

1867-36

College of Soil Physics

22 October - 9 November, 2007

Fundamentals of and analyzing solute transport in soils

Donald Nielsen University of California Davies USA

Transport from soil to groundwater

TRANSPORT FROM SOIL SURFACES GROUND WATERS TO TOPSOIL AGRICULTURISTS ECOLOGISTS VADOSE OR. UNSATURATED ZONF AQUIFERS - HYDROLOGISTS - ENGINEERS

MD Definition

FLUIDS MOVE AND DISPLACE OTHER FLUIDS WITHIN A GIVEN GEOMETRY

If the fluids do not mix or combine together

IMMISCIBLE DISPLACEMENT

air and water air and oil water and oil aqueous and nonaqueous fluids

If the fluids are mixable and soluble within each other

MISCIBLE DISPLACEMENT

non-saline water and saline water rain water and soil solution alcohol and water paint and turpentine fresh air and smoke gasoline and oil

BTC Definition

MISCIBLE DISPLACEMENT IN FIELD SOILS

- UNDERSTAND LEACHING PHENOMENA
- PREVENT SOIL SALINIZATION
- RETAIN FERTILIZERS FOR PLANT UPTAKE
- MANAGE WASTES, RADIOISOTOPES, ETC.
- PROTECT SURFACE & GROUND WATER QUALITY

MISCIBLE DISPLACEMENT SOIL COLUMN EXPERIMENT

Interpreting BTC

INTERPRETING THE SHAPE OF A BREAKTHROUGH CURVE

DISPERSION CAUSED BY CONVECTION

DISPERSION CAUSED BY MOLECULAR DIFFUSION

CHEMICAL REACTIONS

PRECIPITATION DISSOLUTION HYDROLYSIS, ETC.

PHYSICAL REACTIONS

CATION AND ANION EXCHANGE SWELLING & SHRINKING, ETC.

MICROBIOLOGICAL TRANSFORMATIONS

NITRIFICATION DENITRIFUCATION, ETC.

Capillary tube flow

1 Capillary Tube = 10,000 Capillary Tubes

Parabolic distribution

Calculating Concentration

Cations&anions in capillary

Ions and pot.field in capillary

Tortuosity

FICK'S LAW OF MOLECULAR DIFFUSION

BULK SOIL

SOIL PORE

$$\begin{split} & \left(\frac{Q}{At}\right)_{SOIL} = -D_{SOIL} \frac{C_2 - C_1}{L} \\ & \left(\frac{Q}{\varepsilon A(L/L_e)t}\right)_{PORE} = -D_0 \frac{C_2 - C_1}{L_e} \\ & \left(\frac{Q}{At}\right)_{PORE} = -D_0 \varepsilon (L/L_e) \frac{C_2 - C_1}{L_e} \end{split}$$

EQUATING DIFFUSION IN BULK SOIL TO THAT IN SOIL PORE

$$D_{SOIL} \frac{C_2 - C_1}{L} = D_0 \varepsilon (L/L_e) \frac{C_2 - C_1}{L_e}$$
$$D_{SOIL} = D_0 \varepsilon (L/L_e)^2 \quad \text{or} \quad D_{SOIL} = D_0 \varepsilon^n$$

VALUES OF TORTUOSITY $(L/L_{e})^{2} = \cos^{2} \alpha$

PENMAN	$(L/L_e)^2 = 0.66$	$\alpha \sim 36^{\circ}$
VAN BAVEL	$(L/L_e)^2 = 0.58$	$\alpha \sim 40^{\circ}$
MARSHALL	n = 3/2	$\alpha \sim 37^{\circ}$
MILLINGTON	n = 4/3	$\alpha \sim 31^{\circ}$

0.1,0.01, 0.001 N

Electrokinetic processes

Chemico-physico interactions

CHEMICO-PHYSICO INTERACTIONS

PH -> SOIL PARTICLE SURFACE CHARGE DENISITY CHARGE DENISITY -> ELECTRICAL FIELD ELECTRICAL FIELD -> ORIENTS CATTONS & ANIONS CATTONS & ANIONS -> WATER MOLECULE CONFIGURATIONS WATER CONFIGURATIONS -> HYDRAULIC CONDUCTINITY

Lab apparatus

Five BTCs

Piston BTC

Small theta change 1

Small theta change 2

Exchange delta theta

Exchange delta vel

Tritium 3 velocities

Cl & Tritium 2 velocities

Sat & Unsat beads

Aiken 2 velocities

30, 90 and 120 cm

Tritium profile

Liquid density

Heavy over light

Field Leaching Expt

Solution sampler

0-15cm applic

0 - 15 cm WATER APPLICATION

15-30cm appl

75-90cm appl

0-10cm appl

0 - 10 cm WATER APPLICATION

10 - 15 cm WATER APPLICATION

65-70cm appl

65 - 70 cm WATER APPLICATION

Theta profiles

Theta increases

Cl at 30, 90 & 150

conclusions

SOIL SALINITY CAN BE MANAGED BY CONTROLLING THE FREQUENCY AND AMOUNTS OF IRRIGATION WATER

SOLUTE TRANSPORT DEPENDS UPON: - LEACHING VELOCITY OF SOIL WATER - SOIL WATER CONTENT DURING LEACHING

Convective Diffusion Eq.

Estimating D&v field

20 Field plots

STEADY STATE INFILTRATION RATE

Distrib of v

Distrib of D

D versus v

D versus Peclet

No. of sanples

NUMBER OF SAMPLES FOR EQUALLY RELIABLE VALUES

Estimating v

Modmedmean

Lab column

NITRIFICATION & DENITRIFICATION STEADY-STATE SOIL COLUMN EXPERIMENT

0.01*N* CaSO₄ containing 50µg NH⁴-N per ml infiltrating the soil column at a water flux density of 2 cm·day⁻¹

WATER UNSATURATED

WATER SATURATED

Steady lab eqns

STEADY-STATE CONVECTIVE DIFFUSION EQUATIONS

AMMONIUM N $D_1 \frac{d^2 C_1}{2} - v \frac{d C_1}{k} - k_1 C_1 = 0$

NITRATE N

$$D_{2} \frac{d^{2}C_{2}}{dz^{2}} - v \frac{dC_{2}}{dz} + k_{1}C_{1} - k_{2}C_{2} = 0$$

GASEOUS N₂

$$D_3 \frac{d^2 C_3}{dz^2} + k_2 C_2 = 0$$

AMMONIUM N
$$C_1(z) = C_1^0 \exp\left[\frac{z}{2D_1}\left(v - \sqrt{v^2 + 4D_1k_1}\right)\right]$$

NITRATE N $C_2(z) = \frac{k_1C_1^0}{k_1 - k_2} \left\{ \exp\left[\frac{z}{2D_2}\left(v - \sqrt{v^2 + 4D_2k_2}\right)\right] - \exp\left[\frac{z}{2D_1}\left(v - \sqrt{v^2 + 4D_1k_1}\right)\right] \right\}$

NH4+NO3

O2 profiles

CO2 profiles

Nonstdy equations

NONSTEADY-STATE CONVECTIVE DIFFUSION EQNS.

	$UREA \xrightarrow{k_1} NH_4^{\dagger} \xrightarrow{k_2} NO_3^{-} \xrightarrow{k_3} N_2$
UREA -N	$\frac{\rho}{\theta}\frac{\partial S_1}{\partial t} + \frac{\partial C_1}{\partial t} = D_1 \frac{\partial^2 C_1}{\partial z^2} - v \frac{\partial C_1}{\partial z} - k_1 C_1$
$NH_4^+ - N$	$\frac{\rho}{\theta} \frac{\partial S_2}{\partial t} + \frac{\partial C_2}{\partial t} = D_2 \frac{\partial^2 C_2}{\partial z^2} - v \frac{\partial C_2}{\partial z} + k_1 C_1 - k_2 C_2$
<i>NO</i> ₃ – <i>N</i>	$\frac{\partial C_3}{\partial t} = D_3 \frac{\partial^2 C_3}{\partial z^2} - v \frac{\partial C_3}{\partial z} + \frac{k_2 C_2}{k_2 C_2} - k_3 C_3$
$N_2 - N$	$\varepsilon \frac{\partial C_4}{\partial t} = D_4 \frac{\partial^2 C_4}{\partial z^2} + k_3 C_3$

Urea,NH4,NO3

$$C_{2}^{0} = 0 \qquad k_{1} = 0.010 \text{ h}^{-1}$$

$$C_{3}^{0} = 0 \qquad k_{3} = 0.001 \text{ h}^{-1}$$

$$v = 0.24 \text{ cm} \cdot \text{h}^{-1}$$

$$D = 0.05 \text{ cm}^{2} \cdot \text{h}^{-1}$$

NO3 profile

Adsorbed NH4

Control soil air

Soil air flow

Different disciplines

MISCIBLE DISPLACEMENT PHENOMENA ARE NOT WELL UNDERSTOOD OWING TO DIFFERENCES IN SCIENTIFIC DISCIPLINARY VIEWPOINTS

$\frac{\partial \rho S}{\partial t}$ +	$\frac{\partial \theta C}{\partial t} = \theta D \frac{\partial^2 C}{\partial z^2}$	$-\frac{\partial J_w C}{\partial z}$	± ϕ
CHEMISTS $S = f_1(C)$ EQUILIBRIA $\frac{\partial S}{\partial t} = f_2(S,C)$ KINETIC	MATHEMATICIANS PARABOLIC HYPERBOLIC	PHYSICISTS $D = D_0 + \beta v^n$ MOBILE- IMMOBILE WATER	GEOHYDROLOGISTS IRREVERSIBLE REACTIONS PLANT PHYSIOLOGISTS PLANT ROOT RELATIONS MICROBIOLOGISTS MICHAELIS-MENTEN REACTIONS

Mobile-immob.

CONCEPT OF MOBILE-IMMOBILE SOIL WATER

$$\theta_{m} \frac{\partial C_{m}}{\partial t} + \theta_{i} \frac{\partial C_{im}}{\partial t} = \theta_{m} D \frac{\partial^{2} C_{m}}{\partial z^{2}} - v_{m} \theta_{m} \frac{\partial C_{m}}{\partial x}$$

$$\theta_{im} \frac{\partial C_{im}}{\partial t} = \alpha (C_{m} - C_{im})$$

$$\theta = \theta_{m} + \theta_{i}$$
 Total Soil Water Content

$$\phi = \frac{\theta_{m}}{\theta}$$
 Fraction of Mobile Water

$$1 - \phi$$
 Fraction of Immobile Water
Oxisol expt

0.1,0.01,0.001

pH 4, 7, 9

2 fluxes

2aggregate size

Immobile water

MD Theories

MISCIBLE DISPLACEMENT THEORIES **CONVECTIVE-DIFFUSION EQUATIONS** STOCHASTIC CONTINUUM APPROACHES STOCHASTIC CONVECTION APPROACHES **TRANSFER FUNCTIONS** CHROMATOGRAPHIC APPROACHES MARKOV PROCESSES MONTE CARLO SIMULATIONS DETERMINISTIC EQUATIONS KINEMATIC WAVE EQUATIONS DUAL POROSITY MODELS

Conv-diffusion Eq.

Stoch-continuum

STO	CHAS	TIC	CONTINUUM APPROACH
	Q =	- 1	K dH dz
<u>Q</u> +	q =	- 1	$\begin{bmatrix} \underline{K} + \underline{k} \end{bmatrix} \frac{d[\underline{H} + \underline{h}]}{dz}$
<u>Q</u> +	<u>q</u> =	- 1	$\frac{dH}{dz} - \underline{K} \frac{dh}{dz} - \underline{k} \frac{dH}{dz} - \underline{k} \frac{dh}{dz}$
	<u>q</u> =	-]	$\frac{dh}{dz} - \frac{k}{dz} \frac{dH}{dz} - \frac{k}{dz} \frac{dh}{dz}$

Stoch-convective

Transfer function

Trans functions

Chromatogr

Markov Process

A RANDOM PROCESS WHOSE FUTURE PROBABILITIES ARE DETERMINED BY ITS MOST RECENT VALUES

Monte carlo simulation

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial z^2} - v \frac{\partial C}{\partial z}$$
$$C = C(z, t \mid D, v)$$

$$\overline{C}(z,t) = \int_0^{C_0} f(C \mid z,t) C dC$$

Deterministic

DETERMINISTIC PORE GEOMETRY

Kinematic wave

KINEMATIC WAVE OF INFILTRATION

Questions

BECAUSE OF MACROPORES, CAN LEACHING BE DESCRIBED BY THE CONVECTIVE -DIFFUSION EQUATION ?

BECAUSE OF SPATIAL VARIABILITY, WHAT IS THE "PROPER" NUMBER OF SAMPLES ?

WHAT ARE THE MERITS OF SOIL SOLUTION PROBES, AND DO THEY REPRESENT THE ' "REAL" SITUATION ?

WHICH ARE THE BEST MODELS TO DESCRIBE SOLUTE MOBILITY AND RETENTION ?

ARE CHEMICAL REACTIONS MORE IMPORTANT THAN PHYSICAL REACTIONS ?

HOW IS A MODEL VERIFIED ?

HOW CAN THE RESULTS FROM A SMALL EXPERIMENTAL PLOT BE EXTEND OVER AN ENTIRE FIELD ?

Important points

IMPORTANT POINTS ABOUT LEACHING

- As water moves more slowly through a soil, greater opportunity exists for more complete mixing and chemical reactions to take place within the entire pore structure owing to molecular diffusion compared with convection.
- Microscopic pore water velocity distributions manifest their greatest divergence for water-saturated soil conditions. Hence, under water-saturated conditions, the greatest proportion of water moves through the soil matrix within the largest pore sequences.
- Under water-saturated soil conditions, when the average pore water velocity is large compared with transport by molecular diffusion, the relative amount of solute being displaced depends upon the solute concentration of the invading water.
- The concept of preferential flow paths occurs at all degrees of water-unsaturation even though their existence is usually only demonstrated for macropores near water-saturation. At each progressively smaller water content, the larger pore sequences remaining full of water establish still another set of preferential flow paths.
- Any attempt to measure the solute concentration based on extraction methods carried out either in the laboratory or the field will depend upon the rate of extraction and the soil water content during the extraction process.
- Inasmuch as rainfall infiltration usually occurs at greater soil water contents and greater average pore water velocities than does evaporation, the amount of solutes transported near the soil surface per unit water moving through the soil surface is greater for evaporation than for infiltration.