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Introduction 

 There is a great class of physical, chemical and biological phenomena that, when 

observed and numerically quantified, result in a sequence of data distributed along time 

and/or space. Time data sequences are called time series. Examples are: a) monthly average 

values of air temperature at a given location, b) yearly average values of rainfall for a given 

location, c) yearly sugarcane yield data for a given field and d) yearly soil organic matter 

contents for a given site. Similarly, space data sequences are called space series. Examples 

are: a) soil temperature values collected across a landscape at the same time, b) soil water 

content values collected across a corn field on the same day, c) sugarcane yield values 

measured across a field during a single harvest and d) soil pH values collected across a 

pasture in a given year. 
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 Because these kinds of series were first analyzed in terms of a time series, we 

introduce the subject through sequences of data collected along time t at a given location. 

For a space series of data x observed at a given time, the concepts introduced here are also 

valid if x is substituted by t. 

A discrete time or temporal series can be considered as a set of observations Y 

described by  

 

( ) )(1                       n         .,1,2,3,....i                             tY i =  

 

evaluated at equidistant times t 

 

(2)                                                    t-t 1-ii α=  

 

and manifest a serial dependence among themselves. Series collected continuously during a 

given time intervals (nα ) have to be transformed into a discrete series through a 

“sampling” procedure at equidistant time intervals. The interval α between observations is, 

in general, chosen by the scientist, however, in several situations it is defined by the 

available data set. For a given time interval, the smaller α the greater the number of 

observations n, allowing for a more detailed analysis of the phenomenon. According to 

Tukey (1980), the basic objectives for analyzing a time series are: a) modeling of the 

process under consideration, b) obtaining conclusions in statistical terms and c) evaluation 

of the model ability in terms of forecast. 
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When planning an investigation involving statistical methodologies, special care 

must be taken with sampling procedures and data preparation. Depending on the objectives 

of the investigation, several potential problems regarding the measurements should be 

avoided, or at least minimized. Among them are the stationarity of the set, data 

transformations, lost or “irregular” observations, outliers and short amplitudes.  

The models used to describe temporal series are stochastic processes controlled by 

probabilistic laws. The choice of these models depends on several factors such as the 

behavior of the phenomenon or the “a priori” knowledge we have about its nature, and the 

objective of the analysis. From a practical point of view, the choice also depends on the 

existence of good estimation methods and on the availability of adequate software.  

A temporal (spatial) series can be analyzed in two ways: 1) in the time (space) 

domain and 2) in the frequency domain. In both cases we wish to construct models for the 

series based on known concepts. For the time (space) domain models, the analysis should 

identify the stationary components (aleatory or purely random variables) and the 

nonstationary components which define the mean function of the process. In the time 

(space) domain the models are parametric with a finite number of parameters. Among the 

parametric models we find are, for example, autoregressive models AR, moving average 

models MA, autoregressive moving average models ARMA, autoregressive integrated 

moving average models ARIMA and state-space models. For the frequency domain, the 

models are non-parametric, and the procedures involve the decomposition of the series into 

frequency components with the existence of a spectrum being a fundamental characteristic. 

Among these models in which periodic phenomena of the data are analyzed, spectral and 

cospectral analyses have several applications in the soil-plant-atmosphere system. 
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When interested in the analysis of a series in the time (or space) domain, one of the 

most frequent assumptions is that the series is stationary, which means that the series 

develops in an aleatory or purely random way along time (or space) with their statistical 

properties (mean and variance) being constant reflecting some sort of a stable equilibrium. 

Most of the series we come across in practice, however, manifest some sort of non-

stationarity. Hence, whenever a statistical procedure relies on the assumption of 

stationarity, it is usually necessary to transform the original data in order to satisfy the 

stationarity assumption. 

With the simple definition of time series given above, “Time Series Analysis” 

becomes a well-defined area within statistics, since data that are independent and 

identically distributed are clearly discarded, but that are commonly used in classical 

statistics models. Hence, classical statistics and the statistical analysis of data that present 

serial dependence complement each other, one not excluding the other, and questions 

answered by one cannot necessarily be answered by the other. 

Until recently, research in agronomy relied on classical statistics (analysis of 

variance, mean, coefficient of variation, regression analysis, etc), which presupposes the 

independence of observations among themselves and ignores the sampling locations in the 

field. Commonly, agronomic experiments are carried out ignoring the fact that observations 

might be spatially or temporally dependent. More recently it has been emphasized that 

adjacent observations of a given variable are not necessarily independent, and that the 

variability has to be taken into consideration in their statistical analysis. Nielsen and Alemi 

(1989) comment that observations within and among treatments might not, in fact, be 

independent among themselves, rendering the experimental design inadequate. 
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Soil spatial variability occurs at different scales and is related to variations of the 

parent material, climate, relief, organisms and time, i.e., related to the processes of soil 

formation and/or effects of management practices adopted for each agricultural use 

(McGraw, 1994). Statistical tools like autocorrelograms, crosscorrelograms, 

semivariograms, spectral analysis, kriging, co-kriging, autoregressive models, ARIMA 

models, state-space models, etc, are now frequently used to study the spatial variability of 

soil attributes, and can potentially lead to management practices that allow a better 

understanding of the interactive processes within the soil-plant-atmosphere system (Vieira 

et al., 1981; Vieira et al., 1983; Wendroth et al., 1997; Dourado-Neto et al., 1999; Vieira, 

2000; Webster and Oliver, 2001; Wendroth et al., 2001; Nielsen and Wendroth, 2003; 

Timm et al., 2003; Reichardt and Timm, 2004; Timm et al., 2006).  

 The concern about the spatial variability of soil properties is expressed in several 

reports related to agronomy. Until recently, the most detailed studies of this variability 

indicated limitations of the classical methods of Fisher´s statistics. In general, normality 

and independence of observations are not tested, even knowing that the independence must 

be assumed a priori, i.e., before sampling. All variability is assumed to be residual, being 

due to uncontrolled factors. Recently, applied statistical tools now take into consideration 

the structure of the spatial dependence of the observations. This approach has lead to an 

improvement in the understanding of physical, chemical and biological processes that 

control the soil-plant-atmosphere system and, therefore, to the adoption of better 

management practices with less environmental impact. Having this in mind, we now 

present the basic principles of concepts and tools most commonly used to analyze and 

characterize the spatial variability of agronomic data sets. 
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Autocorrelation Function ACF  

After sampling a variable Y, its mean and variance are calculated to reflect the 

sampled population, assuming that the set is representative and obtained randomly. In many 

cases the observations are not independent of each other, and it is possible to calculate an 

autocorrelation coefficient, which plotted as a function of the distance between 

observations will indicate their level of auto-dependence. For stationary processes (those in 

which the static properties are independent of space or time), the covariance between 

observations is a function of the number of lags h between their sampling points. Time 

series are collected along time at intervals of α (equation 2) minutes, hours, months, etc, 

and space series along transects (or grids) at spacings of α (xi – xi-1 = α), in cm, m, km, etc. 

The covariance between such variables given by Salas et al. (1988) is 

 

( ) ( )[ ] ( )[ ] (3)                              YxYYxY
hn

1h C i

hn

1i
hi −−

−
= ∑

−

=
+  

  

If C(h) is normalized dividing it by the variance s2 of the sample, we obtain the 

coefficient r(h) of the autocorrelation function 

 

( ) ( ) (4)                                                                
s

hChr
2

=  

 

which manifests values between +1 and -1. It is important to note that for the calculation of 

r(h), the observations Y have to be collected at regularly spaced intervals. The values of 

r(h) for h = 0, which represents the correlation between Y(xi) and Y(xi) is obviously equal 
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to 1. For the first neighbor pairs Y(xi) and Y(xi+1) for a distance of one lag α (h = 1), a 

value of r(1) can be obtained using equations (3) and (4). The same procedure is used for 

second neighbor pairs [Y(xi) and Y(xi+2)], and further neighbors (h = 3, 4, ...) obtaining a 

r(h) value for each h. Plotting r as a function of h we obtain the autocorrelogram of the 

variable Y.  

The next step is the calculation of the fiducial intervals of r, to recognize if they are 

significant or not, and in this way define the length interval αh in which the spatial 

dependence of the variable is significant. One way to measure the autocorrelation 

confidence interval CI is using the accumulated probability function (e.g., ± 1.96 for a 95% 

probability level) for the normalized distribution function (Davis, 1986), and the number of 

observations (n-h). Therefore, 

 

(5)                                                           
hn

pCI
−

±=  

 

Crosscorrelation function CCF 

 Having two sets of variables Y(xi) and W(xi) observed at the same locations xi (or 

same times ti), their spatial crosscorrelation structure can be analyzed calculating 

coefficients of crosscorrelation. Although each variable has its own autocorrelogram, an 

analysis of their crosscorrelation indicates to which distance (or time interval) one is related 

to the other. The coefficient rc of the crosscorrelation function will be also a function of h, 

and describes the degree of linear association between both variables (Davis, 1986; 

Shumway, 1988; Wendroth et al., 1997). 
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 The coefficients of the crosscorrelation function rc(h), between the variables Y and 

W, separated by distances αh, or by a lag number h, are calculated with 

 

(6)                                                       
ss

(h) cov
(h)r

WY

YWc
×

=  

 

where 

 

( )[ ] ( )[ ] (7)                    WhixW 
hn

1i
YixY

hn
1(h)cov

YW
−+∑

−

=
−

−
=  

 

and 2
Ys  is the variance of Y 

 

( )[ ] (8)                                               
1

1 2

1

2 ∑
=

−
−

=
n

i
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n
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and 2
Ws  is the variance of W 

 

( )[ ] (9)                                               
1

1 2

1

2 ∑
=

−
−

=
n
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n
s  

 

A plot of rc as a function of h represents the crosscorrelogram. For h = 0 

(observations taken at the same position xi), the value rc(0) given by equation (6) is the 

linear regression coefficient obtained through classical statistics. For the first neighbor pairs 
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[Y(xi), W(xi+1)] collected at a distance α in one direction (h = 1), we obtain the coefficient 

rc (1), and for the other direction (h = -1) the coefficient rc(-1). This is because in the case of 

two variables, each of them has different neighbors for each direction, i.e., we have two 

pairs – (Yi, Wi+1) and (Yi, Wi-1). The same procedure is used for more distant neighbors, 

obtaining values of rc(h) and rc(-h). A crosscorrelogram indicates how far two different 

observations are spatially related (Wendroth et al., 1997). 

 According to Nielsen & Wendroth (2003), it is more difficult to estimate the 

significance of rc(h) as compared to r(h). Significance tests like the t test are usually based 

on the assumption that the observed values of Y(xi) and W(xi) are normally distributed and 

independent among themselves. Taking this into consideration, the significance level of rc 

is, in general, given by 

 

( ) (10)                                                        
cr1

2hn t
2−

−−
=  

 

where (n-h) is the number of pairs used for the calculation of rc. The level of significance of 

the test is obtained by comparing the value of t in equation (10) with critical values of t for 

(n-2) degrees of freedom. The crosscorrelation function is, in general, not symmetric, i.e.,  

rc(h) ≠ rc(-h). Note that in the case of the autocorrelation there is symmetry, r(h) = r(-h)., 

when there is a physical relation between Y and W, the crosscorrelogram will tend to 

symmetry (Nielsen & Wendroth, 2003). 
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The State-Space Approach  

 The state-space model of a stochastic process involving j data sets Yj(xi), all 

collected at the same locations is based on the property of Markovian systems that 

establishes the independence in the future of the process in relation to its past, once given 

the present state. In these systems, the state of the process condenses all information of the 

past needed to forecast the future.  

The state-space model is a combination of two systems of equations. The first is the 

observation equation 

 

( ) ( ) ( ) ( ) (11)                                              xvxZxMxY iYijijjij j
+=  

 

where observation vector Yj(xi) of the process is generated as a function of the state vector 

Zj(xi). The second is the state equation    

 

( ) ( ) ( ) (12)                                              xuxZxZ iZ1-ijjjij j
+φ=  

 

where the non observed state vector Zj(xi) is dynamically evolved.  

The matrix Mjj in equation (11) comes from the following set of linear observation 

equations 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )iYijjji22ji11jij

iYijj2i222i121i2

iYijj1i212i111i1

xvxZm............xZmxZmxY
                                                                                            

     xvxZm............xZmxZmxY

xvxZm............xZmxZmxY

j

2

1

++++=

++++=

++++=
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which can be written in the matrix form 

 

( )
( )

( )

( )
( )

( )

( )
( )
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xv
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xZ
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m.......... m     m

m.......... m     m

xY
    

xY
xY

iY

iY

iY

ij

i2

i1

jjj21j

j22221

1j1211

ij

i2
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j

2

1

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

 

 

The matrix φjj in equation (12) comes from the following set of state equations 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )iZ1ijjj1i22j1i11jij

iZ1ijj21i2221i121i2

iZ1ijj11i2121i111i1

xuxZ............xZxZxZ
                                                                                            

   xuxZ............xZxZxZ

xuxZ............xZxZxZ

j

2

1

+φ++φ+φ=

+φ++φ+φ=

+φ++φ+φ=

−−−

−−−

−−−

 

 

or in the matrix form: 
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xZ
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2
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⎦
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⎢
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⎢
⎢

⎣
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+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

×

⎥
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⎥
⎥
⎥

⎦

⎤
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⎢
⎢
⎢
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⎣

⎡

φφφ

φφφ

φφφ

=

⎥
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⎤
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−
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The observation vector Yj(xi) is related to the state vector Zj(xi) through the 

observation matrix Mjj(xi) and by the observation error vYj(xi) (equation 11). On the other 

hand, the state vector Zj(xi) at position i is related to the same vector at position i-1 through 
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the state coefficient matrix φjj(xi) (transition matrix) and an error associated to the state 

uZj(xi) with the structure of a first order autoregressive model. It is assumed that vj(xi) and 

uj(xi)  are normally distributed and independent as well as being non correlated among 

themselves for both lags. 

 The above equations contain distinct perturbations or noises, one associated with 

observations vYj(xi) and the other with state uZj(xi). According to Gelb (1974), the 

development of methods to process noise-contaminated observations can be credited to the 

work carried out by Gauss and Legendre (around 1800) who both independently developed 

the method of the minimum squares for the linear models. More recently, Plackett (1950) 

developed a recursive solution for the minimum square method in linear models. Kalman 

(1960) using a state-space formulation, developed a very good recursive filter for 

estimations in stochastic, dynamic linear systems, being well known today as the Kalman 

Filter KF. According to Gelb (1974), a good estimator is a computational algorithm that 

processes observations in order to find a minimum estimate (following some sort of 

optimization criterion) of the state error of a system, using: a) the knowledge of the 

dynamics of the observations and of the system, b) assuming statistical inferences for the 

noises associated to observations and to states and c) knowledge of the initial condition of 

the information. In summary, given a dynamic system of equations that describes the 

behavior of the vectors of state and of observations, the statistic models that characterize 

the observational and state errors, and an initial condition of the information, the KF 

performs the sequential actualization of the state vector at time (or space) i-1 to time (or 

space) i. It can therefore be said, that the KF is essentially a recursive solution that permits 

a sequential processing of the observations, within the original method of the minimum 
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squares of Gauss. It should be noted however, that another algorithm has to be used [for 

example, the algorithm of maximum likelihood (EM) thoroughly discussed in Shumway 

and Stoffer (2000)] so that, together with the KF, the problem of noise-contaminated 

observations can be solved (Gelb, 1974).  

 Depending on the objectives of a study involving the state-space methodology, one 

can have three different types of estimates: a) when the time (or space) at which an estimate 

is wished coincides with the last observed value, the problem is said to be one of filtering; 

b) when the time (or space) of interest is inside the set of observations, i.e., the complete set 

of data is used to estimate the point of interest, the problem is said to be one of smoothing; 

and c) when the time (or space) of interest is after the last observation, the problem is said 

to be one of forecasting.   

 From this it can be seen that any linear or non-linear model (Katul et al., 1993; 

Wendroth et al., 1993) can be represented in the state-space formulation, i.e., by a system 

of two equations: one for the observations vector and another for the evolution of the state 

vector. 

 The state-space approach can also be used like the kriging and co-kriging (Alemi et 

al., 1988; Deutsch and Journel, 1992) to interpolate data spatially (or temporally). 

However, the philosophy behind these tools is different. For kriging and co-kriging the 

condition of stationarity of the data is required, which is not the case in state-space 

(Shumway, 1985). 

 The linear system of dynamic equations (11 and 12) has been presented here in a 

generalized form of the state-space approach. Now we shall present two different ways of 

using this approach, the first presented by Shumway (1988) which has been used by several 

researchers in agronomy, giving emphasis to the equation of the evolution of the state of the 
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system (equation 12); and the second, introduced by West and Harrison (1989, 1997) which 

is still not so frequently used in agronomy, giving greater emphasis to the observation 

equation (11). Applications of these two different state-space approaches can be found in 

Morkoc et al. (1985), Hui et al. (1998), Timm et al. (2003a), Wendroth et al. (2003) and 

Timm et al. (2006).  

 

Shumway's State-Space Approach  

 This approach, presented by Shumway (1988) and Shumway and Stoffer (2000), 

gives more attention to the equation of the evolution of the state of the system, where the 

matrix of the transition coefficients φ in equation (12) is a matrix of dimension jxj that 

indicates the spatial measure of the linear association among the variables of interest. These 

coefficients are optimized through a recursive procedure, using an algorithm of the KF type 

(Shumway and Stoffer, 1982) in which the method of maximum likelihood is used together 

with the mean maximization algorithm of Dempster et al. (1977). In this case, equations (11 

and 12) are solved assuming initial values for the mean and the variance of each variable in 

the covariance matrix R of the noise of the observations, for the covariance matrix Q of the 

noise associated with the state vector, for the matrix φ of the transition coefficients, and for 

the observation matrix M. Because Shumway (1988) considers the matrix M as being an 

unit matrix (identity), equation (11) becomes 

 

( ) ( ) ( ) (11a)                                              xvxZxY iYijij j
+=  
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 During the development of the software ASTSA (Applied Statistical Time Series 

Analysis) which is used for the analysis of time (space) series, the unit matrix M is fixed 

during all steps of variable estimation. This shows the greater emphasis of this approach in 

being referenced to the equation of state evolution, and not to the observation equation. 

More specific details can be found in Shumway (1988) and  Shumway & Stoffer (2000). 

  

West and Harrison (1989, 1997) State-Space Approach  

 The bayesian formulation presented by West and Harrison (1989, 1997) and 

originally published by Harrison and Stevens (1976) has not frequently been used in 

agronomy. In this case a general parametric formulation is used by which the observations 

are linearly related to parameters (equation 11), that have a dynamic evolution according to 

a random walk (equation 12), with the possibility of the incorporation of uncertainties 

associated to the model itself and to the parameters of the model. The probabilities of the 

model and its parameters are continuously updated in time/space using the Bayes theorem 

(Cantarelis, 1980). The acceptance and use of this approach was not as quick as expected, 

particularly by those without a deep knowledge in statistics, due to the difficulties in 

establishing values (or their law of variation) for the parameters “vj(xi)” and “uj(xi)”. To 

make this approach more accessible, Ameen and Harrison (1984) used discount factors to 

calculate the covariance matrix of the noise parameters uj(xi). Discount factors relate to the 

relevance of the observations during the evolution of time/space – with the most recent 

information usually being more relevant in the modeling process. The smaller the discount 

factor, the less importance is given to previous information. Hence, the use of these factors 

assures that the stochastic influence on the evolution of the parameters (equation 12) is not 

directly made explicit through the noise uj(xi). The stochastic influence is derived by the 
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combination of a relation that establishes only the deterministic evolution of Zj(xi) and the 

random process guaranteed by the discount matrix.  

 In this state-space approach, the state equation describes the evolution of the 

regression coefficients β through a vector random walk 

(15)                                                 1 iii w+= −ββ  

where wi ~ N (0,W) are non-correlated (white noise) (Timm et., 2006). The regression 

coefficients vector β is related to the observable response variable Y through the 

observation equation  

(16)                                                 iiii vFY += β  

where Fi is a known matrix containing the regressors, which reduces to a vector for 

unidimensional responses, and vi are non-correlated errors with zero mean, constant 

variance and normal distribution.  

The dynamic regression model (equations 15 and 16) is a local and not a global 

model, because it contains variable β coefficients having the subscript i. These coefficients 

vary along space according to a Markovian evolution (first order autoregressive process, 

not having to be stationary), being therefore called “state variables of the system” (West 

and Harrison, 1989, 1997; Pole et al., 1994). Hence, we have a basic regression equation 

(observation equation, equation 16), and a second equation (evolution equation, equation 

15) which characterizes the form of the variation of these state parameters along space. 

Parameters are estimated in an optimal way through algorithms of the type KF (extensions 

of the basic KF). The equations of estimation are sequential, comprising the observational 

equations of actualization (via Bayes theorem and observation equation) and the spatial 

actualization equations (consequence of the evolution equation).  
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In this approach more emphasis is given to equation (11). In the dynamic regression, 

the β coefficients are considered as a state vector (equation 12) following a random walk 

process. The transition matrix φ is unity and the observation matrix M that relates the state 

vector with the observation vectors, being formed of the regression coefficients. 

 Because dynamic regression models represented in the state-space form are 

relatively recent tools, they have not yet been frequently used to quantify soil-plant 

relations. Having been introduced in the sixties, their greater implementation occurred only 

since the late eighties (West and Harrison, 1989, 1997). Being models of local adjustment, 

it is possible to precisely estimate regression coefficients for each sampled location. This 

possibility tends to alleviate the problem of spatial variability encountered in precision 

agriculture. Today, the more commonly used static models are models of global behavior 

with their regression coefficients being average values not varying along space. They 

provide an opportunity to describe the spatial association among different variables 

measured across a field and can, therefore, provide a better understanding of the complex 

relations between plant and soil variables. Inasmuch as the response of one variable is not 

unique in a field, the application of statistical multiple regressions oftentimes yield low 

coefficients of determination. Because these kinds of analyses give only a global estimate 

of coefficients that do not represent point to point variations and their use can lead to 

interpretations that induce inadequate management procedures. We conclude that dynamic 

regression models of state-space form are more adequate for the study of soil-plant 

relationships mainly because they account for the local spatial and temporal character of 

agronomic processes. 
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