2Q_1d)}$$

with thickness $d=2\pi/\Delta Q$

in kinematic theory

$$r = \frac{(k_c^2)^2}{Q_0^4} \left| \int \frac{d\rho}{dz} \cdot \exp(iQ_0 z) dz \right|^2$$

reflectivity of two interfaces

$$R(Q) = \frac{(k_c^2)^2}{Q^4} \left[\frac{\Delta \rho_1 \cdot \exp\left(-Q^2 \sigma_1^2\right) + \Delta \rho_2 \cdot \exp\left(-Q^2 \sigma_2^2\right)}{+ \Delta \rho_3 \cdot \exp\left(-Q^2 \left(\sigma_1^2 + \sigma_2^2\right)/2\right) \cdot \cos(Qd)} \right]$$

with parameters $d, \sigma, \Delta \rho$

IAEA School on Pulsed Neutrons: Characterization of Materials

Membrane Binding of Lipidated N-ras Peptide

- 1. Neutrons see the Nuclei
 - ¢
- 2. Neutrons see Elementary Magnets

. Neutrons see Light Atoms next to Heavy Ones

- . Neutrons measure the Velocity of Atoms
- 5. Neutrons penetrate deep into Matter

Neutrons see Elementary Magnets

Nearly all what we know about magnetic structures comes from neutrons.

Sr₂MnGaO₅

Pomjakushin,V.Yu., Balagurov,A.M., Elzhov,T.V., Sheptyakov,D.V., Fischer,P., Khomskii,D.I., Yushankhai,V.Yu., Abakumov,A.M., Rozova,M.G., Antipov,E.V., Lobanov,M.V., Billinge,S. "Atomic and magnetic structures, disorder effects, and unconventional superexchange interactions in A2GaMnO5+x (A=Sr,Ca) oxides of layered brownmillerite-type structure", Phys. Rev. B 66, 184412 (2002)

Dimer spin system TlCuCl₃

- antiferromagnetic
- fluctuating moments
- no magnetic order
- "singlet" ground state

SPIN LIQUID

Christian Rüegg PSI/UCL

Magnetic excitations

Christian Rüegg PSI/UCL

• N. Cavadini et *al.*, Phys. Rev. B **63**, 172414 (2001)

• N. Cavadini et al., J. Phys.: Condens. Matter 12, 5463 (2000)

IT and quantum devices

- Giant magnetoresistance and exchange bias for spintronics and high density data storage
- Hard thin film magnets for micro-motors, -switches and sensors
- Understanding magnetic roughness and phase diagrams towards better electronic devices
- Understanding quantum complexity

Uniqueness of Neutrons

- 1. Neutrons see the Nuclei
 - **2. Neutrons see Elementary Magnets**

5. Neutrons penetrate deep into Matter

Neutrons see Light Atoms next to Heavy Ones

Crucial oxygen positions revealed by neutrons

High temperature superconductors for the technology of tomorrow.

Order-Disorder phase transition due to reorientation of BD₄⁻ tetrahedra in **NaBD**₄

Only neutrons see H-bonds and catalytic H positions.

IAEA School on Pulsed Neutrons: Characterization of Materials

Density maps showing the positions of hydrogen atoms in protein crystals as determined by neutron crystallography

Density maps from neutron high-angle fibre diffraction reveal the hydrogen bonding network in cellulose.

Hydrogen storage materials and batteries

- Hydrogen storage materials.
- Fuel cell components; oxide ion conductors.
- Clathrate hydrates for energy sources.
- Light, high energy density batteries.
- Energy efficient transport; superalloys, ceramics, fuel additives.

In situ studies of functioning H storage or Battery.

In-situ neutron diffraction during charging of a Ni-MH battery

The crystal structure of Mg₂FeH₆

• (•) 1. Neutrons see the Nuclei

2. Neutrons see Elementary Magnets

3. Neutrons see Light Atoms next to Heavy Ones

- 4. Neutrons measure the Velocity of Atoms
- 5. Neutrons penetrate deep into Matter

T Mason, SNS

Rietveld Analysis:

performance relationship to composition, crystal structure, phase transitions (order-disorder), microstrain, texture, ...

Max-Entropy Analysis:

real space imaging of proton and oxide-ion conducting pathways,

High-Temperature Furnace with Automated Gas Flow Controllers:

dynamic in-situ experiments under realistic conditions (extreme ΔpO_2 and ice formation expts)

Mechanism of proton pumping

Transport through a biological membrane.

Uniqueness of Neutrons

- 1. Neutrons see the Nuclei
- \$
- 2. Neutrons see Elementary Magnets

d

d

u

3. Neutrons see Light Atoms next to Heavy Ones

- 4. Neutrons measure the Velocity of Atoms
- 5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

Lattice distortion and magnetic structure in NiO under high pressures (up to 130kbar)

S. Klotz, Th. Strässle, G. Rousse, G. Hamel, V. Pomjakushin, *APL* 2005.

V. Pomjakushin PSI

IAEA School on Pulsed Neutrons: Characterization of Materials

Sample environment – Magnetic fields

The neutron is highly penetrating -

enabling studies of samples in containers and complex sample environment...

Materials and processing		
	 Processing of soft solids and complex fluids in extruders, mixers, pipe flow and micro-fluidics Controllable rheology for lubricants and oil extraction Structural integrity and safety: remediation of residual stresses in alloys, composites and welds Light weight, high strength, alloys and composites; superconducting wires, bulk amorphous alloys In-situ measurements to understand materials synthesis, processing and treatments 	

tomography data – diesel injection nozzle

IAEA School on Pulsed Neutrons: Characterization of Materials

Kuehne/Lehmann PSI

The aircraft of tomorrow: welding instead of rivets.

5. Neutrons penetrate deep into Matter

6. Neutrons are Elementary Particles

d

d

Neutron physics elucidates elementary forces of nature.

A free neutron only survives about 1000 sec. $n \rightarrow p^+ + e^-$

To use neutrons we must first get them out of a nuclei, there are basically 3 methods:

- 1. Fission
- 2. Spallation
- 3. Fusion

In all these cases neutrons are released with high kinetic energy ~ MeV

180-200 MeV/useful neutron In general for a Continous Source

Kurt Clausen, Trieste 15.10.2007

ANS – Advanced Neutron Source Oak Ridge - USA

ANS Beam Tube Facilities

run Gausen, meste 15.10.2007

Table 2.1. Key reactor physics parameters		
	Reference	
Parameter	value	
Reactor power		
MW (deposited in fuel and primary coolant)	303	
MW (fission)	3 30	
Core life (full power days)	17	
Core average thermal power density (MW/L)	4.5	
Peak reflector thermal flux		
BOC $(m^{-2}s^{-1})$	7.19×10^{19}	
EOC $(m^{-2}s^{-1})$	7.40×10^{19}	
Flux efficiency at EOC (m ⁻² s ⁻¹ MW ₁ ⁻¹)	2.24×10^{17}	
Core fissile loading at BOC (Kg 235U)		
Fuel burnup (Kg ²³⁵ U)	7.0	

Van assatas abusin parameters - 68 1000

ANS parameters - 2

Parameter	SI units	Alternate units
Primary coolant flow rate: Total (through pump) Through active core (fuel) Reactor assembly inlet pressure Fuel inlet pressure Secondary coolant flow rate Primary loop design pressure	2.01 Mg/s 1.83 Mg/s 3.5 MPa 3.2 MPa 4.96 m ³ /s 4.0 MPa	29,100 gal/min 26,500 gal/min 508 psia 464 psia 78,600 gal/min 580 psi

ANS:

Highly enriched fuel, substantial technical risk

Construction and Operation Cost continuously escalating

- → Project abandoned 1995 @ 3 G\$
- Fission based sources limited by the ability to cool the core!

55 MW thermal

The world's most powerful reactor

neutron source.

First operation 1972

PAUL SCHERRER INSTITUT

Forschungs-Neutronenquelle

Heinz Maier-Leibnitz

Reactor / CW sources – not to be forgotten still competitive in many areas synergy with other applications

Process	Example	Yield	Energy deposition in target (MeV/n)	Average Kinetic Energy carried away by neutron (MeV/n)
Fission	²³⁵ U	1 n/fission	180	2
Spallation	1.3 GeV protons on Hg	33 - 40 n/proton	30 - 35	2 – 5
			1	
-				-

Spallation

30 - 35 MeV/useful neutron (Hg 1.3 GeV protons) Ideally suited for pulsed operation.

Kurt Clausen, Trieste 15.10.2007

Proton current 1.25 mA Proton Energy 600 MeV Beam power 750 kW Flux like 10 MW reactor

IAEA School on Pulsed Neutrons: Characterization of Materials

Kurt Clausen, Trieste 15.10.2007

ISIS SP spallation source

ZOOM	Focusing SANS
LMX	Single crystal
EXEED	Extreme conditions Diffraction
EXESS	Extreme conditions Inelastic chopper
IMAT	Imaging/materials
Chip irradiation	
SPIRAL/LARMOR	SESANS, High Res diffraction, MISANS
NESSIE	Spin-echo

TS2 will start operation 2008/9

SNS – Short Pulse Spallation Source

The SNS will begin operation in 2006 in Oak Ridge, Tennessee At 1.4 MW it will be ~8x ISIS, the world's leading pulsed spallation source The peak thermal neutron flux will be ~50-100x ILL Initial facility will have 1 target station with 24 instruments An upgrade to 3-4 MW and a second target station is planned

ORNL Neutron Scattering Facilities SNS and HFIR

- SNS construction was completed May 2006, user operations in Fall 2007
- At 1.4 MW SNS will be the world's leading pulsed spallation source
- Room for eventual 24 instruments spanning physics, chemistry, biology, & materials science
- High Flux Isotope Reactor (HFIR) – U.S. highest flux source of continuous neutrons
- Restarted with a new cold source in May 2007
- Two new SANS instruments
 in commissioning

Kurt Clausen, Trieste 15.10.2007 112

J-PARC (Japan Proton Accelerator Research Complex) -Joint project between JAEA and KEK-Starting in 2001 finishing in 2008

Hadron Experimental Hall

PARC

Linac

Materials & Life Experimental Hall (MLF: JSNS+muon)

Neutrino to Super KAMIOKANDE (300km away)

View of J-PARC in May 2007

ESS – LP spallation source

5 MW LP (2 msec) H⁺ Linac Target station with up to 20+ instruments (typical length 200 m) "On ESFRI roadmap" Superior/Complimentary to SNS and JPARC Interest to host

(and fund substantial part) Lund Sweden Bilbao Spain ?? Hungary

Kurt Clausen, Trieste 15.10.2007

Process	Example	Yield	Energy deposition in target (MeV/n)	Average Kinetic Energy carried away by neutron (MeV/n)
Fission	²³⁵ U	1 n/fission	180	2
Spallation	1.3 GeV protons on Hg	33 - 40 n/proton	30 - 35	2 – 5

Fusion – when will it be interesting?

Let us first forget the repetition rate and only look at the required flux:

The best present sources delivers about 10¹⁸ neutrons/sec

For fusion to be competitive it must

- either be much cheaper than fission or spallation
- or provide a neutron production rate of > 10^{18} neutrons/sec within a volume of the order of 50 dm³ !

We can forget about thermonuclear fusion

- neutron production in too big a volume
- Geometry incompatible with neutron scattering

[Comparison of reactor size]

Process	Example	Yield	Energy deposition in target (MeV/n)	Average Kinetic Energy carried away by neutron (MeV/n)
Fission	²³⁵ U	1 n/fission	180	2
Spallation	1.3 GeV protons on Hg	33 - 40 n/proton	30 - 35	2 – 5
Fusion DT solid target	400 keV Deuterons on T in titanium	4.0 10 ⁻⁵ n/D	10'000	14.1
Fusion DT inertial confinement	D + T fusion in laser or ion-beam imploded target	1 n/fusion	3.5 + 0.1	14.1

Inertial confinement fusion

Laser fusion – demo at the earliest 2030

Characteristics of laser fusion power plnts

- 1. Separabillity of major system and high potential for modular plants
- 2. Pulse power and pulse repetition plants
- 3. Potential for small size plants, simple reactors

Laser fusion power plant KOYO 4 reactor modules (700 MWe x 4)

Liquid wall reactor modules

Ca 10 m

PAUL SCHERRER INSTITUT

Kurt Clausen, Trieste 15.10.2007

$${}_{1}D^{2} + {}_{1}T^{3} \rightarrow {}_{2}He^{4} + {}_{0}n^{1}$$

| | |
3.5 MeV + 14.1 MeV = 17.6 MeV

Heat to be removed by water (pre-)moderator around the Fusion source (to match existing sources or sources under construction):

 $> 17.6 \text{ MeV/n} * 10^{18} \text{ n/sec} = 2.8 \text{ MW}$ plus heating from laser beams

If we want the source to be the next generation beyond existing sources then we should have a pulse sequence of 10 to 50 Hz and 10^{19} n/sec in total production within 50 dm³!

This technology is not available now and will not be so in the next many years to come!

A Route to the Brightest Possible Neutron Source?

Andrew Taylor,^{1*} Mike Dunne,¹ Steve Bennington,¹ Stuart Ansell,¹ Ian Gardner,¹ Peter Norreys,¹ Tim Broome,¹ David Findlay,¹ Richard Nelmes²

PAUL SCHERRER INSTITUT

Some "minor" problems!

2160 metric tons of (radioactive) lead per moderator that need to be handled daily.

An operational source will at most be a factor of two beyond a spallation source

10 kg of Tritium per year in the form of 864.000 encapsulated Tritium pellets per day. Furthermore experience show that it takes ca 30 years from first demonstrator to dedicated neutron source – fusion demonstratorfar away

SPALLATION IS THE ONLY WAY!

Aut scherrer institut Acknowledgement – thanks to:

The ESS project: D Richter, G Bauer, R McGreevy, CPT,

http://neutron.neutron-eu.net/n_documentation/n_reports/n_ess_reports_and_more

SNS – Oak Ridge, USA: T Mason, N Holtkamp, I Anderson, http://www.sns.gov/

J-SNS Japan: M. Arai, ... <u>http://jkj.tokai.jaeri.go.jp/</u>

The UK Neutron Strategy Document: www.neutrons.cclrc.ac.uk/Activity/ScienceCase

PSI: W Wagner, S Janssen, Joachim Kohlbrecher, Thomas Gutberlet, E Lehmann, F. Pfeiffer, F van der Veen, C. Quitman, M Stampanoni, V. Pomjakushin, Christian Rüegg, Henrik Ronnow, R Bercher, H Luetkens plus LNS and LMU

http://www.psi.ch

http://www.psi.ch/forschung/benutzerlabor.shtml

On many slides you will find a text box like this: This signifies that part or all of the information on the slide has been contributed by the named person from the mentioned institution

Name, Institution

The contributions from the above named individuals and reports are gratefully acknowledged.

IAEA School on Pulsed Neutrons: Characterization of Materials