

1866-4

School on Pulsed Neutrons: Characterization of Materials

15 - 26 October 2007

Cage Structures and Clathrates

Werner Press Christian-Albrechts-Universitat Kiel Institut fur Experimentelle un Angewandte Physik Olsausenstr. 40 - 60 24098 Kiel Germany

Cage-systems: properties

Framework & (inert) host

Polyhedra

Marine research Store energy Electrochemical systems Rattling modes Einstein oscillationors glass-like thermal conductivity Neutron moderators ?

Outline of talk

Introduction Gashydrates Skutterudites

Alkali-silicon system Summary/outlook

Methane hydrate (burning ice)

Universität Kie

Werner Press (Univ. Kiel)

Macroscopic (from Pacific)

Microscopic (hydrate cage)

Methane hydrate (burning ice)

Study with neutrons & X-rays

Julian Baumert[†] Christian Gutt (DESY Hamburg)

Alfred Hüller (Uni Erlangen) John Tse (Saskatchewan, Canada) Mark Johnson (ILL) Sasha Krivchikov (Charkow, Ukraine)

1997 - 2003 2006 - 2007

Long personal history of research with XH_y

 CH_4 NH_3 OH_2

 $\sigma_{inc}(H) = 80 \text{ barn } B = \hbar^2/2\Theta$

- fundamental research
- energy storage
- geosciences
- planetary environments

Phase III Structure Tunneling (CH₄, CD₄)

Sieht etwa so die Hölle aus?

Gamov

H₂O Ice:many phases close: hexagonal Ice I_h Dipole moment

???????

meaning

Gas Hydrates

Combine the two: $CH_4 + H_2O \rightarrow 8 CH_4 + 46 H_2O$

More stable than ice (presence of pressure > ~50 bar)

Preparation:

need pressure Biomaterials(CH_4) H_2O nature laboratory

Research Ship "Sonne"

Research Ship "Sonne"

History of Gas Hydrate Research

~ 1810	Davy , Faraday
1928	Review : W .Schroeder , "Gashydrate"
~ 1935	Pipelines blocked
~ 1950	Structural comprehension :
	Stackelberg
~ 1970	small quantities of natural samples
	(Soviet Union & USA/Canada)
1984	Type I Structure
1997	É. Sloan "Clathrate Hydrates of
	Natural Gases "
	etc

How did it all start?

phone call ~1997 article in "Die Zeit" burning ice

IFM-Geomar, Kiel NRC Ottawa

Small cubic cage 5¹²

Structure of gas hydrates: Cages !

host: ice framework guest: CH₄, Xe NB alkanes are hydrophobic

> Powder diffraction ILL D2B deuterated compound

> > T = 2K, 20K etc Normal pressure

(1) low temperature

(2) natural conditions

Density on spherical surface: expansion into symmetry-adapted harmonics

$$\rho(r) = \int \rho_T(R) \rho_{Rot}(r-R) dR$$

$$F(Q) = \exp(iQR_0) \exp\left[-W(Q)\right] F_{Rot}(Q)$$

$$\infty 2l+1$$

 $F_{Rot}(Q) = 4\pi \sum_{l=0}^{\infty} \sum_{m=1}^{\infty} i^{l} j_{l}(Q\rho) c_{lm} K_{lm}(\Omega_{Q})$

Guests: Site-occupation Centered?

Scattering Length Density in CH4 Hydrate

C. Gutt, W. Press, A. Huller, J.S. Tse and H. Casalta, *J. Chem. Phys.*, 114, 4160 (2001)

Universität Kiel Institut für Experimentelle und Angewandte Physik Mission Ag Prof. Dr. W.Press

Structure of Methane Hydrate

T=280K, p=100bar

T=4°C, 1000m water depth Julian Baumert

Scattering length density map ([barn/Å³]) of the (001) plane obtained from MEM analysis

Decomposition kinetics

Dissociation rate of methane hydrate Stern et al J.Phys.Chem. B105 , 1756 (2001)

Anomalous preservation of gas hydrates

Diffraction study on D20/ILL ice I_h has many stacking faults methane diffusion fast

annealed ice I_h stops diffusion

(Kuhs et al: with I_c decomp. & CO_2) CPPC 6 (2004)

hydrate decomposition : time dependence

D20 in situ experiment (W.Kuhs, T.Hansen et al) - Decomposition of $CH_4^{(a)}$ & $CO_2^{(b)}$ hydrates at different T and p • Here: CO_2 at 200 K, 6 mbar - Covering 10 hours u ili 29.02 Oct.03 09.5251 Useries. LC-man Rep.24539 CrvD20/Costtingen FC (Ditkorran) 20maarie 6.7427 < 07**379** 1435 0.041.0909 30 (072 50.0111 80.020 20.01.57 40.0065 2-Thete, dog d20 02-0rt-03 03:59:51 User re ____C.Hansen Run 24/2309/d20_2003_09_241781 241 24/2181 24/2309 ZeL.OGn (z)

interlude: methane hydrate

Research of deep sea : little done only area ~ a dozen football fields investigated much remains to be done !!! yet fragile

Hydrate Seismic Detection

Universität Kie Institut für Experimentelle und Angewandte Physik

AG Prof. Dr. W.Press

Hang-Slides: Hydrate Decomposition

Universität Kiel

Institut für Experimentelle und Angewandte Physik

AG Prof. Dr. W.Press

Hydrate Deposits

Distribution of organic carbon in Earth reservoirs (excluding dispersed carbon in rocks and sediments, which equals nearly 1,000 times this total amount). Numbers in gigatons (10¹⁵ tons) of carbon.

Life in CH₄-deposits (discovered 1997) & Schätzing: The Swarm (Der Schwarm)

Public interest

Why neutrons?

"commercial"

- •
- Neutrons are neutral: high penetation power, nondestructive

Neutrons have a magnetic moment: magnetic structures and excitations

Neutrons have a spin: polarized neutrons, coherent and incoherent scattering, nuclear magnetism rotations

Neutrons have thermal energies: excitation of elemenatry modes, phonons, magnons, librons, rotons, tunneling, etc.

Neutrons have wavelengths similar to atomic spacings: structural information, short and long range order, pore and grain sizes, cavities, etc.

Neutrons see nuclei: sensitive to leight atoms, exploiting isotopic substitution, contrast variation with isotopes

Quantum rotation of methane hydrate

(1) low temperature

(2) natural conditions

C. Gutt, J.Baumert, W. P. et al. *Europhys. Lett.* 48, 269 (1999) FOCUS / PSI

Mathematical description (2D-Rot.)

Hamiltonian (Operator $J = \frac{h}{2\pi} \frac{d}{d\varphi}$)

$$\begin{split} \mathbf{H} &= \frac{1}{2} \Theta J^2 + V \\ &= -\frac{\hbar^2}{2\Theta} \frac{d^2}{d\varphi^2} + V \\ &= -B \frac{d^2}{d\varphi^2} + V \\ V(\varphi) &= \sum_{n=1}^N V_{3n} (1 - \cos(3n\varphi)) \end{split}$$

Solutions of the Schrödinger equation

$$\frac{\mathbf{H}}{B}\Psi = \frac{E}{B}\Psi$$

Eigen functions:

$$\begin{split}
\Psi &= \Phi \xi \\
\Phi &= \left(\sum_{m=-M}^{M} a_m exp(im\varphi)\right) \\
\xi: \text{ spin-eigenfunction}
\end{split}$$

Linewidth explained with dipole-octopole interaction & disorder (2 types of cages)

H₂O dipoles 6 orientations (ice rules)

O is tetrahedrally coordinated

Electrostatic model q = 0.13e on H of CH₄ q = 0.8 e on H of H₂O

$$\mathbf{W} = \iint d\vec{\mathbf{r}}_0 d\vec{\mathbf{r}} \frac{\rho_{\text{cage}}(\vec{\mathbf{r}}_0)\rho_{\text{CH4}}(\vec{\mathbf{r}})}{\left|\vec{\mathbf{r}} - \vec{\mathbf{r}}_0\right|}$$

600 resolution calculation 500 intensity [a.u.] 200 400 100 1.2 0.0 0.21.0 0.40.6 0.8energy transfer [meV]

Cubic harmonics $K_{Im}(\theta,\phi)$ Quaternions τ , $H_{\mu\nu}^{(I)}(\tau)$

Rotational States ($J = 0 \longrightarrow 1$) from 2nd order perturbation theory ~ 3000 configurations

Quantum rotations + translational "rattling" motion

Neutrons X-ray & nucl. resonance Simulation Context: glassy thermal cond.

Inelastic X-ray Spectrometer ID28

<mark>mo</mark> no- chromator	ph energy	ioton- wavelength	instr. energy– resolution	max. Q-range	dQ betw. analyzers	Q-reso- lution	flux at 2 00 mA (*)
Si(hkl)	[eV]	[Å]	[meV]	[nm ⁻¹]	[nm ⁻¹]	[nm ⁻¹]	[10 ⁹ phot./s]
888	15817	0.7839	5.5	67.75	2.10	0.245	22.67
999	17794	0.6968	2.7	76.22	2.38	0.276	5.42
11 11 11	21747	0.5701	1.5	93.16	2.91	0.337	1.81
13 13 13	25703	0.4824	0.9	110.1	3.43	0.399	??

Brillouin Scattering ! $I \sim Q.u$

Lattice Dynamics of Methane Hydrate Inelastic x-ray spectra $CH_4 - H_2O @ 100K$

AG Prof. Dr. W.Pre

ID28, ESRF

J. Baumert, C. Gutt, V.P. Shpakov, J.S. Tse, M. Krisch, M. Müller, H. Requardt, D.D. Klug, S. Janssen, and W. Press, *Phys. Rev. B* 68, 174301 (2003)

backscattering

Some math : difference between particles (neutrons) and radiation (X-rays)

 $2d \sin \Theta = \lambda$ $2d \Delta \cos \Theta = \Delta \lambda$

 $\Delta \lambda / \lambda = 2d \cot \Theta \Delta \Theta$ $\Theta \sim 90^{\circ}$

 $\frac{E_{ph} \sim k \sim 1/\lambda}{E_{neutr} \sim k^2}$

Velocity of Sound: 3900 ± 50 m/s

Other related work:

Thermal conductivity: A. Krivchikov et al JCP 2005 ⁸³Kr nuclear resonant scattering: J.Tse et al Nature Mat. Dec 2005

"RT-coupling" rotation J = 0 - 1

TOF SV29 FRJ2 Juelich

Nuclear spin conversion $\Psi = \Phi_{rot} \chi_{spin}$ from rotat. thermometer $4K < T_{rot} < 14K$

Quantum rotations + translational "rattling" motion

Frequency of rattling depends on rotational state

What is new? electrical conductivity!

Thanks to Marek Koza Raphael Herrman

Skutterudites & Si,Ge - clathrates

∫= L (∇ T)

Thermoelectrical effect gradT, gradU = E

Seebeck (conversion of therm. to Peltier electric)

No dissipation: good electrical conductivity σ Large thermal gradient: κ_{th} low "electron crystal & phonon glass"

Recommended reference for further reading: R.P.Herrman et al Am. J. Phys. 73, 110-118 (2005)

Einstein-type motion (low-lying optical mode, not Debye-behaviour !) by itself fascinating

Rattling modes = Einstein modes of guest atoms

~ single particle translational oscillations weak coupling (anticrossing, I $_{inel} \neq Q^{**2}$), anharmonicity

Figure 5: Total and partial density of states as obtained from the ab initio lattice dynamics calculatios.

Figure 6: Constant energy slices of the calculated (blue) and measured (red) inelastic intensity of LaFe_Sb₁₂ (left) and CeFe_Sb₁₂ (right) samples. Calculated data are shifted for clarity.

I(Q) ~ Q² signals single particle behaviour

Departures!

Data from time-of-flight IN6, IN4 at ILL M. Koza et al, 2006

Methane hydrate (burning ice)

Macroscopic (from Pacific)

Microscopic (hydrate cage)

Open Marine research needs macroscopic features Thermal conductivity not fully understood Hamiltoniam $H = H_{Trans} + H_{Rot} + H_{RT}$ (even H_{Trans})

Yet many surprising features and even some model character

CH4 II Rotational Excitations

