

1867-16

College of Soil Physics

22 October - 9 November, 2007

A soil mechanics approach to study soil compaction

Moacir S.Dias Junior ICTP Senior Associate, Univ. Federal Lavras Brazil

A soil mechanics approach to study soil compaction

Moacir de Souza Dias Junior, Ph.D

Department of Soil Science Federal University of Lavras

Senior Associate - International Center for Theoretical Physics - Trieste- Italy msouzadj@ufla.br

- The sustained use of the soil is related to the preservation of the soil structure.
- ► The main degradation process of the soil structure is soil compaction.
- The extent of compacted soil is estimated worldwide at 68 million hectares of land from vehicular traffic alone (Oldeman et al., 1991). 33 million ha in Europe (Akker & Canarache, 2001).
- Recover of the soil structure???
 ⇒10-20 years ⇒ shallow compaction (Dickerson, 1976; Jakolbsen, 1991).
 ⇒ 50-100 years ⇒ subsoil compaction (Greacen & Sands, 1991).

Soil before compaction

◆ Compaction of soil ⇒ reduction of volume **Expulsion of air from soil pores.**

Air

Water

Solid

Air

Water

Solid

◆ Consolidation ⇒ reduction of volume > expulsion of water from soil Water pores

Solid

Inadequate management

Consolidation → reduction of volume → pedogenetic processes

(Dias Junior, 2000)

Soil compaction could be caused by the use of different types of machines and vehicles in farm operations

Which might apply pressure larger than the load support capacity of the soil

Magnitude of pressures

Tractor

64 to 380 kPa (Allmaras et al., 1988)

Tillage equipment100 kPa (Hillel, 1982)

Subsoiler550 kPa (Hillel, 1982)

Trampling

Human: 190 kPa (Lull, 1959) Cattle: 330 kPa (Lull, 1959)

Magnitude of pressure exerted by agricultural machines

Machine/Equipment -		Contact pressure/pneu-tack					
wachine/Equipment	Fron	t	Back	K			
	Kgf/cm ²	kPa	Kgf/cm ²	kPa			
Massey Fergusson Tractor 275 4x2 TDA	2.582	253	2.761	271			
Massey Fergusson Tractor 292 4x2 TDA	1.977	194	2.787	273			
Massey Fergusson Tractor 299 4x2 TDA	2.723	267	2.787	273			
John Deere Tractor 6405 4x2 TDA	2.582	253	2.336	229			
John Deere Tractor 7500 4x2 TDA	1.977	194	2.206	216			
New Holland Tractor TM 150 4x2 TDA	3.155	309	3.699	363			
AutomaticIly Propelled Pulverizer Max Sistem Plat. 290 4x2 TDA	3.247	318	3.391	332			
Automatically Propelled Max Sistem Plat. 6600 4x2 TDA	3.236	317	2.766	271			
AutomaticIly Propelled Pulverizer UNIPORT Jacto 4x2	4.127	405	4.606	452			
Combine Harvester for Cereals Massey Fergusson 5650 4x2	3.386	332	3.218	316			
Combine Harvester for Cereals John Deere 1175 4x2	3.695	362	2.879	282			
Combine Harvestr for Cotton John Deere 9935 4x2	3.484	342	3.041	298			

Source: Cardoso, 2007

Depth of furrrow in the soil following farm operation with a Forwarder with Tires or Track

Soil Class	s Number of passes of Forwarder								
		8	16	40					
	Depth of Furrow (cm)								
PAd2	Tires	11	14	18					
	Tracks	11	13	15					
PAd3	Tires	14	18	26					
	Tracks	12	15	20					

Depth of furrrow in the soil following farm operation with a Forwarder with Tires or Track

Soil Class	Number of passes of Forwarder								
		8	16	40					
	Depth of Furrow (cm)								
DAda	Tires	11	14	18					
PAd2	Tracks	11	13	15					
D 4 42	Tires	14	18	26					
PAd3	Tracks	12	15	20					

Grigal (2000)

Light disturbance – shallow depression

Moderate disturbance – furrows with depth from 5 to 8 c

Due to that

Soil compaction has been identified as the main process causing soil degradation

(Canillas & Salokhe, 2002, Horn et al., 2003).

Reducing soil produtivity

Therefore, it is important to avoid the harmful effect of soil compaction

Negative effects of soil compaction

Increases bulk density (Arvidson, 2001; Ishaq et al., 2001)

Project	BD Before	F+S	F+S	H+F	M+F	F+C	M+M	Proc.
	traffic	30	66					Area
	Mg m ⁻³		Dry	Seaso	on (% of	increa	se)	
Buriti	1.02	1	0	7	-	-	-	-
Dourado	0.92	5	5	8	-	-	-	-
S. Leonar	do 1.04	8	4	8	-	-	-	-
	Rainy Season (% of increase)							
Imbaúbas	1.01	22	-	21	11	-	-	34
Água Suja	1.13	13	-	-	21	6	1	26
Cajá Ba.	1.29	15	-	-	22	18	7	26

F+S 30 = Feller Büncher and Skidder narrow tires; F + S 66 = Feller Büncher and Skidder wide tires; H+F = Harvester and Forwarder; M+F = Manual and Forwarder; F+C = Feller Büncher and Clambunk; M+M = Motorized saw + Manual; Proc. Area = Processing Area

Decreases total porosity, size and continuity of the pores (Servadio et al., 2001)

Project	TP Before		F+S	H+F	M+F	F+C	M+M	Proc.
	traffic	30	66					Area
	(%)		Dry	Seaso	on (% o	f decrea	ise)	
Buriti	61	0	0	3	-	-	-	-
Dourado	64	3	3	5	-	-	-	-
S. Leonard	o 58	7	3	7	_		_	_
			Rain	y Seas	on (%	of decre	ease)	
Imbaúbas	58	16	_	16	9	-	-	24
Água Suja	56	11	-	-	18	5	0	20
Cajá	51	16		-	28	18	8	25

F+S 30 = Feller Büncher and Skidder narrow tires; F + S 66 = Feller Büncher and Skidder wide tires; H+F = Harvester and Forwarder; M+F = Manual and Forwarder; F+C = Feller Büncher and Clambunk; M+M = Motorized saw + Manual; Proc. Area = Processing Area

Negative effects of soil compaction

→ Increase the penetration resistance of soils (Arvidson, 2001; Ishaq et al.,2001).

Negative effects of soil compaction

→ Reduction in soil aeration (Gysi, 2001)

→ Increase in required energy for soil preparation (Stone, 1987)

Negative effects of soil compaction

→ Alteration of soil structure and the place where roots develop

→ Reduces water infiltration (Defossez & Richard, 2002)

Project	IR Before traffic (mm/hr)	F+S	H+F % of reduc	M+F tion
Buriti	148	80	86	77
Dourado	105	86	84	-
S. Leonard	o 103	80	86	76
I mbaúbas	155	100	100	100
Aeroporto	180	90	91	90

F+S = Feller Büncher and Skidder narrow tires; H+F = Harvester and Forwarder; M+F = Manual and Forwarder.

Negative effects of soil compaction

- → Reduction of internal drainage and the redistribution of soil water (Hillel, 1982)
- → Reduction of available water (Ishaq et al., 2001)

→ Increase in surface runoff (Defossez & Richard, 2002); and the risk of erosion (Dias Junior, 2000).

→ Restriction of root development /penetration due to:
★ The pressure of root growth is insufficient to overcome the mechanical resistance of the soil (Veen, 1982)

Negative effects of soil compaction

★ High water content in the soil and its associated insufficient avaialable oxygen for respiration by the roots (Lemon & Wiegand, 1962).

Negative effects of soil compaction

→ the restriction of root growth could lead to reduction in productivity due to limitation in water uptake and absorption of necessary nutrients (Santos, 2001)

→ Therefore, when soil compaction happens, it is necessray to break the compacted layer, softening the soil, for improved growth of plants. This could be achieved by tillage and subsoiling.

Methodology Development

- √ Trim the excess soil sample to ring size;
- ✓ The volume of soil corresponds to the volume of the ring;
- ✓ Record the information of the samples, this include: Project description, sample number and other details about the sample;

Methodology Development

Saturate the samples by capillary by placing them in water in a bowl (about 2/3 of the ring height) for 24 h;

Methodology Development

Air-dry the samples in the laboratory until the desired moisture content is obtained

Methodology Development

- Before the uniaxial compression test, take note of the mass of the sample + ring;
- Submit the undisturbed soil samples equilibrated to different moisture contents or matric potentials to uniaxial compression (Bowles, 1986);

Uniaxial Compression Test

- Consolidometer (Boart Longyear).
- Undisturbed soil samples.
- Applied pressures :
 - ⇒ 25, 50, 100, 200, 400, 800 e 1.600 kPa.
- Samples partially saturated.
- Pressure applied until 90% of maximum deformation is achieved (Taylor, 1948).

Soil compression curves were used to evaluate soil compressibility

- Preconsolidation pressure - estimation of the Load Support Capacity.
- → Dry soils have ↑ σ_p compaction is not important;
- Wet soils have ↓ O_p soil is vulnerable to soil compaction.

Bearing Capacity Model

It is used to determine the load support capacity of the soil as a function of the moisture content.

General Considerations

- For a specific soil condition, the proposed Bearing Capacity model accounts for soil management history in terms of preconsolidation pressure as a function of moisture content.
- Preconsolidation pressure ⇒ estimation of the Load Support Capacity of unsaturated soils.

Problem

- → How to determine in a fast way the preconsolidation pressure?
- → Most used method in soil mechanics:
 - Casagrande (1936) graphical procedure.

Dias J	unior & Pierce	e (1995)		RIMENSEAGE FERSIVE DE LANGE			
Pressão	Log Pressão	Ds	Ds R Virgem	Ds regressão			
25	1.3979	1.3905	1.2897	1.3845			
50	1.6990	1.4444	1.3825	1.4502			
100	2.0000	1.5097	1.5160	1.5160			
200	2.3010	1.5878	1.5681	1.5817			
400	2.6021	1.6712	1.6609	1.6474			
800	2.9031	1.7537	1.7537	1.7131			
1600	3.2041	1.8465	1.8465				
Method 1	Method 1 (Suction <= 100 kPa) Method 3 (Suction > 100 kPa)						
σ_{p}	= 151 kPa		$\sigma_{\rm p} = 238$	kPa			

1.61 Mg m⁻³

 $Ds = 1.53 \text{ Mg m}^{-3}$

Statistical Method
Snedecor & Cohran (1989)

Load support capacity model of a soil at 3 depths

0-3 cm:
$$\sigma_p = 10^{(2,70-1,05U)}$$
 R² = 0,88** n = 15

10-13 cm: $\sigma_p = 10^{(2,72-1,06U)}$ R² = 0,77** n = 15

25-28 cm: $\sigma_p = 10^{(2,73-1,06U)}$ R² = 0,83** n = 15

Homogeneity test as described by Snedecor & Cochran (1989)

Management	Depth (cm)			F
		F	Angular Coefficient,	Linear b Coefficient, a
Α	0 a 3 vs 10 a 13	Н	ns	ns
Α	0 a 3 e 10 a 13 vs 25 a 28	Н	ns	ns

Load support capacity model of the soil

Homogeneity test as described by Snedecor & Cochran (1989)

		ı	F
Management		Angular coefficient, b	Linear coefficient, a
A vs B	н	**	ns
A vs C	Н	ns	**
B vs C	Н	ns	**

Application of the Load Support Capacity model in practical environmental problems

To evaluate the efficiency of the subsoiling operations

Römkens & Miller (1971)

Preconsolidation Pressure

Estimation of the resistance of soil to the growth and elongation of roots

Identification of the management more susceptible and resistant to soil compaction

Identification of the management more susceptible and resistant to soil compaction

Identification of the soil horizon that may limit root growth

Identification of the soil horizon that may limit root growth

Identification of the soil horizon that may limit root growth

Identification of the soil class more susceptible and resistant to soil compaction

Identification of the soil class more susceptible and resistant to soil compaction

Identification of mechanical operation that causes soil compaction

Identification of mechanical operation that causes soil compaction

Identification of mechanical operation that causes soil compaction

Identification of mechanical operation that causes soil compaction

Identification of mechanical operation that causes soil compaction

The critical operations in the harvest of eucaliptus

To measure the preconsolidation pressure during a production cycle of eucaliptus

Natural recovery of soil structure

U (kg kg⁻¹)

- $\sigma_{\rm p} = 10^{(2.88 3.95 \text{ U})} \text{ R}^2 = 0.86^{**} \text{ (n = 76)}$
 - Confidendce Interval 95%
- Forwarder 1998 After harvest
- Forwardr 2004 Before harvest
- ▲ Forwarder 2004 After harvest

Photo: F.P. Leite

σ_{pt}¹>σ_{pmáxest}² State

Dry Wet

----- (%) ------

Feller and Skidder³ 5 15

Harvester and Forwarder⁴ 8 31

1 – Preconsolidation pressure determined after traffic, 2 – Preconsolidation pressure etimated with equation within the 95% confidence interval, 3 - Feller Büncher (model 2618 with track) and Skidder (model 460 with tyres 30.5L.32), 4 – Harvester (model 1270 with tyres 700x26.5) and Forwarder (model 1710 with tyres (750x26.5).

Identification of critical number of passes

Yellow Argisol - Eunápolis - BA

Horizon	Forwarder	Traffic Intensity			
		8	16	40	
		% of compacted soil samples			
Α	Tires	58	57	84	
	Tracks	63	46	77	
В	Tires	21	32	42	
	Tracks	13	25	39	

Photo: S.R.Silva

Identification of critical applied load

Yellow-Read Latosol Santa Maria de Itabira - MG

Load of a Forwarder with tires (4 passadas)

1/3 (3 m³) 2/3 (6 m³) 3/3 (9 m³)

Depth % of compacted soil samples

0-3 cm 60 80 90

10–13 cm 70 80 90

(Silva et al., 2007)

WINDS FEDERAL DELIANS

Identification of the residue effect (Without residue)

2 passes 8 passes

Photo: A.R. Silva

Identification of the residue effect (Brushwood)

Identification of the residue effect (Brushwood and bark)

2 passes 8 passes

Identification of the residue effect

Yellow Latosol - Guanhães - MG

Paci			
	ш	u	L٠

Brushwood and Brushwood Without residue bark

Depth

% of compacted soil samples

2 passes of a Forwarder with tires

0

0

0

30

10-13 cm

8 passes of a Forwarder with tires

10

50

(Silva et al., 2007)

Trafficability maps

Use to estimate:

- The load support capacity
 - 2 The susceptibility to compaction
 - The resistence to tillage operations

(Gontijo, 2007)

Final Considerations

- The proposed methodology shows promising potentials to:
- Determine of the load support capacity of soils, which can be used as an auxiliary criterion for planning and managing mechanical operations;
- Quantify the effect of traffic on soil structure;
- Identify the presence / occurence of compaction layer

