

1866-3

School on Pulsed Neutrons: Characterization of Materials

15 - 26 October 2007

Nanostructured Materials

Hartmut Zabel Ruhr University Bochum Faculty of Physics & Astronomy Universitaetsstrasse 150 D-44780 Germany

Nanostructured Materials

23. October 2007 Hartmut Zabel

Ruhr University Bochum, Germany

School on Pulsed Neutron Sources Trieste - Italy, 15 - 26 October 2007

D. Eigler. IBM, Almaden

Things are different at the nanoscale

Structure?

Metal?

Semiconductor?

Superconducto?

Magnetic?

Transparent?

50 - 100 atoms

When things get small....

http://ischuller.ucsd.edu/movies/

Nanostructures

Top-down approaches (scanning control):

- lithography
- atomic force microscopy

Bottom-up approaches (self assembly):

- dendrimers
- molecular arrangements (e.g. micelles)
- approaches of molecular biology

Lithographic tools

Lithography: Laser, e-beam, focused ion beam, x-ray, AFM cantilever

Etching: Wet, dry, ion beam, plasma

Resin, spin coating, annealing, etc.

Lithographic sample preparation

AFM lithography

Carving in the PMMA

The AFM is operated in the tapping mode where the tip vibrates against the sample surface. Full penetration is obtained at an amplitude which is enhanced by a factor of typically 5-12 compared to imaging mode. Commercial Si tips with 5-10 nm radius of curvature can be used for lines up to 1 mm length.

U. Kunze, Nanolab, RUB, Bochum

Alternative techniques I: molecular self-assembly to defined structures

The advantages of molecular self-assembly:

- directly nm-sized technique by assembly of molecules to defined structures
- potential for better versatility
- 3-dimensional structures possible
- imitation of structures of nature

Alternative techniques II: Nanotransfer printing (nTP)

Schematic representation of the nanotransfer printing (nTP) procedure to create gold patterns on Si substrates.

NOTE: stamp is fabricated by top-down lithography.

From H. Lipsanen

Alternative techniques III: Polymeric Templating of Magnetic Nanostructures

 Next, we aim to use these aligned scaffolds as templates for the organization of functional magnetic nanoparticles

http://www.msd.anl.gov/highlights/docs/darling_polymeric_hl.pdf

Templating with polymer stripes and grooves

- Long-range ordered block copolymers inside the groove.
- ➤ No grain boundaries observed.
- Polymer domains align with the groove edge.
- ➢ 9 rows of polymer domains in a 230 nm wide groove.

Assemblies of magnetic nanoparticles

8 nm Co nanoparticles in cylindrical Al₂O₃ pores Self-assembly of Co nanodiscs Polymer-templated assembly of 5 nm Co nanospheres

Meigan Aronson, Sue Inderhees, Omar Yaghi, Jinsang Kim, Nick Kotov, and Glenn Strycker, University of Michigan, Ann Arbor

Magnetosome bacteria

Magnetic domains

Brown's Fundamental Theorem:

'As a magnet is reduced in size, there should be a point where exchange dominates over demagnetisation and where the magnet must, hence, adopt the single-domain state.' (W.F. Brown, JAP 39, 993 (1968)

Two stable degenerate states

Anisotropy keeps magnetization aligned in one or the other direction.

Switching costs energy

Superparamagnetism

Thermal switching

Ferromagnetism versus Superparamagnetism

Von Helmer Fjellvåg/Ole Bjørn Karlsen

40 Gbyte 75 Gbyte IBM Deskstar 75GXP and 40GV

1 Gbyte

70 kbits/s 2 kbits/in² 50x 24 in dia disks \$10,000/Mbyte 1973 372 Mb/s 14.3 Gbits/in² 2 x 3.5"glass disks \$0.01/Mbyte 2000

Microdrive 1999 15.2 Gbits/in² 1 x 1" dia disk

Crucial parameter for the bit size and bit separation is the grain size D and the coercive field H_c .

With grain size of 8 nm and bit size of 40 nm = 250 grains/bit), storage density of 25 Gbite/in² can be reached.

Number of grains must stay constant to keep signal – noise ratio.

Superparamagnetic effect

Anisotropy energy per grain (for 10 year stability):

 $E = K_U V > 55 k_B T$, coercivity $H_c = K_U / M < H_{head}$

The product K_UV must stay constant. If V is reduced for higher density, K_U must be increased.

Disk development at IBM

present: 35 Gb/in²

future: more than 100 Gb/in²

Antiferromagnetic coupled bits to enhance the coercivity

New approaches for increasing storage density

Patterned magnetic films, Hitachi

Stamping technique, Hitachi

Ion beam patterning, Hitachi

Patterned Media, Seagate

Present hard disk media: many small random grains make one bit (10 Gbit/in²)

The 9 Tbit/in² future: single pre-patterned magnetic clusters individually addressable

Dieter Weller, Seagate

Race track Memory, IBM

Stuart S.A. Parkin, IBM

MRAM, non-volatile data storage media

MRAM, Freescale

Jon Slaughter, Freescale

Energy terms

- Exchange energy
- Magneto-crystalline anisotropy
- Shape anisotropy
- Zeeman energy
- Surface anisotropy

$$F = \left(f_{Zeeman} + f_{crystal} + f_{shape} + f_{exchange}\right)V + f_{surf}A$$

Ground state and magnetization reversal

Ground states:

- dipolar
- vortex
- domain state...

Magnetization reversal:

- coherent rotation
- nucleation and growth
- domain wall motion

Controlling factors:

- Shape and aspect ratio
- Material and magneto-crystalline anisotropy
- Interactions for single elements and arrays

Control over material and shape

Choice of Materials: Metal MBE

Choice of shapes: e-beam lithography

Lateral magnetic structures

Shinjo et al. Kyoto

A. Remhof, Bochum

D. Buntix, Leuven

K. Temst, Leuven

R. Brucas, Uppsala

Control of magnetic domain state

Th. Last, T. Schmitte (Bochum), J. McCord (Dresden)

Why Permalloy?

- No crystal anisotropy
- Shape anisotropy dominates
- Well known properties

T. Last et al., J. Appl. Phys. 96, (2004) 6706

Permalloy Stripes Aspect ratio governes the remanent state

T. Last et al., J. Appl. Phys. 96, (2004) 6706

Building blocks

High remanent single domain Py bars Aspect ration: 10 (compromise between dipole character and appreciable stray fields for MFM)

AFM

MFM

Stripe arrays

SQUID Magnetometry (easy axis)

- Each stripe acts as a magnetic dipole
- No MOKE effect because of missing spin-orbit coupling

Coercivity versus interaction of magnetic dipoles (easy axis reversal)

Strong coupling

Stripe arrays with strong dipolar coupling

Separation: 0.5 μ m Strong interaction, domain formation across dipoles

Separation: 0.8 μ m Weaker interaction, still domain formation

S-PEEM: Thomas Eimüller

Stripe arrays with AF dipolar coupling

Separation: 1.0 μ m AF coupling of dipoles

S-PEEM: Thomas Eimüller

Lateral Fe bar array with alternating widths

Two-step hysteresis

Two step hysteresis due to different coercive fields instead of dipolar coupling

Dipole patterns with different Iattice symmetries

rectangular AF lattice

triangular lattice

square lattices

Interaction, correlation, frustration

Lateral magnetic arrays

Remanent "frustrated" states

one in, three out two in, two out (same side) two in, two out (opposite) three in, one out

- = horse shoe 2
- = onion, horse shoe 1
- = vortex, spin ice
- = horse shoe 2

Configurations

Onion

♦

►

 \rightarrow

-►

✦

→

+

-

→

Magnetization in diagonal direction

A. Schumann, Diploma Thesis, RUB 2006

Magnetization in parallel direction

A. Schumann, Diploma Thesis, RUB 2006

Energy landscape for H // stripes

2:1 ratio predicted and observed

E. Vedmedenko and N. Mikuszeit

1 µm

1 µm

Demagnetized state

R.F. Wang et al. Nature **439**, 303 (2006)

Kagomé – lattice of magnetic dipoles

SEM

MFM

Three sublattices: S1, S2, S3 Two main field orientations: 0° (e.a.) & 30° (h.a.)

A. Westphalen, Dissertation, Bochum 2007

Reversal of K1 (2b/I=1)

Reversal of K2 (2b/I=0.43)

Energy barriers for switching

M. Karolak, B. Baxevanis, and E. Y. Vedmedenko

Magnetization reversal of magnetic disks

t=10nm

t=6nm

t=15nm

Vortex state and phase diagram

Phase diagram

Vortex core

T. Shinjo et al. M. Rahm et al.

Chirality and polarity

 \rightarrow degrees of freedom = 4 instead of 2 \rightarrow higher density for storage devices

Coupling of magnetic disks

1.6

1.2

L/l_{ex}

Dipolar coupling in the perpendicular direction

A. A. Fraerman et al., submitted

MFM contrast of spin helix

Simulated MFM contrast

A.A. Fraerman et al. submitted

M. van Kampen et al. J. Phys. Condensed Matter 17, L27 (2005)

