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1. Soil water retention curve (SWRC) 
 
 
We have demonstrated that a particular soil water potential φw is related to the soil water 
content θ. The potential φw is usually expressed as pressure head h [cm] for the convenience 
of computation and measuring technique. The functional relationship h(θ) is typical for the 
given soil having its particular status of consolidation, geometrical arrangement of particles 
and aggregation and other chemical and biological features. The function h(θ) when plotted is 
called a soil water retention curve SWRC, see Fig. 1. In the literature, the terms capillary 
pressure curve (Dullien, 1979) or soil moisture characteristic curve (Childs, 1969, and Hillel, 
1971) has also been used. Because h extends over three to four orders of magnitude for 
fluctuations of θ commonly occurring in the field, h is frequently plotted with a logarithmic 
scale, see Fig. 1.  
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Fig.1. Soil water retention curve 



Most often, it is tacitly assumed that h(θ) is determined at a constant temperature because 
properties and behavior of the soil water system are temperature dependent, e.g. the surface 
tension of water. However, in practical studies, the temperature dependence of h(θ) has been 
neglected until now without fully demonstrating the range of errors owing to such negligence. 
We shall say more about it at the end of this chapter. 
 Similar to the hysteresis of adsorption-desorption isotherms, the soil water retention 
curve manifests hysteresis. That is, θ in the drying (or drainage) branch of h(θ) is larger than 
θ in the wetting branch for the same value of h. 

 
 
Fig. 2. Hysteresis of the SWRC for a coarse textured soil. PDC is the primary drainage curve, 
PWC the primary wetting curve, MDC the main drainage curve, MWC the maind wetting 
curve, SWC a scanning wetting curve and SDC a scanning drainage curve. 
 
 In Fig. 2 hysteresis loops of the SWRC are schematically demonstrated. The soil was 
assumed to be initially fully saturated with water, completely without an air phase, with a 
saturated water content θS equal to the porosity P. Subsequently, the soil was gradually 
drained and dried, respectively at each hj, the equilibrium θj was determined at sufficient 
values of j to ascertain the primary drying curve PDC continuously to a soil water content 
equal to zero. Next, the soil was gradually wetted along several values of θj until the primary 
wetting curve PWC was measured and at h = 0, θ = θW. The wetting curve does not converge 
to θS, and hence, θW ≠  θS. The volumetric domain θAr = (θS - θW) is filled by an incoherently 
distributed air phase. This condition is sometimes called entrapped air which we can 
approximately demonstrate as mutually unconnected micro bubbles of air. Having no chance 
to escape as a continuous flux, these incoherently distributed micro bubbles of air can only 



disappear either by a long lasting process of dissolution and diffusion in soil water, or by a 
drastic reduction of the pressure of the external atmosphere. When we start now with drainage 
having θ = θW at h = 0, we obtain a main drainage curve MDC which is not identical to the 
PDC. If instead of drying the soil to a defined value of p/po < 0.98 using a controlled humidity 
chamber, we use a pressure plate apparatus, the MDC will asymptotically approach the "real" 
residual water content θWr which characterizes the boundary between the coherent and 
incoherent water phase distributions. Luckner et al. (1989) found the approximate relationship 
θWr ≈ 2θAr. The wetting curve which starts at θWr is the main wetting curve MWC, and it is 
not identical with the PWC. At h = 0, the MWC reaches again θW. Thus, we obtain a closed 
hysteretic loop of main curves with an exclusion of the incoherent distribution of air close to θ 
= θS and the incoherent distribution of water close to θ = 0 (Luckner et al., 1989). These two 
incoherent domains of isolated air or water, respectively, are transported by different 
mechanisms than those for the bulk flux of either of the coherent phases. When drainage on 
the MDC is interrupted at point D1 by the soil gradually wetting, the scanning wetting curve 
SWC is "above" the main wetting curve and the values of θ corresponding to a given h are 
larger than those on the main wetting curve MWC but smaller than those on the main 
drainage curve MDC. Similarly, when the wetting along the main wetting curve MWC is 
interrupted by the soil draining before reaching θW, the scanning drainage curve is "below" 
the MDC. When the hysteretic loop is gradually shortened as in Fig. 2, the scanning curves 
never intersect each other. Hysteresis is attributed to the action of several factors – the 
enclosed air in "blind pores", the ink-bottle effect of the influence of the rosary shaped pores 
where the radius of the meniscus depends upon the direction of reaching a given level and, 
moreover, the difference in wetting angle occurring for an advancing versus receding liquid 
front over the solid surface. In our description of hysteresis we could have proceeded vice 
versa, i.e. we could have started with a completely dry soil at θ = 0.  
 A treatise on the role of individual factors controlling hysteresis is rather speculative. 
The theory of independent domains was first applied (Poulovassilis, 1962) and further on, the 
theory of dependent domains was discussed (Mualem and Miller, 1979, and Mualem, 1984). 
Both approaches were based upon the theories of Everett (1954, 1967). The independent 
domain theory assumes that all pore domains are free to drain independently. In reality, only 
those pores which have free access to the outside air can drain. This access is dependent upon 
the state of the surrounding pores – be they water or air filled. To account for this 
dependence, a domain dependence factor Pd < 1 is applied and its relationship to θ is 
searched. If Pd = 1, the dependent domain model is, in this case, equal to the independent 
domain model. For the wetting process, the blockage to the entering water is usually assumed 
to be of negligible importance and the independent domain theory is applied. Direct 
measurement (CT and NMR) and evaluation of soil porous systems in appropriate models can 
offer parameters needed for conceptual description of hysteresis. 
 Generally, hysteresis decreases the rate of change in θ when wetting is interrupted and 
replaced by drainage, and vice versa. 
 
2. Analysis of Soil Water Retention Curves 
 
Some characteristic values are significant for each SWRC, see Fig. 2. After subjecting a soil 
for a long period with a pressure head h = 0, complete water saturation θS is eventually 
reached when θS = P the porosity. When the soil is quickly wetted, as is usually the case, 3 to 
8% of the soil is occupied by entrapped air. This smallest maximum extreme of θ is denoted 
in Fig. 2 as θW with θW = P(1 - n) where n = 0.05 to 0.15 even though h = 0. On the MDC the 



air entry value hA is sometimes found at the minimum value of h when dθ/dh remains equal to 
zero. When the same criterion is applied to the main wetting branch, the water entry value hW 
is also similarly defined. However, in some soils, hA = hW = 0, or more frequently, hW = 0. 
The air entry value hA is well defined and well measurable in coarse textured soils and in 
modeling graded sands in the laboratory. In medium and fine textured field soils the 
estimation of hA is inaccurate and some authors pose the question on the existence of hA in the 
majority of topsoils (Nielsen et al., 1986). However, in subsoils and in deep layers of 
sediments, the saturated "capillary fringe" above the zero pressure ground water level is 
traditionally accepted, thus indicating the existence of both hA and hW. If macropores as 
fissures and cavities produced by the edaphon exist in a soil, the value of θ changes abruptly 
from θS to θSM when h is decreased by an infinitesimally small increment dh starting from h = 
0. Under such behavior, the term air entry value is referred to the soil matrix with the value of 
θSM being constant from h = 0 - dh to h = hA where θSM denotes saturation of the soil matrix. 
At a very small value of h (and of θ as well) we meet again the condition of dθ/dh   → 0  on 
the MDC. The corresponding value of θ is called the residual (or minimal or intrinsic) soil 
water content. When it is the limit of the continuity of liquid water in soil, we denote it as θWr 
(Luckner et al., 1989). When it is just a fitting parameter obtained when experimental data are 
fitted to an empirical equation of a SWRC, we denote it as θr. 
 An analytic expression of the SWRC is advantageous for the solution of practical 
problems. Except for values of θ close to θS the SWRC resembles the hyperbola 
      h| = a θ −b        (4.40) 
where a and b are empirical constants. Because of the large variations of θS that occur in the 
field, the utility of (4.40) is increased substantially if the soil water content θ in (4.40) is 
replaced by the relative soil water content θR = θ/P or by the relative soil water saturation  θR

∗

 
= θ/θS (Simmons et al., 1979). An analysis based upon capillary and adsorption theories 
obtained by Mitchurin (1975) led to the more complex expression  
      h| = a Am w − 2wm( )−b

       (4.41) 
where a and b are physically based constants defined in a model where the soil is represented 
by individual particles, Am the specific surface of the particles, w the mass water content and 
wm the mass water content when a monomolecular layer of water exists on the particles. The 
advantage of (4.41) is its physical interpretation of the coefficients in (4.40) that applies in the 
region -∞  < h < -0.3 MPa. 
 After an exhaustive study of experimentally determined SWRC on many soils, Brooks 
and Corey (1964) rewrote (4.40) to be  
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       (4.42)  

where the effective water content θE = (θ - θr)/(θS - θr) and λ, the pore size distribution index, 
is a characteristic of the soil with values approximately equal to 2 to 5. The value of λ is large 
for soils having a uniform pore size distribution and small for soils with a wide range of pore 
sizes. 
 Among the less frequently used expressions of θ(h) are hyperbolic, error function or 
exponential equations of other authors. For the convenience of analytic or approximate 
solutions of some elementary hydrologic processes, the SWRC can be formulated by still 
another equation which is well suited to the mathematical development of the solution 
(Broadbridge and White, 1988), however its practical applicability for experimental data has 



not yet been proved. 
 Inasmuch as (4.42) does not offer a satisfactory description of the SWRC in the wet 
region, especially for soils not exhibiting a distinct value of hA or hW, van Genuchten (1980) 
proposed the equation 

  
    
θE = 1 + α| h|( )n[ ]−m

      (4.43) 

where α, n and m are fitting parameters with their limitations being α > 0, n > 1, |h| ≥  0 and 0 
< m < 1. Values of n occur between 1.2 and 4 and those of α between 10-3 and 10-2 cm-1. 
Because of computational expediency, values m have arbitrarily been taken equal to (1 - 1/n). 
van Genuchten and Nielsen (1985) have proposed for pragmatic reasons to merely consider θr 
and θS as empirical fitting parameters. Note that the physically real residual water content on 
the SWRC in Fig. 2 was denoted by θWr. Equation (4.43) can be adopted to describe each of 
the branches of the hysteretic loop. The detailed procedure for expressing MDC, MWC and 
the scanning curves by a modified (4.43) is described by Luckner et al. (1989). Usually, αw ≈ 
2αd where w denotes wetting and d is for drainage. Equation (4.43) does not allow the 
existence of hA and (4.42) is not suitable if an inflection point exists on the SWRC. Hence, a 
compromise description of the SWRC is achieved when θE is replaced by θe, especially if the 
SWRC is further used for the determination of the unsaturated hydraulic conductivity (Šír et 
al., 1985). The definition of θe requires that θ be replaced by θe = (θ - θb)/(θa - θb), and hence, 
(4.43) becomes 

  
    
θe = 1 + α | h|( ) n[ ]−m

      (4.44) 

where θa and θb are considered only as fitting parameters without physical significance and 
having values θa > θb and θa ≥  θS. Note however, in the range hA ≤  h ≤  0 that this SWRC 
described by (4.44) is valid only in the range θb ≤  θ ≤  θS for θb > 0, or 0 ≤  θ ≤  θS if θb < 0. 
All three equations (4.42), (4.43) and (4.44) are schematically demonstrated in Fig. 3. For 
large values of θa compared to that of θS, (4.44) is nearly identical to (4.42). 
 The authors of all equations assume implicitly that θS is a simply measured, reliably 
quantified value. However, when θS is measured in the field, this assumption is rarely fulfilled 
and the resulting inaccuracy can easily destroy all the refinements of the above theoretical 
approaches. 
 In some instances, when experimental values of θ near saturation indicate the 
existence of a bi-modal porosity (Othmer et al., 1991), it may be more appropriate to consider 
that the SWRC is composed of two curves, more about it in the chapter 4. Bi-modality is 
evident when a smooth curve drawn through experimental data exhibits three inflection points 
instead of one. 
3.   Models of Soil Water Retention Curves  
 
The simplest model of the soil porous system is a bundle of parallel capillaries, see Fig. 4. A 
refinement of this model considers the capillaries as being rosary (ink-bottle) tubes. Still 
another refinement allows hysteresis owing to the behavior of contact angles.  
 When the scale of the soil water pressure head on the axis of the SWRC is replaced by 
that of the radius of the capillaries according to (4.11), we obtain the summation curve of the 
pore size distribution. The derivative of this summation curve is the frequency curve of the 
pore size distribution. The frequency curve is advantageously expressed by equations of 
probability density functions (Brutsaert, 1966). Among the more common functions are the 
incomplete gamma distribution, the log-normal distribution and the first asymptotic 



distribution. Criteria for optimal selection of the applied probability density function are the 
same as those used in ordinary statistics, e.g. the χ2 test or Kolgomorov-Smirnov test. A 
frequency curve can be used to discuss the quality of the soil pore space and the influence of 
society's activity upon its alteration. 

  
Fig. 3. SWRC represented by equations (4.42), (4.43), (4.44)  
 
 
Parallel capillary tube models are distinctly different from real porous systems of soils 
(Dullien, 1979). Some improvement is gained when the pores formed between the contacts of 
soil grains are considered. Arya and Paris (1981) assumed that the similarity between the 
shapes of the particle-size distribution curve and the SWRC is closely related to the value of 
the representative pore diameter in each of the defined particle-size classes. Tyler and 
Wheatcraft (1989) defined an empirical coefficient α that relates the fractal dimension of the 
pore space and expresses a measure of the tortuosity of the pore space. The main 
disadvantage of models based upon particle-size is their negligence of the internal 
architecture of soil. The porous system of a soil is formed by a certain configuration of 
particles into aggregates and the aggregates further being arranged in a definite way. 
However, when the particle-size distribution of a soil is measured, the macro- and micro-
aggregates are destroyed and individual particles separated.   

Fatt (1956) was probably the first to realize that imperfections in parallel capillary 
models required a new approach to model porous media. He proposed an empirical, two-
dimensional network of capillaries having randomly distributed radii. This lattice type 
network of pores was extended to a 3-dimensional network and for the solution of equilibria 
between the soil water potential and θ, percolation theory was applied (Chatzis and Dullien, 
1977; Wardlaw et al., 1987; and Diaz et al., 1987). With the soil water potential being 

  



Fig. 5. The simplest model of SWRC consisting of parallel capilary tubes (left) and the 
resulting SWRC (right) 
 
identified with the capillary potential, the model was hypothetically placed into the pressure 
apparatus. We shall first use the simplest type of percolation model which is a 2-dimensional 
square network where the pores are represented by mutually interconnected perpendicular 
cylindrical tubes of various radii. The radii are scattered randomly in the network with a 
prescribed distribution function ρ(r). Inasmuch as the number of segments n approaches 
infinity in percolation theory, models of the theory usually contain segments n > 1000. Here 
for the sake of clarity in Fig. 6, we use only 72 segments. 
 This 2-dimensional model is conceptually first completely saturated with water and 
placed in a pressure plate apparatus. Similar to the method described in section 4.3.1, the air 
pressure is gradually and incrementally increased. When the pressure head h is below the 
percolation threshold |h| < hp , water is replaced only in a very small portion of pores of radii r 
defined by (4.11) as 

  
    
r ≥ r h =

2 σ cos γ
|h|ρW g

.      (4.45) 

 The great majority of pores having radii r ≥  rh is surrounded by pores having radii of r 
< rh. At this small initial value of pressure head h, the cluster of air-filled pores close to the 
top surface of the model is negligible and the model is not effectively drained. When the air 
pressure in the apparatus reaches the percolation threshold hp, water is replaced by air in a 
continuous cluster of pores, all of radii r ≥  rhp, see Fig. 6. Isolated groups of water-filled 
connections of radii r > rhp remain undrained because they are surrounded by air-filled 
connections leaving them isolated and without a continuous path to the semipermeable 
membrane of the apparatus and to the free water pool. When the air pressure is further 
increased in our model, no additional drainage is realized and this is denoted as the post-
percolation stage. A SWRC of such a model is step-like. 



 
 

 
Fig. 6 Pre-percolation (left) and percolation stage (right) in a 2-dimensional model consisting 
of capillary tubes of randomly distributed radii. Thick lines denote capillary tubes filled with 
air when the model is placed into a pressure apparatus. 
 
 
 

 
 
 
Fig. 7. A 3-dimensional model consisting of spherical pores interconnected by capillary tubes 
(throats) whose radii are randomly distributed. The model functions in principal analogically 
to model in Fig. 6 with pre-percolation and percolation stages. 
 
 When the model still consisting of perpendicular capillary tubes is extended to a 3-
dimensional net, drainage does not stop at one percolation stage but proceeds further when the 



external pressure is increased. The SWRC of the 3-dimensional net does not yield a unique 
step-like form similar to that of the 2-dimensional model. Owing to the three dimensionality 
of the net, clusters of undrained pores change and alter their configuration with a portion of 
undrained water remaining. Similarly, when water enters into a dry, air-filled model, clusters 
of pores remain filled with air in spite of the fact that they should be filled with water at the 
given pressure if water had free access to all pores. This procedure adequately explains the 
mechanistic part of hysteresis. With the occurrence of the clustering of entrapped water or air, 
the restrictive access of pore water or pore air to the outside pool of free water or free air is 
demonstrated. 
 Another type of 3-dimensional model consists of spherical pores interconnected by 
capillary tubes (throats). They are arranged in a cubical net, see Fig. 7. The throats may or 
may not be correlated to the spherical pores. With radii of pores randomly distributed, the 
distribution function and skewness are described. An increase of the standard deviation 
increases the slope of the SWRC. Or, α and to a lesser extent  n in (4.43) decrease their 
numerical values. The air entry value depends upon the skewness of this distribution curve 
(Rösslerová, 1993). The model can be expanded to a bi-modal porosity with hierarchical 
arrangement of sub models (peds) within the cubic net (Kutílek et al., 1992). This type of   
 

           
Fig. 8.The soil fabric manifests primary peds formed by solid constituents arranged into 
secondary and tertiary peds. 
 
model corresponds nicely with the porous system found in the crumb structure of the A 
horizon of a soil. Numerical studies of this hierarchical arrangement confirm the existence of 
three inflection points on the SWRC. As it follows from studies of Rösslerová (1993), SWRC 
are more realistic to natural soils if bimodality is introduced. The slope of the SWRC is 
increased and the values of parameters α and n in (4.43) decrease owing to bimodality, 
especially for soils consisting of large peds. Moreover, the value of θr increases in such soils 
compared with that of monomodal soils. Bimodal soil systems manifest a broader hysteretic 



loop and generally, the amount of water or air residing in enclosed clusters is increased during 
the entire drainage or wetting process. 
 The configuration of pores between peds may be different from that within the matrix. 
In B horizons we frequently observe polyhedral or cubic structure which is modeled by cubes. 
The pores between the peds correspond approximately to a system of perpendicular slits 
having widths that are randomly distributed and defined by a prescribed distribution function. 
 The hierarchical arrangement of pores can proceed beyond the bimodal concept if we 
find primary, secondary and tertiary peds in a soil horizon, see Fig. 8. Generally, models of 
soil porous systems should properly mimic the morphological reality of the soil and the 
classification used in soil macro- and micro morphology (U. S. Soil Taxonomy, 1975; 
Brewer, 1976; and Jim, 1988). 
 Further progress in conceptually modeling of soil porous systems is achieved by the 
application of fractal geometry, especially when the soil is fragmented owing to aggregation. 
The self-similarity in porous systems of secondary and tertiary peds in Fig. 8 is distinct. Rieu 
and Sposito (1991) have discussed various types of models of fractal porous media with 
regard to real soils. Apparently, two avenues for model characteristics from soil analysis are 
available. Using aggregate size distribution data, Rieu and Sposito's (1991) simulated SWRC 
of an aggregated silty loam was close to measured data. Another avenue is the image analysis 
of micro- and macro-morphological studies usually presented as photos of either thin sections 
or of a topography of a plane. In both cases, the pores are distinctly identified. 
Macromorphological fractal analysis of staining patterns of macropores presented by Hatano 
and Boolting (1992) yielded fractal dimensions related to by-pass flow.  
 The above-mentioned refinement of models and procedures contribute to a more 
realistic conceptualization of the mechanical components of the total soil water potential in 
the wet portion of the SWRC. For the dry portion of the SWRC those improvements are 
practically irrelevant. Hence, we should concentrate on the force field at the molecular scale 
provided that we really need to interpret the dry part of the SWRC for a more accurate 
formulation of the processes. 
 Inasmuch as the surface tension of water σ depends upon the temperature, we expect 
the SWRC to be effected by temperature. A temperature increase induces a decrease in the 
value of σ, and consequently the capillary height decreases. Accordingly, for a given soil 
water content, the value of the pressure head h increases (i.e. |h| decreases). However, Novák 
(1975) and Hopmans and Dane (1986) report that the changes of the SWRC are greater than 
those expected just from σ(T). Apparently, differences between theoretical and experimental 
values of h(θ, T) cannot be explained solely upon the basis of entrapped air as earlier 
assumed. A final conclusion based upon many experiments is that capillarity alone is not 
sufficient to explain water retention in soils even in the "wet" part of the SWRC. Therefore, 
all pore size distribution functions remain approximate if they are only based on capillary 
models. 
 
 
 

 
 
 
 
 

 



 
4. SWRC INTERPRETED AS PORE SIZE DISTRIBUTION MODEL 

 
In spite of the early studies of the various types of distribution functions of soil pores 

by Brutsaert (1966), it lasted for 25 years, until the log-normal pore-size distribution was 
applied to the form of the retention curve h(θ) (Pachepsky et al., 1992, Kosugi 1994), and to 
K(θ) (Kosugi, 1999). In all quoted studies, the distribution function was obtained as the 
derivative curve.  

 
Even if the distribution function on a log-normal scale may be more or less skewed, its 

log-normal form seems to be a useful approximation, at least as for the time being. The 
retention curve and the derived conductivity function based on the pore size distribution have 
the advantage of the physical interpretation of the SPS, even if still in an approximate way. 

The log-normal pore radius distribution function g(r) = dθ/dr is (Pachepsky et al., 
1992, Kosugi, 1994) 
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where r is the pore radius, rm is the geometric mean radius, σ is the standard deviation. The 
soil water retention curve as a cumulative curve is  
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where S is defined by Eq. (4.48),  erfc is the complementary error function,  ln hm is the mean 
of the log-normal distribution  f(ln h) 
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θR is the residual soil water content when the liquid flow is essentially zero. The value of θR is 
usually not measured but it is found as a fitting parameter, and θS is the soil water content at 
saturation. 

The detailed study of h(θ) of the porous system of majority of soils led to the 
discovery of bi- and multi-modal porosity (Othmer et al., 1991, Durner, 1992, Pachepsky et 
al., 1992) due to the structural characteristics of soils. The phenomenon will be demonstrated 
on the soil denoted as SO15, see Fig.1. The soil is a well structured A horizon of Hapludalf. 
First, the SWRC θ(h) is transformed to parametrized form S(h) and its derivative curve is 
computed and plotted: 

 



SO15 Retention curve and its derivative

0

0,2

0,4

0,6

0,8

1

1 10 100 1000 10000
h, pressure head [cm]

S,
 re

la
tiv

e 
sa

tu
ra

tio
n,

 
dS

/d
(ln

 h
)

S dS/d(ln h)

 
 
Fig. 9. The retention curve in Fig. 1 was transformed to S(h) and its derivative curve 

was plotted. It represents the pore size distribution in the bi-modal soil. The structural domain 
(left side) is separated from the matrix domain (right side) by hA = 60 cm at the minimum of 
the derivative curve. 

If the pressure head is related to the pore radius by r (µm) = 1500/h (cm), we obtain a 
real pore size distribution, see Fig. 10. 
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 Fig. 10 Pore size distribution derived form the derivative curve in Fig. 9. The 

separation of structural from the matrix domain is at rA = 25 µm, structural domain is at 
1000> r > 25 µm, matrix domain is at r < 25 µm. 
 

The curve shows two peaks of separated domains in majority of instances in structured 
soils, one peak of matrix pores (denoted by index 1) and another one of structural pores 
(indexed by 2). When we separate those two domains, we obtain two log-normal pore radius 



distribution functions with i = 1 for matrix and i = 2 for structural pores and for each domain 
equations (4.46), (4.47) and (4.48) are modified. 
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and two soil water retention curves  
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where i = 1 is for matrix pores and i = 2 for structural pores.  With the principle of 
superposition, applied already by Othmer et al. (1991), Pachepsky et al. (1992) and by 
Zeiliguer (1992) we define for bi-modal soils   

                                                  θ  = θ1 + θ2                                                      (4.52)  
 
Since coarse micropores of r > r(hA) would cause instability of aggregates, we assume that 
the matrix porous system does not contain coarse micropores above r(hA). Then 
                                                           θS1 = θ (hA)                                                       (4.53)  
 
and  
                                                     θS2 = θS (MEAS) - θS1.                                                 (4.54) 
 
where θS (MEAS) denotes the measured saturated water content. 
For 0 > h ≥ hA  is  

                                            θ1 = θS1,   S1 = 1 = const.                                         (4.55) 
                                                      
 
                                                       θ2 < θS2,   S2 < 1                                                     (4.56) 
 
For h < hA  is   
                                                       θ1 < θS1,  S1 < 1                                                       (4.57)  
                                                                                                                                 
 

 We assume that θR1 in S1 is physically below the wilting point θWP (h = -15000cm) in the 
range of hygroscopic water and we approximate θR1 = 0.5 θWP. For structural domain we take 
θR2 = 0. 
 



The evaluation of SWRC of pores in structural and in matrix domains is in Fig. 11. 

 
Fig. 11. Separation of soil water retention curves into SWR of matrix and SWRC of 

structural domains in SO15 soil. 
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