

1867-30

College of Soil Physics

22 October - 9 November, 2007

Soil water hydrostatics-Soil water potential

Donald Nielsen University of California Davies USA

FORCES THAT HOLD WATER IN SOIL

or

WHY IS IT NECESSARY TO APPLY A FORCE TO REMOVE WATER FROM SOIL?

ANSWER: TO OVERCOME VARIOUS FORCES ACTING IN THE SOIL:

- "SURFACE TENSION" FORCES
- "ADHESIVE" AND "COHESIVE" FORCES
- "SWELLING" AND "SHRINKING" FORCES
- "INTERFACIAL" FORCES BETWEEN SOIL
 PARTICLES AND WATER

RCE EXAMPLE
 Water around Ion Water to water Water to Non-Polar Fluid
r r r r

WE NEVER MEASURE THE FORCES DIRECTLY

WE MEASURE THE WORK AND EXPRESS THAT WORK AS A POTENTIAL ENERGY USUALLY AS

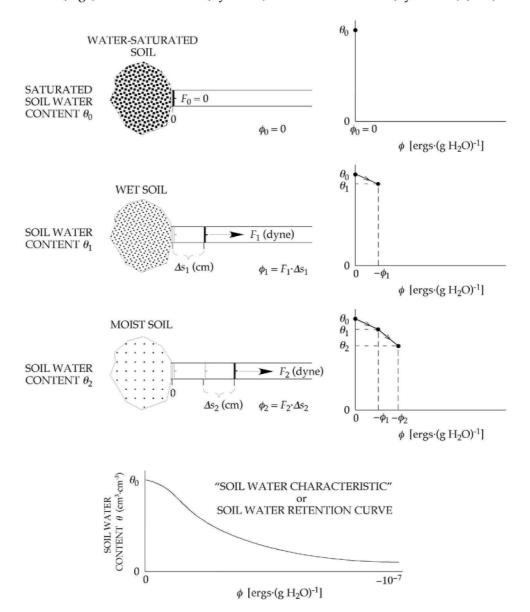
Soil Water Potential Head	h	(cm)
Soil Water Potential (mass basis)	$\phi_m = gh$	(ergs/gm)
Soil Water Potential (volume basis)	$\phi_v = \rho g h$	(ergs/cm ³)

For an unsaturated soil, the value of h < 0 (less than atmospheric pressure).

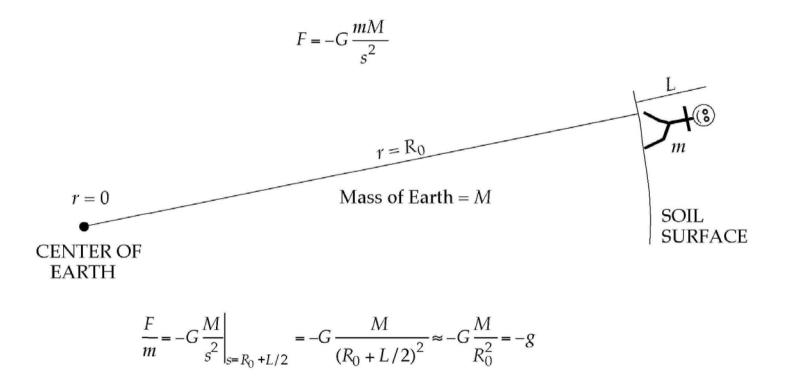
Soil water potential on a volume basis is the same as pressure = ρgh (dynes/cm²)

CONCEPT OF SOIL WATER POTENTIAL OR MATRIC POTENTIAL ϕ

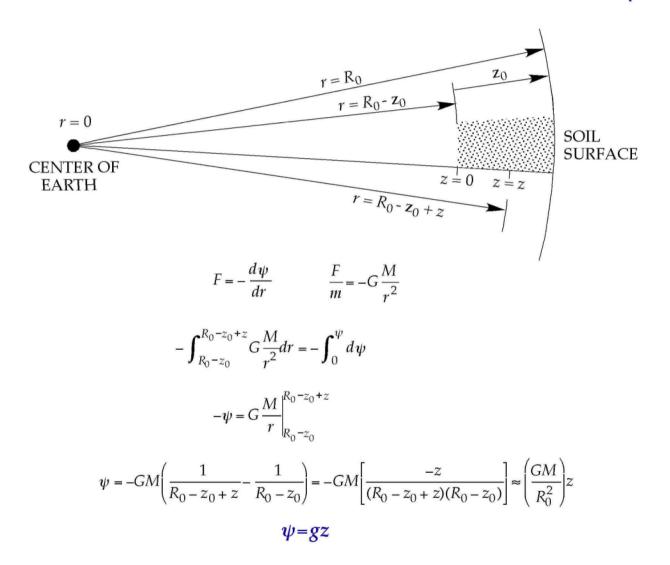
Work (ergs) = Force Distance (dyne cm) = Pressure Volume (dyne cm⁻²)·(cm³)



NEWTON'S LAW OF UNIVERSAL GRAVITATION



GRAVITATIONAL POTENTIAL ENERGY FOR SOIL WATER ψ

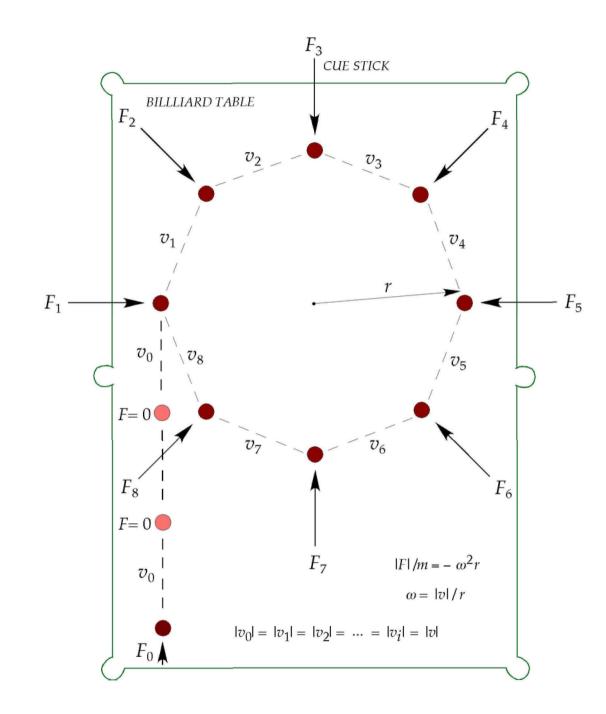


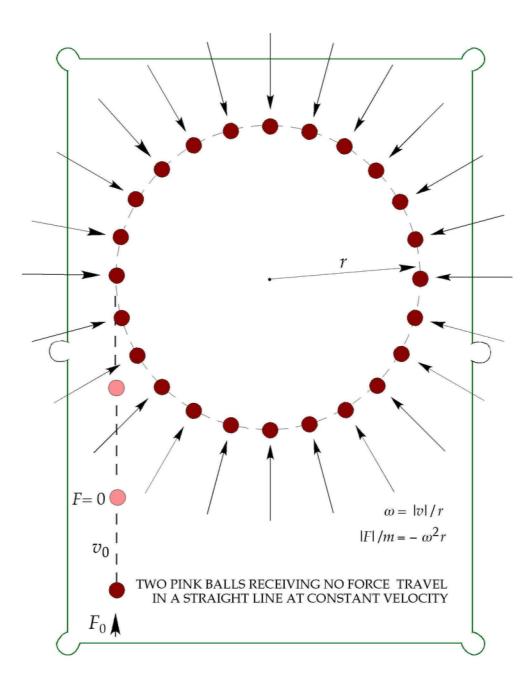
TOTAL SOIL WATER POTENTIAL \varPhi

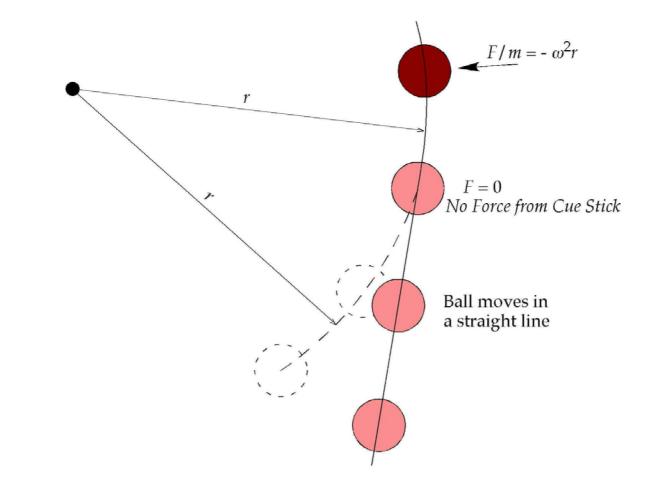
$$\Phi = \phi + \psi = gh + gz$$
$$H = h + z$$

SUM OF FORCES F ACTING ON SOIL WATER

$$F = -\frac{d\Phi}{dz} = -\frac{d(\phi + \psi)}{dz} \quad \text{or} \quad = -g\left(\frac{dh}{dz} + \frac{dz}{dz}\right)$$
$$F = -\frac{d\phi}{dz} - \frac{d\psi}{dz} \quad \text{or} \quad = -g\left(\frac{dh}{dz} + 1\right)$$



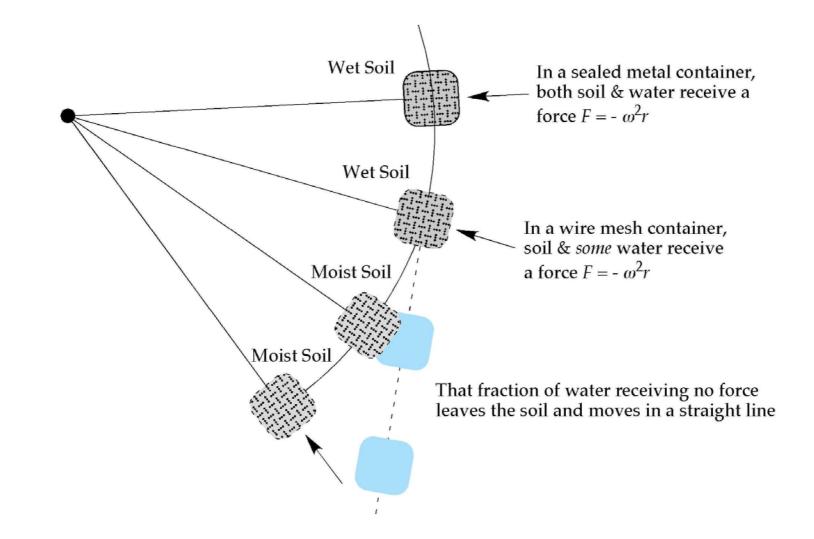


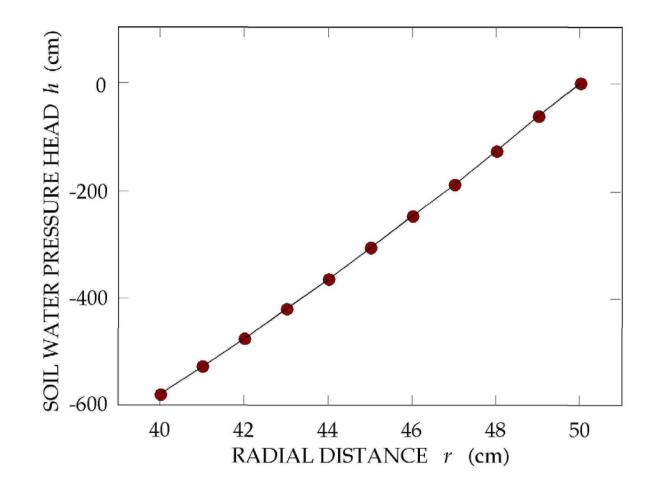


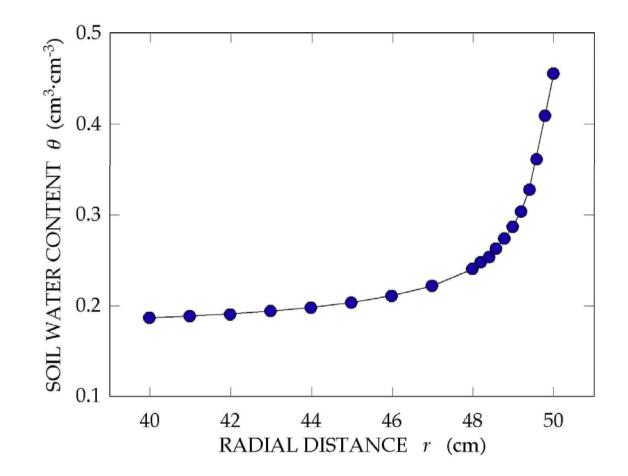
$$-\frac{d\phi}{dr} = \frac{F(r)}{m} = -\omega^2 r$$

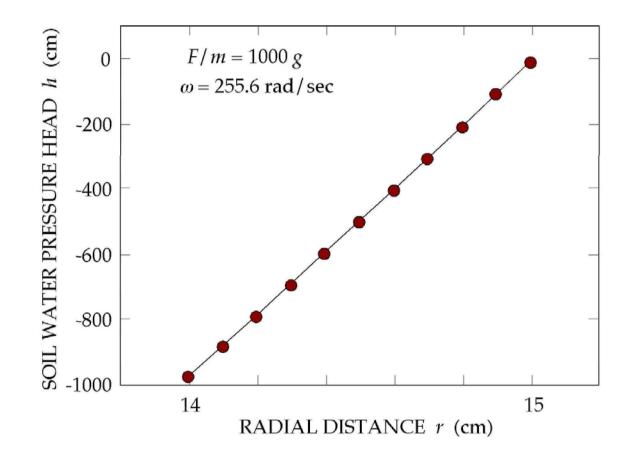
$$\int_{gh(r)}^{gh_2} d\phi = \int_r^{r_2} \omega^2 r dr$$

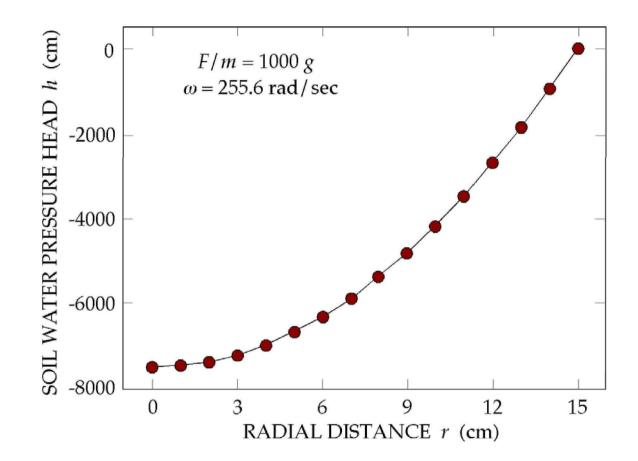
$$h(r) = -\frac{\omega^2}{2g} \left(r_2^2 - r^2 \right) + h_2$$





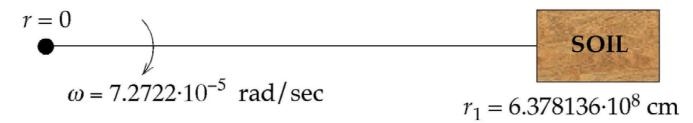






100-cm SOIL PROFILE AT THE RADIUS OF THE EARTH

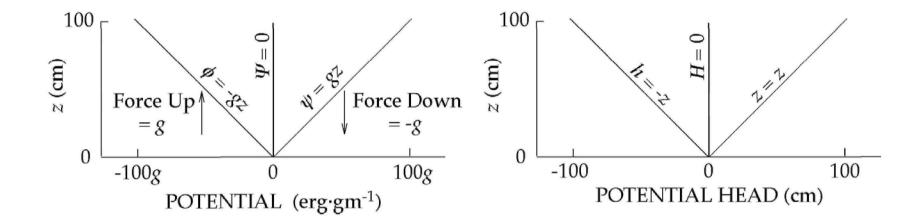
 $6.378137 \cdot 10^8 \text{ cm} = r_2$

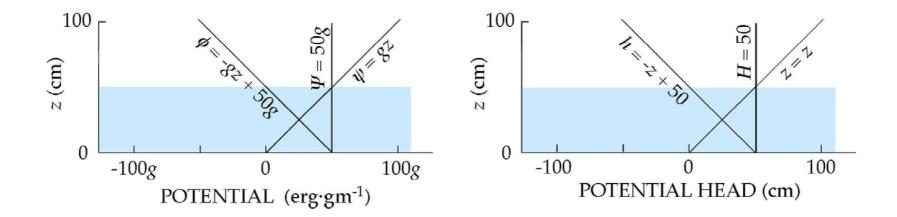


THE SOIL IS INITIALLY WATER-SATURATED THE SAMPLE ROTATES ONCE EVERY DAY WHAT IS THE MATRIC POTENTIAL HEAD AT r_1 ?

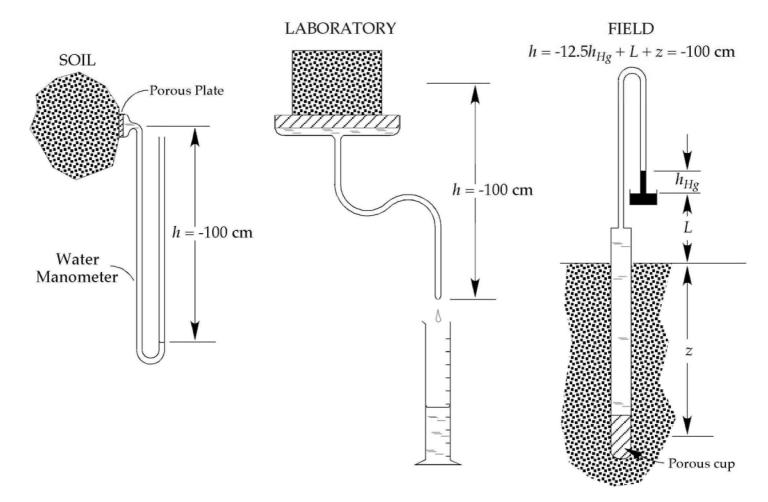
WHEN DOES SOIL WATER NOT MOVE?? WHEN SUM OF FORCES F ACTING ON SOIL WATER ARE ZERO

$$F = -\frac{d\phi}{dz} - \frac{d\psi}{dz} = 0$$
$$\frac{d\phi}{dz} = -\frac{d\psi}{dz}$$
$$\frac{dh}{dz} = -1$$





MEASURING THE SOIL WATER MATRIC POTENTIAL



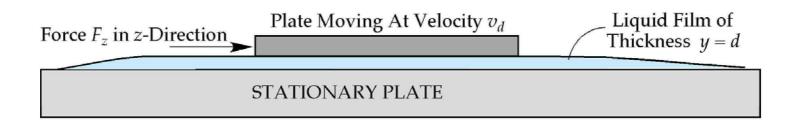
WHAT HAPPENS IF THE SUM OF FORCES F ACTING ON SOIL WATER ARE NOT ZERO?

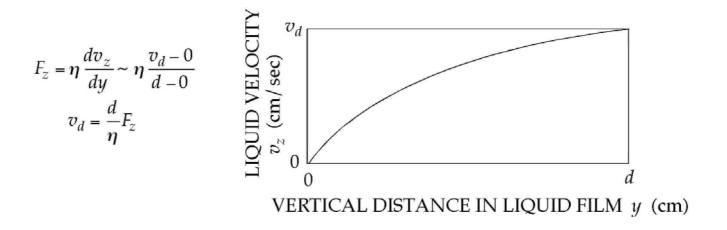
THE SOIL WATER MOVES !

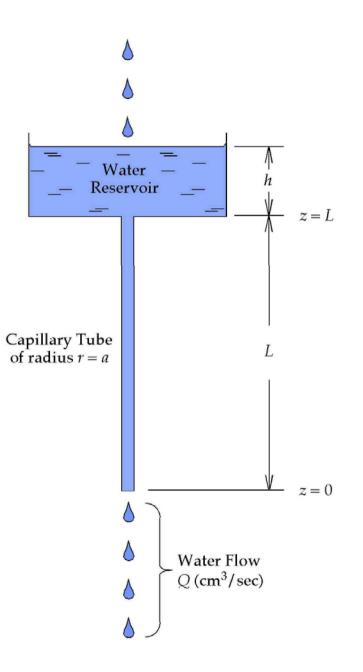
HOW FAST? HOW MUCH? HOW LONG?

VISCOSITY IS PART OF THE ANSWER

Viscosity η determines the amount of friction between water molecules, which in turn determines the energy absorbed by the water movement







The water velocity in the capillary is in equilibrium between gradient of the total water potential and shearing force of the water

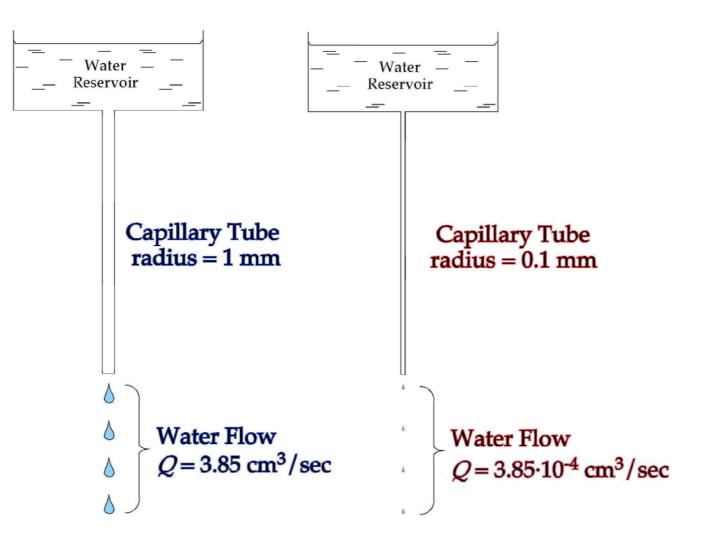
$$\operatorname{area} \cdot \left(-\frac{\partial \Phi}{\partial z} \right) + \operatorname{circumference} \cdot \left(-\eta \frac{\partial v}{\partial r} \right) = 0$$
$$\pi r^2 \left(\rho g \frac{\partial (h+z)}{\partial z} \right) + 2\pi r L \eta \frac{\partial v}{\partial r} = 0$$
$$\pi r^2 \left(\rho g \frac{\left[(h+L) - (0+0) \right]}{(L-0)} \right) + 2\pi r L \eta \frac{\partial v}{\partial r} = 0$$
$$\frac{dv}{dr} = -\frac{r [\rho g (h+L)]}{2L \eta}$$
$$\int_{v(r)}^{0} dv = -\frac{\left[\rho g (h+L) \right]}{2L \eta} \int_{r}^{a} dr$$
$$v(r) = 2v_0 \left(1 - \frac{r^2}{a^2} \right) \quad \text{where} \quad v_0 = \frac{a^2 [\rho g (h+L)]}{8L \eta}$$

The volumetric flow through the capillary Q is obtained by integrating the velocity v(r) with its cross-sectional area

$$Q = \int_{0}^{a} 2\pi r v(r) dr = 4\pi v_0 \int_{0}^{a} \left(r - \frac{r^3}{a^2}\right) dr$$
$$Q = a^2 \pi v_0 = \frac{a^4 \pi \rho g(h+L)}{8L\eta}$$

When the depth of water at the top of the capillary is maintained at zero, we obtain

$$Q = \frac{\pi \rho g a^4}{8\eta}$$



1 Capillary Tube = 10,000 Capillary Tubes

HOW FAST DOES WATER MOVE THROUGH SOIL? IT MOVES AT A RATE PROPORTIONAL TO THE FORCE ACTING ON IT

 $q = \frac{\text{volume of water}}{(\text{area of surface}) \cdot (\text{interval of time})}$ $q \ \alpha \ F \qquad \text{and since} \qquad F = -\frac{d\Phi_v}{dz},$ $q \ \alpha \left[-\frac{d(\phi_v + \psi_v)}{dz}\right]$ $q \ \alpha \left[-\rho g\left(\frac{dh}{dz} + \frac{dz}{dz}\right)\right]$

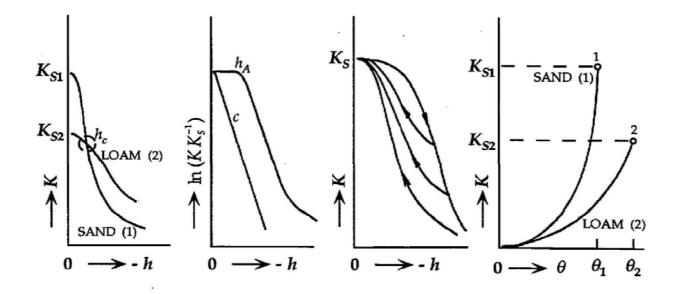
IF THE PROPORTIONALITY CONSTANT $\alpha = k/\eta$

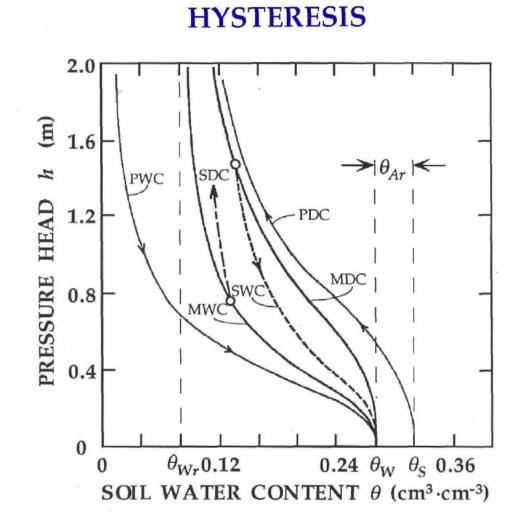
$$q = -\frac{\rho g k(h)}{\eta} \left(\frac{dh}{dz} + 1 \right)$$
$$q = -K(h) \left(\frac{dh}{dz} + 1 \right)$$

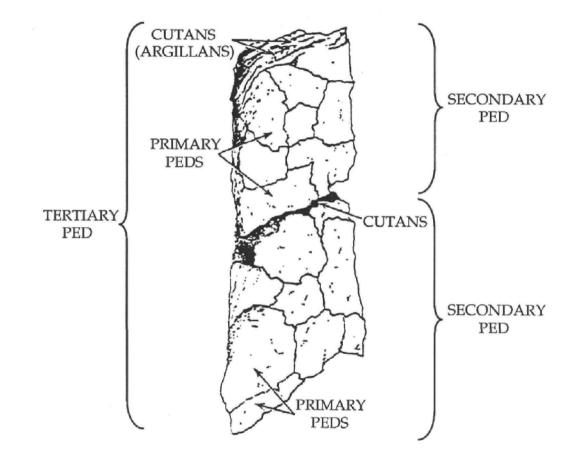
Note that ρ/η is a property of the water, *g* the gravitational acceleration and *k*(*h*) is a measure of the soil pore geometry.

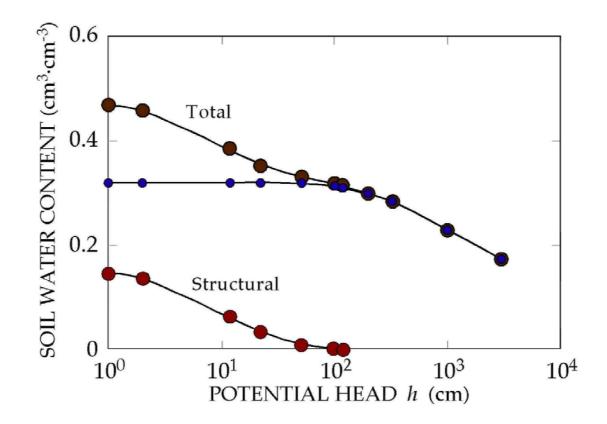
For h>0, Darcy's equation for saturated flow.

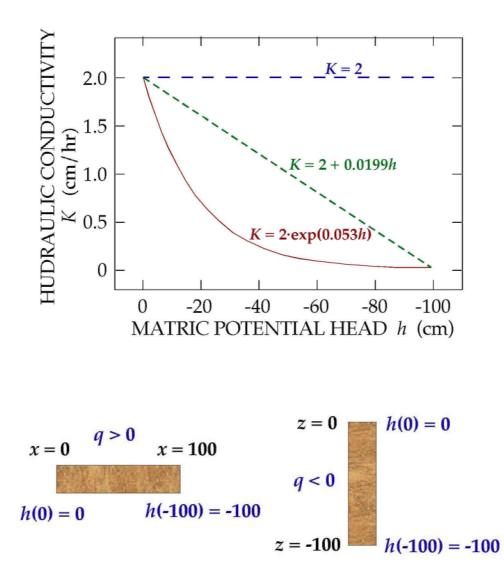
For h<0, Buckingham-Darcy equation for unsaturated flow.

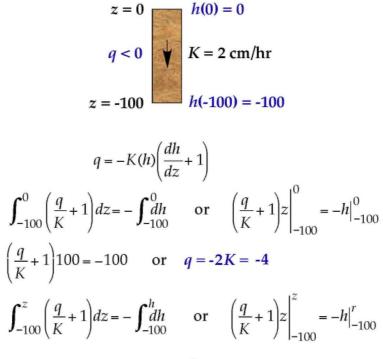


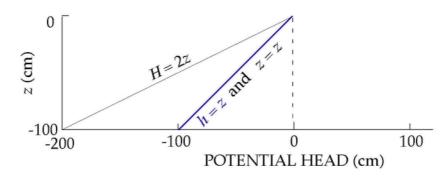


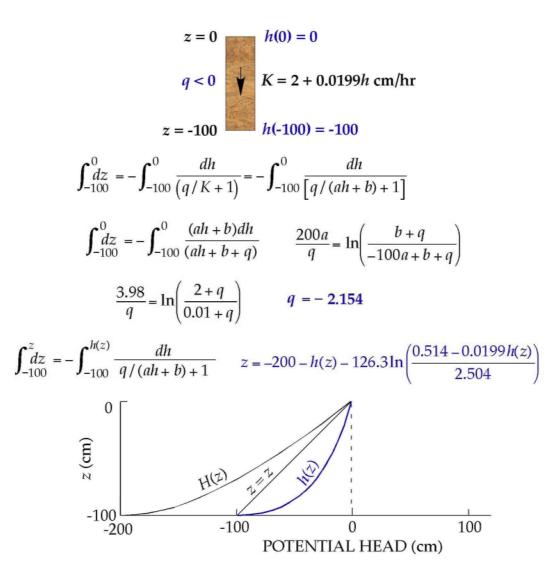


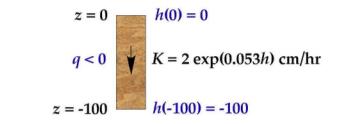




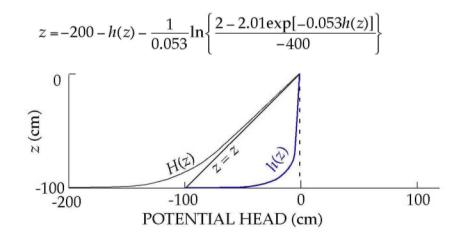


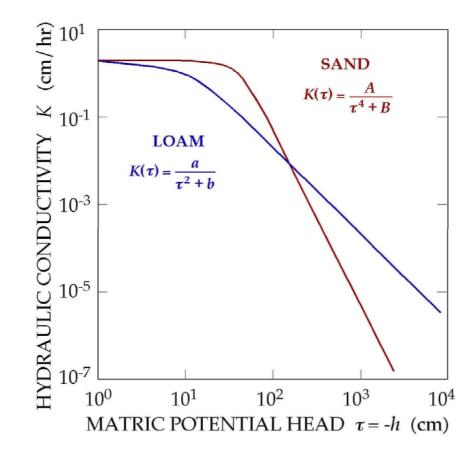






$$\int_{-100}^{0} dz = -\int_{-100}^{0} \frac{dh}{q/K+1} = -\int_{-100}^{0} \frac{Kdh}{K+q} = -\int_{-100}^{0} \frac{adh}{(a+q\exp(-bh))}$$
$$z\Big|_{-100}^{0} = -h\Big|_{-100}^{0} - \frac{1}{b}\ln(a+q\exp(-bh))\Big|_{-100}^{0}$$
$$100 = -100 - \frac{1}{b}\ln\left(\frac{a+q}{a+q\exp(100b)}\right) \qquad q = -2.01$$



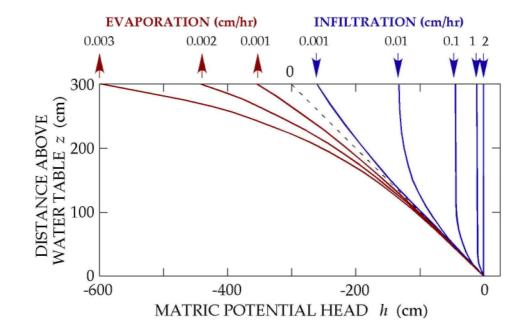


STEADY STATE EVAPORATION RATE FOR THE LOAM

$$h = -(b + a/q)^{1/2} \tan\left[\frac{z(b + a/q)^{1/2}}{a/q}\right]$$

STEADY STATE INFILTRATION RATE FOR THE LOAM

$$z = \frac{a}{q} \frac{1}{2(-b - a/q)^{1/2}} \ln\left(\frac{(-b - a/q)^{1/2} + h}{(-b - a/q)^{1/2} - h}\right)$$

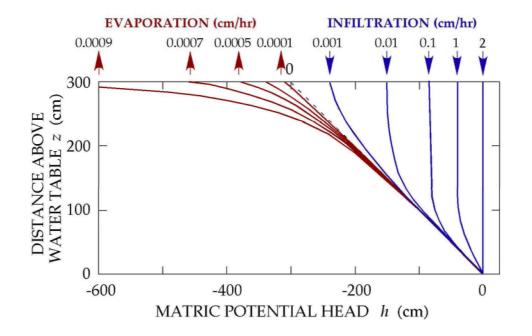


STEADY STATE EVAPORATION RATE FOR THE SAND

$$z\frac{q}{A} = \frac{1}{2\sqrt{2}(B+A/q)^{3/4}} \left\{ \frac{1}{2} \ln \left[\frac{\tau^2 + \sqrt{2}(B+A/q)^{1/4}\tau + (B+A/q)^{1/2}}{\tau^2 - \sqrt{2}(B+A/q)^{1/4}\tau + (B+A/q)^{1/2}} \right] + \tan^{-1} \left[\frac{\sqrt{2}(B+A/q)^{1/4}\tau}{(B+A/q)^{1/2} - \tau^2} \right] \right\}$$

STEADY STATE INFILTRATION RATE FOR THE SAND

$$z = \frac{A}{2q(-A/q-B)^{3/4}} \left[\frac{1}{2} \ln \left| \frac{(-A/q-B)^{1/4} + h}{(-A/q-B)^{1/4} - h} \right| + \tan^{-1} \left(\frac{h}{(-A/q-B)^{1/4}} \right) \right]$$



GENERALITIES

► SOIL IS ABLE TO INFILTRATE VIRTUALLY ALL WATER COMING AT RAINFALL INTENSITIES $\leq K_{sat}$

• AT SLOW INFILTRATION RATES, THE MATRIC POTENTIAL IN THE TOPSOIL IS VIRTUALLY CONSTANT. HENCE, A UNIT HYDRAULIC GRADIENT EXISTS.

► WITH A WATER TABLE AT 3-m DEPTH, THE AMOUNT OF WATER EVAPORATING IS GENERALLY < 1 mm/day.</p>

- SOIL IS AN EXCELLENT RESERVOIR FOR STORING WATER AGAINST LOSSES BY EVAPORATION AND DEEP DRAINAGE. WITHOUT PLANTS TO ABSORB WATER, MOST OF THE WATER REMAINS IN THE PROFILE FOR A LONG TIME.
- ► TO PREVENT SOIL SALINIZATION, WATER TABLES SHOULD BE AT LEAST 3m DEEP TO REDUCE EVAPORATION.