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Introduction 

 Dimensional analysis refers to the study of the dimensions that characterize physical 

entities, like mass, force and energy. Classical Mechanics is based on three fundamental 

entities, with dimensions MLT, the mass M, the length L, and the time T. The combination 

of these entities gives rise to derived entities, like volume, speed and force, of dimensions 

L3, LT-1, MLT-2, respectively. In other areas of Physics, other four fundamental entities are 

defined, among them the temperature θ and the electrical current I. 

 To introduce the topic of Dimensional Analysis, let us look at a classical example of 

the romantic literature, in which Dean Swift, in “The Adventures of Gulliver” describes the 

imaginary voyages of Lemuel Gulliver to the kingdoms of Liliput and Brobdingnag. In 

these two places life was identical to that of normal persons, their geometric dimensions 

were, however, different. In Liliput, man, houses, dogs, trees were twelve times smaller 

than in the country of Gulliver, and in Brobdingnag, everything was twelve times taller. 

The man of Liliput was a geometric model of Gulliver in a scale 12:1, and that of 

Brobdingnag a model in a scale of 1:12. 

 One can come to interesting observations of these two kingdoms through 

dimensional analysis. Much time before Dean Swift, Galileus already found out that 

amplified or reduced models of man could not be like we are. The human body is built of 

columns, stretchers, bones and muscles. The weight of the body that the structure has to 
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support is proportional to its volume, that is, L3, and the resistance of a bone to 

compression or of a muscle for traction, is proportional to L2.  

 Let´s compare Gulliver with the giant of Brobdingnag, which has all of his linear 

dimensions twelve times larger. The resistance of his legs would be 144 times larger than 

that of Gulliver, and his weight 1728 times larger. The ratio resistance/weight of the giant 

would be 12 times less than ours. In order to sustain its own weight, he would have to make 

an equivalent effort to that we would have to make to carry other eleven men. 

 Galileus treated this subject very clearly, using arguments that deny the possibility 

of the existence of giants of normal aspect. If we wanted to have a giant with the same 

leg/arm proportions of a normal human, we would have to use a stronger and harder 

material to make the bones, or we would have to admit a lower resistance in comparison to 

a man of normal stature. On the other hand, if the size of the body would be diminished, the 

resistance would not diminish in the same proportion. The smaller the body, the greater its 

relative resistance. In this way, a very small dog could, probably, carry other two or three 

small dogs of his size on his back; on the other hand, an elephant could not carry even 

another elephant of his own size ! 

 Let´s analyze the problem of the liliputans. The heat that a body loses to the 

environment goes through the skin, being proportional to the area covered by the skin, that 

is, L2, considering constant the body temperature and skin characteristics. This energy 

comes from the ingestion of food. Therefore, the minimum amount of food to be ingested 

would be proportional to L2. If Gulliver would be happy with a broiler, a bread and a fruit 

per day, a liliputan would need a (1/12)2 smaller food volume. But a broiler, a bread, a fruit 

when reduced to the scale of his world, would have volumes (1/12)3 smaller. He would, 

therefore, need twelve broilers, twelve breads and twelve fruits to be as happy as Gulliver. 
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 The liliputans should be famine and restless people. These qualities are found in 

small mammals, like mice. It is interesting to note that there are not many hot blood 

animals smaller than mice, probably in light of the scale laws discussed above, these 

animals would have to eat such a large quantity of food that would be difficult to obtain or, 

that could not be digested over a feasible time. 

 From all we saw, it is important to recognize that, although being geometric models 

of our world, Brobdingnag and Liliput could never be our physical models, since they 

would not have the necessary physical similarity which is found in natural phenomena. In 

the case of Brobdingnag, for example, the giant would be able to support his own weight 

having the stature of humans, if he would be living in a planet of gravity (1/12)g. 

  

Physical Entities and Dimensional Analysis 

 The parameters that characterize physical phenomena are related among themselves 

by laws, in general of quantitative nature, in which they appear as measures of the 

considered physical entities. The measure of an entity is the result of its comparison with 

another one, of the same type, called unit. In this way, an entity (G) is given by two factors, 

one being the measure (M) and the other the unit (U). When we write V = 50 m3, V is the 

entity G, 50 is the ratio between the measures (M), and the unit U is m3. Therefore: 

 

G = M (G) . U (G) 

  

M(G) being the measure of G and U(G) the unit of G. In addition, the entity G has a 

dimensional symbol, which is the combination of the fundamental units that built up the 

entity. Some examples are given below: 
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Entity (G) M (G) U (G) 
Dimensional 

symbol 

Area 200 m2 L2 

Speed 40 m s-1 LT-1 

Force 50 N = kg m s-2 MLT-2 

Pressure 1,000 Pa = kg m-1 s-2 ML-1 T-2 

Flow 5 m3 s-1 L3 T-1 

 

The International Units System has seven fundamental entities: 

a) Mass (M): quilogram (kg); 

b) Lenght (L): meter (m); 

c) Time (T): second (s); 

d) Electrical current (I): Ampere (A); 

e) Thermodynamic temperature (θ): Kelvin (K); 

f) Light intensity (Iv): candela (cd); 

g) Quantity of matter (N): mol (mol). 

 

 Derived Physical entities are, in general, expressed by a relation involving the 

fundamental or derived entities X, Y, Z, ... which take part in their definition: 

 

...........Z .Y .X kG cba=  

 

where k is a non dimensional constant, and a, b, c, .... constant exponents. 

 If, for example, we would have doubts on the formula F = m.a, we could make a 

check and admit, at least, that F is a function of m and a: 
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ba Y.X kG =      or      ba a.m kF =  

 

since F has dimensions MLT-2, the right hand side member has also to have dimensions 

MLT-2, that is: 

 

( )b2a2 LT.M kMLT −− =  

 

remembering that the dimension of acceleration is LT-2. So b2ba2 T .L .M kMLT −− = , and 

we can see that the only possibility is k=1, a=1 and b=1, thus confirming F=m.a.  

 Products P are any products of the variables that involve a phenomenon. The fall of 

bodies from an origin 0 with no initial velocity in the vacuum involves the variables space 

S, acceleration of gravity g and time t, according to: 

 

2t . g
2
1S =  

 

 For this phenomenon we can write an infinite number of products P, as for example: 

P1 = S2. t -2.g  ,  with dimensions  L2.T-2. L .T-2 = L3.T-5 

 P2 = S0. t 2.g  ,  with dimensions   1.T2. L .T-2 = L 

 P3 = S -3. t 4.g  , with dimensions  L-3.T 4. L .T-2 = L-2.T2 

 P4 = S -2. t 4.g2  , with dimensions  L-2.T4. (L .T-2)2 = L0.T0 = 1 
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 When a chosen product is non-dimensional, as P4, it is called a non-dimensional 

product and is symbolized by π, in this case P4 = π4. A theorem states that: “given n 

dimensional entities G1, G2, ...., Gn generated through products of k fundamental entities, if 

a phenomenon can be expressed by F(G1, G2, ...., Gn) = 0, it can also be described by φ(π1, 

π2, ...., πn-k) = 0, a function with less variables. 

 The problem mentioned in the introduction about the Kingdoms of Liliput and 

Brobdingnag, is of physical similarity. Every time we work with models of objects in 

different scales, it is necessary that there is a physical similarity between the model (a 

prototype, in general smaller) and the real object of study. Depending on the case, we talk 

about kinematic similarity, which involves relations of velocity and acceleration between 

model and object; or about dynamic similarity, which involves relations between the forces 

that act on the model and on the object . In the similarity analysis we use the π products, 

like the known “numbers” of Euler, Reynolds, Froude and Mach. In this analysis we have: 

OBJECT: 

 F(G1, G2, ...., Gn) = 0                            φ(π1, π2, ...., πn-k) = 0 

 PROTOTYPE: 

 F(G’1, G’2, ...., G’n) = 0                            φ(π’1, π’2, ...., π’n-k) = 0 

and the Gi s can be different of G’i s. There will be physical similarity between object and 

prototype, only if π1 = π’1; π2 = π’2; ...; πn-k = π’n-k.  

 This analysis is frequently used in hydrodynamics, studies of machines, 

engineering, etc., and it has not many applications in Soil-Plant-Atmosphere systems. The 

study of Shukla et al. (2002) which utilizes the non dimensional products π to describe 
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miscible displacement, is an exception. Texts of Maia (1960), Fox & McDonald (1995) e 

Carneiro (1996) are good references on this subject. 

 Non dimensional entities, like the π products, have a numerical value k of 

dimension 1: 

 

1KTLM oooo =  

 

 It is also common to produce non-dimensional variables through the ratio of two 

entities G1 and G2 of the same dimension: G1/ G2 = π. This is the case of the number π = 

3,1416..... which is the result of the ratio of the length of any circle (πD, of dimension L) 

and the respective diameter (D, also dimension L). 

In the Soil-Plant-Atmosphere system, several variables are non dimensional by 

nature (or definition), and are represented in % or parts per million (ppm). Soil water 

content u (on mass basis), θ (on volume basis), porosities, etc., are examples of π products. 

Important is the procedure of turning dimensional variables into non dimensional ones.  

The simplest case is dividing the variable by itself, in two different conditions. For 

instance, in experiments using soil columns, each researcher uses a different column length 

L. How can we compare results ? If the space coordinate x or z (along the column) is 

divided by its maximum value L, we have a new variable: X = x/L, with the advantage that, 

for any L, at x = 0, X = 0; at x = L, X =1, varying, therefore, within the interval 0 to 1. 

 This procedure can also be used for variables which already are dimensionless, like 

the soil water content θ. If we divide (θ - θs) by its largest interval (θo - θs), where θs e θo 

are, respectively, initial and saturation values, we obtain a new variable Θ = (θ - θs)/(θo - 
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θs), for which Θ = 0 for θ = θs (dry soil) and Θ = 1 for θ = θo (saturated soil). In this way, 

for any type of soil, Θ varies from 0 to 1 and comparisons can be made more adequately.    

 

Scales and Scaling 

 We already mentioned scales when presenting the “Adventures of Gulliver” and 

discussing physical similarity between object and prototype. Maps are also drawn in scale, 

for example, in a scale of 1:10,000, 1 cm2 of paper can represent 10,000 m2 in the field. 

Entities that differ in scale cannot be compared in a simple way. As we have seen, there is 

the problem of physical similarity, but if we desire to make a comparison without changing 

the scale of each one ? One technique to do this is called “scaling”, frequently used in Soil 

Physics. It was introduced into Soil Science by Miller & Miller (1956) through the concept 

of similar media applied to “capillary flow” of fluids in porous media. According to these 

authors, two media M1 and M2 are similar when the variables that describe the physical 

phenomena that occur within them, differ of a linear factor λ, called microscopic 

characteristic length, which relates their physical characteristics. The best way to visualize 

this concept is to consider M2 as an amplified (or reduced) photography of M1 by a factor λ. 

For these media, the particle diameter of one is related to the other by: D2 = λD1. The 

surface of this particle by: S2 = λ2S1, and its volume by V2 = λ3V1 (Figure 1). Under these 

conditions, if we know the flow of water through M1, would it be possible to estimate the 

flow through M2, based only on λ ? Using artificial porous media (glass beads ), Klute & 

Wilkinson (1958) and Wilkinson & Klute (1959) obtained results on water retention and 

hydraulic conductivity that validated the similar media concept. 
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Figure 1 – Spheres seen under the similar media concept. 

 After this, contributions that appeared in the literature did not significantly push 

ahead this concept. More than 10 years later, Reichardt et al. (1972) reappear with the 

subject, having success even with natural porous media, i.e., soils of a wide range in 

texture. They assumed that soils can be considered similar media, each one characterized 

V1
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A1 r1
A2

r2
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by its factor λ which, at the beginning, they did not know how to measure. They tested the 

concept on horizontal water infiltration studies, using homogeneous soil columns of initial 

soil water content θi, applying free water at the entrance (x = 0) so that at this point the 

saturation water content θo was maintained thereafter: 

 

θ = θi  ,  x > 0 ,  t = 0                                         (1) 

θ = θo  ,  x = 0 ,  t > 0                                         (2) 

( ) (3)                                                  
x

D
xt ⎥⎦

⎤
⎢⎣
⎡

∂
θ∂

θ
∂
∂

=
∂
θ∂  

 

where D(θ) = K(θ).dh/dθ; K(θ) is the soil hydraulic conductivity and h the soil water matric 

potential. 

 Since for any soil the solution of this boundary value problem BVP is of the same 

type: x = φ(θ).t1/2, in which φ(θ) depends on the characteristics of each porous media, 

would it not be possible to find a generalized solution for all media (considered similar) if λ 

of each would be known ? The procedure they used included the process of making all 

involved variables dimensionless, using the similar media theory applied to each of the i 

soils, each with its λ1, λ2, ......λi. The soil water content θ and the space coordinate x were 

transformed as indicated above: 

 

( )
( ) (4)                                                   

io

i

θ−θ
θ−θ

=Θ  

(5)                                                        
x

xX
max

=  
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 The matric soil water potential h was considered to be only the result of capillary 

forces: h = 2σ/ρgr or hr = 2σ/ρg = constant. If each soil i would have only capillaries of 

radius ri, and if the characteristic length λi would be proportional to ri, we would have: 

 

h1r1 =  h2r2  = ........=  hiri  = constant  

 

 If, among the i soils, we choose one as a standard soil, for which we make, 

arbitrarily, λ* = r* = 1 (one µm, or any other value), the constant above becomes h*r* = h*, 

which is the matric potential h* of the standard soil (Figure 2). Through dimensional 

analysis we can also make h* non-dimensional: 

 

(6)                        
gh

........
ghgh

*h ii2211

σ
ρλ

==
σ
ρλ

=
σ
ρλ

=  
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h1 = 14.4 cm

h2 = 9.6 cm

h3 = 7.2 cm

r1 = 0.1mm
r2 = 0.15 mm r3 = 0.2 mm

 

h1r1 = h2r2 = h3r3 = constant 

14.4 x 0.1 = 9.6 x 0.15 = 7.2 x 0.2 = 1.44 

 

Figure 2 – Similar capillaries in water. 

 

 The hydraulic conductivity K is proportional to the area (λ2) available for water 

flow (k = intrinsic permeability, L2), and using the known relation K = kρg/η or K/k = ρg/η 

= constant, we have for the I soils: 

 

===
i

i

2

2

1

1

k
K

...........
k
K

k
K  constant 

 

(7)                                      
g 

K 
.........

g 
K 

g 
K 

*K 2
i

i
2
2

2
2
1

1

ρλ
η

=
ρλ

η
=

ρλ
η

=  
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where K* is the hydraulic conductivity of the standard soil, assuming λ* = r* = k* = 1 

(Figure 3). 

 

=
λ

=
λ

=
λ 2

3

3
2
2

2
2
1

1 KKK  constant 

( ) ( ) ( )
200

20.0
8

15.0
5,4

10.0
2

222 ===  

 

Figure 3 – Cross-sections of soil columns with their respective conductivities. 

 

 

λl = 0.10 mm

λ2 = 0.15 mm

λ3 = 0.20 mm

Κl =2. 0 mm.dia-1

Κ2 =4.5 mm.dia-1

Κ3 =8. 0 mm.dia-1
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 Through the definition of soil water diffusivity D = K.dh/dθ, it is possible to verify 

that the soil water difusivity D* is given by: 

 

(8)                                      
 
D 

.......
 

D 
 

D 
*D

i

i

2

2

1

1

σλ
η

==
σλ

η
=

σλ
η

=  

 

  

 To make equation 3 dimensionless it is now needed to make the time t 

dimensionless. In accordance to all other variables, we can have a time t* for the standard 

soil, as follows: 

 

( ) ( ) ( )
(9)                     

x 
t  

........
x 

t  
x 

t  
*t 2

 maxi

ii
2

 max2

22
2

 max1

11

η

σλ
==

η

σλ
=

η

σλ
=  

 

 It can now be seen that if we substitute θ by  Θ, x by X, t by ti and D by Di in 

equation 3, we obtain the differential equation for the standard soil, which differs from the 

equations of all other soils by factors λi, not seen in equation 10, but built-in the definitions 

of  t* and D*: 

 

( ) (10)                                            
X

D
Xt

*
* ⎥⎦

⎤
⎢⎣
⎡

∂
Θ∂

Θ
∂
∂

=
∂
Θ∂  

 

subject to conditions: 
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Θ = 0  ,  X ≥ 0  ,  t* = 0                                  (11) 

Θ = 1  ,  X = 0  ,  t* > 0                                  (12) 

 

the solution of which is: 

 

( ) ( ) (13)                                            t . X
2/1** Θφ=     

 It is interesting to analyze equation 9, of the non dimensional infiltration time, in 

light of the physical similarity of the kingdoms of Liliput and Brobdingnag, which shows 

that to compare different soils (considered similar media), their times have to be different 

and dependent of λ which is a length ! We could even suggest that this fact contributes to 

explain how time is considered the forth coordinate, together with x, y and z, in Modern 

Physics. 

 By analogy with what was made with h and K, we can write: 

 

( )
=

σ
η

=λ==λ=λ
2

max
*

ii2211
xt

t......tt  constant 

 

 Once the theory was established, Reichardt et al. (1972) looked for ways to measure 

λ for the different soils. The “Columbus Egg” was found when they realized that if the 

linear regressions of xi versus ti
1/2 for the position of the wetting front for each soil, should 

overlap to one single curve for the standard soil (X versus t*1/2), and that the factors used to 

rotate the line of each soil to the position of the line of the standard soil, could be used as 

characteristic lengths λi. We know that straight lines passing through the origin: y = aix can 
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be rotated over each other using the relation ai/aj of their slopes. Since in our case the lines 

involve a square root, the relation to be used is: 

 

(14)                                                       
a
a 2

*
i

*
i ⎟

⎠
⎞

⎜
⎝
⎛=

λ
λ  

 

 With this relation Reichardt et al. (1972) found the values λi for each soil, taking 

arbitrarily as a standard the soil of fastest infiltration, for which they postulated λ* = 1. In 

this way, the slower the infiltration rate of soil i, the slower its λi. This way of determining 

λ as a scaling factor and not as a physical soil characteristic like the microscopic 

characteristic length of Miller & Miller (1956), facilitated the experimental part of the study 

and, more than that, opened the door for a much wider concept of scaling applied in other 

areas of Soil Physics. Reichardt et al. (1972) had only success in scaling D(θ) and a partial 

success in scaling h(θ) and K(θ), the reason for this being the fact that soils are not true 

similar media. The success of scaling D(θ) lead Reichardt & Libardi (1973) to establish a 

general equation to estimate D(θ) of a given soil, by measuring only the slope ai of the 

wetting front advance x versus t1/2: 

 

( ) ( ) (15)                               .087,8 expa10 x 462,1 D 2
i

5 Θ=Θ −  

 

 Reichardt et al. (1975) also presented a method to estimate K(Θ) through the 

coefficient ai of equation (15); Bacchi & Reichardt (1988) used scaling techniques to 

evaluate K(θ) measurement methods, and  more recently Shukla et al. (2002) used scaling 



 17

to analyze miscible displacement experiments. Scaling has also widely been used in studies 

of soil spatial distribution, assuming characteristic values of λ for each point of a transect, 

making particular curves to coalesce into a single one. An excellent review of scaling 

techniques was made by Tillotson & Nielsen (1984), and, more recently, by Kutilek & 

Nielsen (1994) and Nielsen et al. (1998). 

 

18.8. FRACTAL  GEOMETRY AND  FRACTAL DIMENSION 

 

  The fractal geometry in contrast to the euclidian admits fractional dimensions. The 

term fractal is defined in Mandelbrot (1982) as comming from the latin fractus, signifying 

broken. According to Mandelbrot, fractals are non topologic objects, i.e., objects  whose 

dimension is a real non integer number. For topologic objects or geometric Euclidian 

forms, the dimensão is na integer (0 for a point, 1 for a curve, 2 for a surface and 3 for  

volumes). The “fractal dimension”, is a measure of the degree of the irregularity of the 

observed object in all scales of observation. An object that normally is considered 

unidimensional , like a straight line segment, can be divided in N identical parts, so that 

each part is a new segment represented in a scale  r=1/N of the original segment, so that  

Nr1 = 1.  
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Figura 18.4 – Generalization of the relation N.rD = 1, for the case  D = 1, i.e., N.r1 = 1.  
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Figura 18.5 – Bidimensional objects.  
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 This scaling can be extended to tridimensional objects and the relation between the 

number of similar segments (N) and its scale in relation to the original object (r) can be 

generalized by NrD =1, where D defines the fractal dimension. 

 

Figura 18.6 – Tridimensional objects.  
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 Therefore the geometric euclidian dimensions 0, 1, 2 e 3, with which we are 

familiar, can be seen as particular cases of an infinite number of dimensions that occur in 

nature. Figure 18.7, adapted from Barnsley et al. (1988), known as von Koch’s curve, is 

constructed in na iterative or  recursive way, starting from a straight line segment (a)  

divided in 3 equal parts and the central segment is substituted by  2 equal segments so as to 

take part of an equilaterous  triangle (b). In the following stage each of these  4 segments is 

again divided in 3 parts and each of them is substituída by new 4 segments of length equal 

to  1/3 of the original one, disposed according to standard (b), and so sucessivelly. After 

stage b, in each stage change the total length L of the figure increases by a  fator 4/3, the 

number N of  similar element of those of the previous stage increses by a factor 4 and its  

dimensions are in scale  r=1/3 of the previous stage. At each stage the figure can be divided 

into N similar elements , so that N.rD=1,  D being the fractal dimension of the object. Essa 

this curve represents the fractal dimension of D=1,26 , which is greater than 1 and less than 

2, meaning that this curve “fills”more space than a simple (D=1) line, and less than na 

euclidian area (D=2).  



 22

 

 

 

 

Figura 18.7 – Curva de von Koch.  

 

 Forms and strutuctures highly complex and  irregular, very comon in Nature, can be 

reproduced with detail richness through similar procedures, indicating that behind an 

apparent disorder of these forms, strutuctures and  dynamic processes that occur in nature , 

there is som regularity able to be better understood. A new approach appeared, called 

“Teory of the Caos” which, matematically defines the  casuality gernerated by simple 

 

  a)

L=4/3 ; N=4

 

b)

c)

 L=1 ; N=1

L=16/9=(4/3)2 ; N=16

d) Próximo estágio L = 64/27=(4/3)3 ; N=64

N.rD=1

..26,1
27log
64log

9log
16log

3log
4log

(1/r)log
NlogD =====

r=1/3

r=1/3

r=1/9



 23

dynamic derterministic systems.  This approach allows the description of a given order in 

dynamis processes, before defined as compleately aleatory. 

 With the help of computers the fractal geometry is growing in different áreas of 

knowledge, including arts, as a new tool to understand nature. Agronomy treats  basically 

all processes ocurring in the soil (movement of water, gases and solutes), soil structure, 

plant growth and development, drainage processes in hydrographic basins, etc., so that 

figura 18.8, taken from Barnsley et al. (1988), shows the image of a plant generated by 

graphic computation .  

 

 

Figura 18.8 – Simulation of a plant generated by graphic computation, Barnsley et al. 

(1988).     
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 Soil structure hás also been modelled (Figure 18.9) and tested against real 

structures.  

 

 

 

Figura 18.9 – Simulation of soil matrix. 

 

 Let us now clarify in more detail Figures 18.4 to 18.7. When we measure a length  

L, which can be a straight linr segment , the contour line of a country’s map,  we use a an 

unit a linear ruler of “size”∈, much smaller than  L. If  ∈ fits N times into L, we have: 

 

L (r) = N(r) r,   where   
L

r ∈
=  
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 We write L(r) since a tortous length  L, measured with a linear ruler depends on the 

size of the ruler since “arches” are measured as straight lines. The smaller the ruler , the 

better the measurement. In Figure 18.4, L is a straight line and nothing is lost in tortuosity. 

In the first case , L = 1, N = 1 and r = 1, that is, the ruler is L itself. It the ruler would be 

half of  L, we would have  N = 2 and r = ½. If it would be one third, N = 3 e r = 1/3. 

 It can be demostrated that : 

 

(18.16)                                                      1NrD =  

 

D being the fractal dimension. In the euclidian geometry, D = 1 (line); D = 2 (area);  D = 3 

(volume). Aplying  logaritm to both sides of equation 18.16, we have: 

 

N = r -D, or log N = -D.log r, or log N = D.log (1/r) and so:   

  

( ) (18.17)                                                     
1/r log
N logD =  

 

 In  Figure 18.4 we used the symbol DL for the linear dimension, in which we can see  

through  equation 18.17, that the measure is linear : DL = 1, in agreement with the euclidian 

geometry. 

 In Figure 18.5 we measure  bidimensional objects, i.e., areas and the euclidian 

dimension is DA = 2, with  DL = DA –1. for tridimensional objects (volumes), we have Dv = 

3, with  DL = Dv –2 (Figure 18.6).   
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 Equation 18.16 also admits fractional dimensions when we measure tortuous curves 

L or irregular areas A and volumes V . In  Figure 18.7, the tortuosity is shown in a 

progressive way : in a) a basic length Lo is given ; in b) 1/3 of Lo is added so that it fits into the 

same space as shown. If the ruler has length Lo, it will not measure  L1 which is  4/3 Lo. In 

c) for each increment along b, the same arrangement is made and a greater lenth  L2 = 16/9 

Lo,is obtained which is also not recognized by the ruler  Lo.      

 Through equation 18.17 results  a dimension of  D = 1.26...., greater than 1 and less 

than 2 of the euclidian geometry. It is not a straight line neigther an area, it is a tortuous 

line. 

 In the case of  Figure 18.7, if we add  2 parts, we have: 

                                                                                                               63.1
3 log
6 log
==D  

 

 

and if we add  4 parts:. 

                                                                                                              77.1
3 log
7 log
==D  

 

or still 6 parts: 

                                                                                                               2
3 log
9 logD ==  
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obtaining  D = DA = 2 which signifies that the tortuosity is so intense that the “curve” tends 

to an area. 

 In Soil Physics, since the path followed by the water , the íons os the gases, 

floowing the particle distribution are all tortuous, the concept of fractals could be good 

option for modelling. Along these lines, Tyler & Wheatcraft (1989) measured the 

volumetric fractal dimension of a soil using as a basis the particle distribution, measuring 

the slope of the realions  log N versus log R, where N is the numeber of  particles of radia 

less than  R. Later , Tyler & Wheatcraft (1992) recognized the  dificulty of  measuring the 

number of particles N and used the mass os particles in a non-dimensional way  M (R <  

Ri)/Mt and the radia were also made non-dimensional Ri/Rl.  

 Bacchi & Reichardt (1993) used these concepts to model soil water retention curves, 

estimating the pore length Li corresponding to a given textural class, employing the empiric 

expression of Arya & Paris (1981): Li = 2RiNi
α, where 2Ri is the  diameter of the particles 

of class  i and Ni the number of particles of this class. No  success was obtained for this 

reseach line and it is still open for new thoughts. Bacchi et al. (1996) compared the use of 

the particle distribution and of the pore distribution to measure the soil fractal dimension Dv 

and applied their effects on soil hydraulic conductivity data.  

 Still among the Brazilans, Guerrini (1992, 2000) aplied the fractal geometry  with  

success in agronomy. The basic text for fractal geometry is  Mandelbrot (1982) and in 

addition to the already cited papers, the following should be of great interest: Puckett et al. 

(1985), Turcotte (1986), Tyler & Wheatcraft (1990), Guerrini & Swartzendruber (1994, 

1997) e Perfect & Kay (1995).  
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18.9.  HUMAN DIMENSIONS 

 

 I cannot finish this topic without mentioning the hunan dimensions, which are not 

EXACT, cannot be deterministically quantified by similar equations, calculation or 

indexes, Being, however, not of less importance. The subject is complex and does not fit 

exactly into this context, but we dare to present the dimensions  proposed by  Boff (1997), 

that of the FALK (F) and that of the CHICKEN (C), both fundamental for human 

existence! C is the dimension of rooting, i.e. , being fixed to standard behaviours of the 

daily affairs, prosaic, limited, of the  “square”, happy with the routinepeople which 

symbolizes the human behaviour that is similar to that of a chicken. F represents the 

dimension of the openning, of the desire ,of the  poetic, of the non-limited, of the 

jeopardized feeling, of the hights that are charcteristic of the falcon. Boff (1997) in his book  

“The falk and the cicken”, shows the difficulties to equilibrate (“dimensionalize” in words) 

these two entities.   
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