

1867-12

College of Soil Physics

22 October - 9 November, 2007

Saturated flow and saturated hydraulic conductivity.

Donald Gabriels Dept. Soil Management Ghent University Belgium

College on Soil Physics 2007

Flow of water in saturated soils Hydraulic conductivity

Donald Gabriels

Dept. of Soil Management and Soil Care – International Centre for Eremology, Ghent University, Belgium

Flow of water in saturated soils

- Poisseuillian flow in capillary tube
- Darcian flow –law of Darcy
- Hydraulic conductivity K_s
- Determination of hydraulic conductivity K_s

Flow of water in saturated soils

- Poisseuillian flow in capillary tube
- Darcian flow –law of Darcy
- Hydraulic conductivity K_s
- Determination of hydraulic conductivity K_s

Posseuillian flow in capillary tube

Posseuillian flow in capillary tube

$$Q = -\frac{\pi r^4}{8 \eta} \nabla P$$

$$\nabla P = \frac{\rho_w g \Delta H}{L} \qquad \Delta H = H_i - H_o$$

$$q = \frac{Q}{A} = \frac{Q}{\pi r^2} = -\frac{r^2}{8 \eta} \nabla P$$

Flow of water in saturated soils

- Poisseuillian flow in capillary tube
- Darcian flow –law of Darcy
- Hydraulic conductivity K_s
- Determination of hydraulic conductivity K_s

macroscopic flow

$$Q = \frac{V}{t} \sim A \frac{\Delta H}{L} \qquad \Delta H = H_i - H_o$$

$$q = \frac{Q}{A} = \frac{V}{tA} \sim \frac{\Delta H}{L}$$

flux density or *flux*

$$\longrightarrow q = K_s \frac{\Delta H}{L}$$

law of Darcy

valid for <u>steady state flow</u> q = constant in time and space

$$q_x = -K_s \frac{\mathrm{d}H}{\mathrm{d}x}$$

water flows in direction opposite to increasing hydraulic potential

(one-dimensional) vertical flow

$$q_z = -K_s \frac{\mathrm{d}H}{\mathrm{d}z}$$

three-dimensional flow

$$q = -K_s \left(\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z}\right)$$

$$q = -K_s \nabla H$$

units: generally L T⁻¹

but flux \neq velocity

Flow of water in saturated soils

- Poisseuillian flow in capillary tube
- Darcian flow –law of Darcy
- Hydraulic conductivity K_s
- Determination of hydraulic conductivity K_s

Hydraulic conductivity K_s

depends on

1. <u>structure</u>

depends on

fluid characteristics

$$K_s = \frac{k \rho_w g}{\eta}$$

Flow of water in saturated soils

- Poisseuillian flow in capillary tube
- Darcian flow –law of Darcy
- Hydraulic conductivity K_s
- Determination of hydraulic conductivity K_s

- <u>Laboratorium</u>
 - constant water head
 - variable water head
- <u>Field</u>

 in saturated zone: auger hole method piezometer method
in unsaturated zone: double ring infiltrometer Guelph-permeameter disk infiltrometer tension infiltrometer

Rainfall simulation

• <u>Pedotransfer functions</u>

• Lab – constant water head

Sampling: Kopecky ring

Sampling in field

sample

• <u>Lab – constant water head</u>

• <u>Field – Saturated zone – auger hole method</u>

• <u>Field – Saturated zone – piezometer method</u>

• <u>Field – Unsaturated zone – Double ring infiltrometer</u>

• <u>Field – Unsaturated zone – Double ring infiltrometer</u>

• <u>Field – Unsaturated zone – Inverse auger hole method</u>

• <u>Field – Unsaturated zone – Guelph permeameter</u>

Disk infiltrometer

Tension infiltrometer

• <u>Field – Unsaturated zone – <u>Guelph or well permeameter</u></u>

• <u>Field – Unsaturated zone – Pressure infiltrometer</u>

• <u>Field – Unsaturated zone – Tension or disk infiltrometer</u>

• <u>Field – Unsaturated zone – Hood infiltrometer</u>

Comparison of Methods for measuring K

K = 10-5 m.s-1

	Sand		Loam		Clay Loam	
	СТ	NT	СТ	NT	СТ	NT
Tension Infilt.	3.1 (60%)	2.6 (47%)	1.6 (164%)	4.2 (68%)	1.0 (45%)	2.3 (63%)
Presion Infilt.	9.5 (51%)	5.4 (58%)	1.5 (102%)	6.9 (80%)	0.1 (362%)	1.9 (5058%)
Ring sample	8.0 (49%)	8.1 (74%)	1.2 (219%)	3.4 (∙345%)	0.03 (10 ⁵ %)	13.6 (207%)

CT: Conventional Tillage

NT: No Tillage

(): Variation Coefficient

Theoretical models: STM

- Green-Ampt concept
 - based on Darcy equation:

$$i = -K_s \frac{\Delta(\Psi_m + \Psi_g)}{x_{wf}(t)}$$

with: i = infiltration rate (kg.m.s⁻¹)

 $K_{s} = \text{sat. hydraulic conductivity (kg.m.s^{-1})}$ $\Psi_{m} = \text{matrix potential (J.kg^{-1})}$ $\Psi_{g} = \text{gravitational potential (J.kg^{-1})}$ $x_{wf}(t) = \text{depth of wetting front at time t (m)}$

Theoretical models: STM

• Stationary component:

$$i_{1} = -K_{s} \frac{\Delta \Psi_{g}}{x_{wf1}} = -K_{s}g = \rho_{w} \Delta \theta \frac{dx_{wf1}}{dt}$$

integrating results in:

$$x_{wf1} = -\frac{K_s gt}{\rho_w \Delta \theta}$$

Soil infiltration characteristic for an initially dry and an initially wet soil, using the Kamphorst infiltrometer (i) and the rainfall simulator (r)

Ks for different textures

• <u>Texture</u>	<u>Ks (cm/hr)</u>
• sand	62.5
• Loamy sand	56.3
Sandy loam	12.5
• Silt	2.5
Sandy clay	0.8
• Loamy clay	0.4
• Clay	0.5

Ks for different sandfractions

