

1866-10

School on Pulsed Neutrons: Characterization of Materials

15 - 26 October 2007

Materials and Life Sciences at Spallation Neutron Sources (1)

Kurt Clausen Paul Scherrer Institut, PSI CH-5232 Villigen Switzerland

Radiography/tomography

- Layout of instrument detector systems
- Strain mapping
- "Nuclear" applications
- Complementarity with X-ray's tomography (example from wood research)

Muon spectroscopy

- Layout of instrument
- A Muon experiment how you measure and what you see
- An example a thin film (300 nm) of an electron doped SC: La_{1.9}Ce_{0.1}CuO₄
- Complementarity with neutron scattering

Neutron Imaging

The neutron beam transmitted through the object is converted to light at the scintilator – this light is observed by a CCD camera through a Mirror.

Micro tomography - Experimental Details

PAUL SCHERRER INSTITUT

Results: first tomography data – diesel injection nozzle

IAEA School on Pulsed Neutrons: Characterization of Materials

Determination of the U-235 content (enrichment) in nuclear fuel elements

Tomography: investigation of HTR fuel sphere

Transmission image (single projection)

Tomography slice of one layer with CP

Individual fuel particles are visible (and can be measured in their distribution)

G Kuehne, PSI

Incident beam \rightarrow transmitted + absorbed + scattered

For a crystalline material there is only coherent scattering when the Bragg equation can be fullfilled:

 λ = 2 d sin(θ) i.e. if λ > 2 d then No coherent scattering!

d is the lattice constant for the crystalline material in the sample

Straining a material \rightarrow changing d!

G Kuehne, PSI

Application range for different transmission methods in respect to wood studies

MICRO	MIDI	MACRO
Synchrotron X-rays	Neutrons	X-rays
FOV: 1-3 mm	FOV: 1-5 cm	FOV: 5-30 cm
RES: ~1µm	RES: 50-200µm	RES: 0.2–0.5 mm
Cell structure	Moisture distribution	Density structure

MICRO – synchrotron radiation

Beech tree

Diameter: 3 mm Resolution: 3µm

SLS-beam line TOMCAT energy: 20 keV

Analysis of the process of impregnation of resin solution into wood

Slice through the object with about 20 cm diameter

Proton accelerator Complex PSI

600 MeV proton beam $2 \rightarrow 3$ mA proton current $1.2 \rightarrow 1.8$ MW

CW Muon Source at PSI:

Target M: 2 mm Graphite wheel target

Target E 40 mm Graphite wheel target (>250 kW heat cooled away by radiation > 1500 K).

Generation of Pions that decays into Muons (Pion lifetime 26 ns).

4 sources worldwide, Triumf Canada, J-Parc Japan, ISIS UK and PSI Switzerland

IAEA School on Pulsed Neutrons: Characterization of Materials

Muon production from pions

Charge state π^+ π^- Mean lifetime (s)26x10-926x10-9Spin00Mass (MeV)139.57139.57Decay mode $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$

100% polarised "*surface*" positive muons (~4MeV) are generally used for condensed matter studies

A time window sufficiently wide for studies of fast itinerant electron spin fluctuations through to slow distributed spin relaxation in spin glasses

...or of fast muon hopping through to slow diffusional processes....

....and μ SR is sufficiently sensitive for ultra-small magnetic moments (~10⁻³ μ_B) and nuclear moments to be detected

Implantation of Muons in the Probe

Detection of the decay positron

Inhomogenious Materials

Amplitude Frequency Damping

- = Magnetic Volume Fraction
- = Magnitude of the local Magnetic field
- = Inhomogeniety

H Luetkens **PSI**

π M3 Dedicated Shared-Beam Surface Muon Facility: GPS and LTF

IAEA School on Pulsed Neutrons: Characterization of Materials

Low Energy Muon Beam and Instrument – LEM

Layout of new µE4 beam Commissioned end 2005

New LEM Instrument

┫╤╪═┤║ ʹʹʹ**S**μS **Swiss** Muon Source

PAUL SCHERRER INSTITUT

Continuous Beam μSR Facility

IAEA School on Pulsed Neutrons: Characterization of Materials

Surface Magnetism in Superconducting La_{2} ______xCe_xCuO_4 Films

<u>H. Luetkens</u>^a, **Y. Krockenberger**^b, **L. Alff**^c, **A. Tsukada**^d, **M. Naito**^d, E. Morenzoni^a, T. Prokscha^a, A. Suter^a, R. Khasanov^{a,e}, T. Gutberlet^f, J. Stahn^f, M. Gupta^f, and H.-H. Klauss^g

a) Labor für Myonenspinspektroskopie, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

b) Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany

c) Technische Universtät Wien, A-1040 Wien, Austria

d) NTT Basic Research Laboratory, Atsugi 243-01, Japan

e) Physik Institut der Universität Zürich, CH-8057 Zürich, Switzerland

f) Labor für Neutronenstreuung, ETH Zürich & Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland

g) Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany

Generic phase diagram of high-T_c- cuprates:

Different phase diagram for electron- doped thin films:

Naito et al., Jpn. J. Appl. Phys. 39 (2000) L485

Is there an electron-hole symmetry?

40

50

30

Temperature (K)

First sample: 20nm Ag/ 300nm La_{1.9}Ce_{0.1}CuO₄

• $La_{2-x}Ce_{x}CuO_{4}$ exists only as a thin film

High transition temperatures (Tc ~28K)

High quality films can be prepared

-0.75 -0.88 -1.01

0

10

20

• La³⁺ is non-magnetic

E Morenzoni, PSI

X-ray:

Neutron reflectivity:

Resistivity:

Elastic Recoil Detection analysis (@ETH-Z): for Oxygen profile

IAEA School on Pulsed Neutrons: Characterization of Materials

ZF-LEµSR using 11keV muons

ZF-LEµSR: Magnetic volume fraction: 0.28 90 K 0.26 1.0 11 keV 40 K 0.9 0.24 2 K 0.22 11 keV 0.20 0.1 0.1 0.14 0.12 0.2 0.10 0.1 0.08 2 3 1 5 6 0 Δ 0.0 20 40 60 0 80 100 Time (µs) Temperature (K)

- Static magnetism (disordered)
- Relatively small relaxation rate ($\lambda \approx 3 \ \mu s^{-1}$)

 \Rightarrow small or diluted Cu moments (inhomogeneity on a nm scale)

Magnetic volume fraction decreases with increasing temperature

ZF-LEµSR using 11keV muons

Scenario 1:

Large clusters with different ordering temperatures

Scenario 2:

Temperature-dependent magnetic layer thickness

Superconducting Properties

Magnetic Field Profile

• Effective Meissner screening \Rightarrow bulk superconductivity

- Magnetic penetration depth $\lambda \approx 350$ nm
- Complementary PNR measurements in progress

Coexistence of magnetism and superconductivity in the same sample

Acknowledgement – thanks to:

The ESS project: D Richter, G Bauer, R McGreevy, CPT,

http://neutron.neutron-eu.net/n_documentation/n_reports/n_ess_reports_and_more

SNS – Oak Ridge, USA: T Mason, N Holtkamp, I Anderson, http://www.sns.gov/

J-SNS Japan: M. Arai, ... <u>http://jkj.tokai.jaeri.go.jp/</u>

The UK Neutron Strategy Document: www.neutrons.cclrc.ac.uk/Activity/ScienceCase

PSI: W Wagner, S Janssen, Joachim Kohlbrecher, Thomas Gutberlet, E Lehmann, F. Pfeiffer, F van der Veen, C. Quitman, V. Pomjakushin, Christian Rüegg, Henrik Ronnow, R Bercher, H Luetkens plus LNS and LMU

http://www.psi.ch

http://www.psi.ch/forschung/benutzerlabor.shtml

On many slides you will find a text box like this: This signifies that part or all of the information on the slide has been contributed by the named person from the mentioned institution

Name, Institution

The contributions from the above named individuals and reports are gratefully acknowledged.

IAEA School on Pulsed Neutrons: Characterization of Materials