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Advanced BWR Plant - generic

features

* Direct Cycle - heat generated in reactor Core
1s directly utilized for steam generation
inside the reactor vessel.

Steam develops as small “bubbles™ (void)
entrained 1n core coolant. It 1s separated 1n
the coolant flow from “Steam Separators”,
and dried 1n “Steam Dryer” arrangement -
minimize water carry-over & more long-
lived radioactive products from the reactor
water.
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Reactor Core & Fuel Design

 BWR core consists of a number of fuel
bundles (assemblies). B

Each fuel bundle (assembly) consists of a
number of fuel rods arranged 1n n X n square
lattice (slightly enriched uranium fuel -

typical enrichment 2 % to 5 % U-235 by
weight). Average core power density ~ 60 %

PWR.

Number of control rods enter the core from
the bottom, through guide tubes 1n the fuel
assemblies.
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Reactor Core & Fuel Design

B BWR allows bulk boiling of water. Operating
temperature ~ 288 C; steam pressure 7 MPa

B Reactor power control consists of control rods and
recirculation flow control

Bl Control rods (neutron absorbing materials)
maintain a constant desired power level by a
adjusting their positions ~ 2 % per sec.

B Recirculation flow control also controls reactor
power by altering the density of water used as
moderator. The flow rate 1s adjusted by a variable
speed pump. Power changes ~ 30 % per minute




Question #1

 Why adjusting recirculation flow rate 1n
BWR will control reactor power ?




Question #2

 Why Control Rods enter from the bottom of

the core, as opposed to entering from the
top of the core, like in PWR or PHWR ?




Main Steam System
“Dried steam” from Reactor Pressure Vessel (RPV)
to the turbine plant through four steam lines
connected to nozzles equipped with “flow limiters™.

Limit the coolant blowdown rate from the RPV = or
< 200 % rated steam flow at 7.07 MPa upstream

pressure 1n the event of steam line break occurs
anywhere downstream the nozzle.

Isolation valves inside and outside of containment
wall.

Safety Relief Valves (~16) connected to the four
steam lines to prevent RPV overpressure, with blow
down pipe to Suppression Pool.
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Turbine & Steam Bypass Systems

e Saturated steam from RPV main steam lines
admitted to turbine HP cylinder via the governor
valves. After HP section, steam passes through
MSR to LP turbine cylinders.

A special Steam Bypass line prior to the turbine
governor valves, enables dumping the full nominal
steam flow directy to condenser 1n the event of
plant upset (e.g. turbine trip), in order to avoid
severe pressure surges and corresponding power
peaks 1n reactor.
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BOP & Feedwater System

e Typical BOP systems - condenser;
condensate pumps; deaerator; feedwater
heaters; Reactor Feed Pumps (RFP);

Reactor Level Control Valves.
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Containment & ECC
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Containment

 Containment - cylindrical prestressed concrete
structure with embedded steel liner - encloses
reactor, reactor coolant pressure boundary &
important ancillary systems.

Pressure-suppression type with drywell and
wetwell.

Wetwell separated from drywell by partition
floor. The wetwell’s lower portion 1s filled with
water - condensation pool. Upper portion
serves a gas compression chamber.




Containment (cont’d)

* Drywell pressurization (LOCA) - drywell
atmosphere & steam pushed into the wetwellsma
a passage through the partition wall. Steam
condensed 1n suppression pool. Non-
condensables collected 1in the gas compression
chamber

Pressure suppression further supported by water
spray system to gas compression chamber and the
upper drywell.

Containment vessel can also be vented manually
or via rupture disk, to the stack through filter
system




BWR Control Systems

Reactor Power Control
Reactor Pressure Control
Reactor Water Level Control
Turbine Control

Turbine Steam Bypass Control
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Reactor Power Control

-
* The reactor power output control system consists

of control rods, rod drive system and
recirculation flow control system.

e The control rods and their drive system maintain
a constant desired power level by adjusting the
position of the rods inside the core.




Rod Control System

The Control Rod Drive System 1s composed of three
major elements using fine position digital motor
drive & hydraulic drive:

(1) the fine motion control rod drive, FMCRD
mechanisms;

(2) the hydraulic control unit (HCU) assemblies;

(3) the control rod drive hydraulic subsystem
(CRDH).




Rod Control System (cont’d)

The FMCRDs together with the other componenés arc
designed to provide:

electric-motor-driven positioning for normal insertion
and withdrawal of the control rods;

hydraulic-powered rapid control rod insertion (scram)
in response to manual or automatic signals from the
Reactor Protection System (RPS);

electric-motor-driven "Run-Ins" of some or all of the
control rods as a path to rod insertion for reducing the
reactor power by a sizable amount.




Rod Control System - Simulator

e For the BWR Simulator, there are approximately 208
FMCRDs 1n total, they are positioned and wﬂed
with reactivity worth of -100 mk when all of them are
100% 1n core, and +70 mk when all of them are 100

% out of core; 0 mk when they are ~ 41 % 1in core.

The rods are grouped 1n 8 banks, so each bank of rods
have + 8.75 mk when fully out of core; and -12.5 mk
when fully 1n core.

The FMCRDs will be fully inserted into the core in
the event of a reactor scram. In such case, the fast
insertion speed 1s typically 3 sec. for 100 % insertion.




Rod Control System - Simulator

e The full speed travel time for the rod movement
during power maneuvering is typically 60 sec., or
considering for the total FMCRDs in Auto mode,
where all the rods move together, the reactivity
change rate 1s ~ 2.8 mk per sec.

Considering moving the banks of rods individually
under Manual Mode, then the reactivity change rate
for each bank under manual mode control 1s ~ 0.36
mk per sec.




Reactor Power Control

® The recirculation flow controlled by recirculation

pumps known as Reactor Internal Pumps«(RiiPs).

® The pump speed changes according to the change
of trequency of the induction motor that drives
the pump.

* Ditferent pump speed will give rise to ditterent
pump dynamic head in the core recirculation tlow
path, resulting in different core tlow. This
recirculation flow control system 1s capable of
changing the reactor output rapidly over a wide
range while keeping the power distribution in the




Reactor Pressure Control

* In normal operation, the reactor pressure
is automatically controlled to be constant.

® A pressure controller to regulate the
turbine inlet steam pressure by opening
and closing the turbine governor control
valve and the turbine bypass valve.
Currently, the reactor pressure setpoint is
set at plant design pressure of 7170 KPa.




Reactor Water Level Control

-
e The flow of feedwater 1s automatically

controlled to maintain the specified water
level by a "three elements"” control scheme:
steam flow, feedwater flow, water level.

The valve opening of the feedwater control
valve provided at the outlet of the feedwater
pumps 1s regulated by the control signal as
result of this "three-element” control scheme.




Turbine Control

* The turbine control employs an electrohydeanlic
control system (EHC) to control the turbine valves.

Under normal operation, the Reactor Pressure Control
(RPC) unit keeps the inlet pressure of the turbine
constant, by adjusting the opening of the turbine
“speeder gear” which controls the opening of the
turbine governor valve opening.

Should the generator speed increase due to sudden load
rejection of the generator, the speed control unit of the
EHC has a priority to close the turbine governor valve
over the Reactor Pressure Control (RPC) unit.




Power/Flow Map

e The Power Flow Map 1s a representation of
reactor power vs. Recirculation flow. The
horizontal axis 1s the core flow 1in % of full
power flow. The vertical axis 1s reactor neutron
power 1n % full power.

Any operation path that changes the power and
the flow from one condition to another
condition through control rod maneuver and/or
recirculation flow change can be traced on this
map.
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Power/Flow Map

-
e Under normal plant start-up, load

maneuvering, and shutdown, the operation
path through REGION 1V 1s recommended.

In fact, the line which borders between Region
I &IV, Region III & 1V, the Blue region and
Region IV 1s the “maximum power-tlow” path
to be followed for power increase and
decreases and usually operation of the plant 1s
“below” this “maximum” power-flow line.




Power /Flow Map

e Limits are imposed to prevent operation 1n
certain areas of the Power - Flow Map to
maintain core thermal limits and to avoid
operation above licensed power level - there
are three measures to prevent that:

e Control Rods Withdrawal “Blocked” (if >
105% ) ; Control Rods “Run-in” (if >
110%); Scram (1f > 113%).




Reactor Regulating System - Simulator
Power Error = Actual Power - Demanded Power

If current power < 635 %, control rods moves “in”
(+ve error) or “out” (-ve error) until power error = 0.

If current power > 65 %. The new incremental
demanded power setpoint signal 1s sent to the flow

rate scheduler (flow =1 (power)) which will provide a
flow rate setpoint to the flow controller.

It the flow rate increase/decrease cannot provide
enough reactivity change causing sufficient reactor
power increase/decrease so that the power error 1s
less than a pre-determined dead-band, the rods
movement will become necessary at that time so that
the power error 1s within limits.




akrviem

Turhine Trip Fieactor Fres . Lo || Fods Run-in Feg'd Hi Dy FFLOCA, Turhine Runback. Gen Breaker Opn
; 109
HiMeut Pwrws Flow | BeactorPres . Hi Feactor Pres Lo Feactor Lewel Lo Feactor Lvl% Lo Lo Turb Fwd Pwr P Pumprs) Ttip
Feactor lsolated Feactor Press Hi Core Flow Lo Feactor Lewvel Hi spdr Gear in ban Loss RIF Prpis) balunction Active 487
Feactar Pwr & Thermal Pwr| Care Flow Rate (Kg/s)|
PLANT MODE RODSRUN-IN | SCRAM |FCTRgli0s0- 15000, - mm— .
TURBINE-FOLLOW-REACTOR | NO VES TRML
B0 o] xd @ ot
‘ Feactor Pressure (KPa]| E955.70 =P (KFa)| [7170.00 ‘ 40.0- 5000.0-
HOLD REACTIVITY EFFECTS] AR :
FOWER 0.0- — 0o-
DEMANDED REACTMITY | | FMCRD BOWER [10:07:12 AM 10:08:07 AM  [10:07:12 AM 10:08:07 AM
POWER CHANGE (M) | LEVEL Actusl & Demanded SP) Total React Chge (mk)
""""""" SETPOIMNT 10.0+ —
LTS [ #p-FMCRD|[F0000)| g% REERiEs
Mex [106.00] 191|%FP voID| [=3150 I_h: l(]:[?hF:E NELJTPWH ED.D— 50~
MIN | 0.00 0.2808| DEC = - 0.0-
XENON|| -28.00 . 40.0
(%% P s flow) DEMANDED] | | o 1[;][_“]_? 20095 | %FP 500 5=
FUEL 7 '
RATE 138 oF 0.3031 |DEC i}
L SETPOMNT TEMP 0a -10.0- '
ACTUAL o T CD;I*]E  ERREEEEEEEEEE [10:07:12 AM 10:08:07 AM | [10:07:12 AM 100807 A
seTPOINT| [+l 0.00[%PP/s] + Control Rods Average Pos| —
= TEMP 483 K THHL PR 00T 10.0- Power Error|
0.07| %FF o i
R ».Fr 0.0000| DEC/s 67.04| %FP| 60.0 5.0-
11818 DEC ToTAL|[1sE3s|| | Lo B0~
- POWER — PR RATE %/ 100 0.0-
ERROR CONTROL RODS| [ 03 il £ 0-
RCTR PR 0.05| %] MODE  AUTO PAWR LOG 20.0- '
SETPOINT . 017315 /= [.0- -10.0-
+VE SPEED | 07| %/s] —— DEJCfs 00712 AM 10:08:07 AM | [10:07:12 AM 10:06:07 AM
QDD'DD %FPl| | 3070 DEC AVE POS [100.0] %] Resolution|  Time Scroll
2.0000| DEC %, I 0 d Il
M Out] =" In
BWR Reactivity & Reactar Feactar Gieneratar Reactar ' Core RCTR L |ﬂ| et
Setpoints = Meutron Fwr (%) | Thermal Pwri%) Output(a) Pressure (kPa) ‘ Flow (kg/s) | BOPSTM |HEIEE
— — =i — Py Flonw || [iE Ialf Hel
Feactar Trip | Turkine Trip GY55.70 9943.20 Fuel Temp | | p




Basic BWR Operation

Plant Startup (cold start < 25 hours; hot start < 5 hours):
Control Rods withdrawn to bring the reactor criticar

RPV heat-up & pressurization by further control rod
withdrawals

Initial power increase by continued rod withdrawals to a
level where main turbine i1s synchronized

Continued power increase using the control rod motion

until the automatic flow control range is reached ~ 65 %
FP.

Reactor power 1s increased by increasing recirculation
flow rate (65% - 100 % FP).

Always operates in Turbine-Follow-Reactor Mode




Basic BWR Operation (cont’d)

e Plant Shutdown: follow the reverse
sequence of plant startup

e Reactor Shutdown Cooling - cool-down and
decay heat removal 1s accomplished by
bypassing steam to main condenser, and by
the Residual Heat Removal System




BWR Load Following Capabilities

e LLoad Regulation - 65 % to 100 % FP by
automatic tflow control; below 65 % FP by
control rods motion.

* Frequency control - 1 to 10 % power
change by automatic flow control.

e Load Shedding - automatic opening of
turbine bypass valves, automatic tlow
reduction and control rod insertion.




Automatic Responses to Design
Basis Events Accidents

) D
Reactor Protection

Containment Isolation
ECCS actuation - detection of LOCA

Suppression pool cooling and reactor scram
on high pool temperature to mitigate
inadvertent SRV opening event

Other events - boron injection; feedwater

flow runback, redundant actuation of scram;
FMCRD run-in.




BWR Emergency Plant Operation

-
RPV Control - protection against extreme

conditions on reactor water level, pressure, and
power.

Primary Containment Control - drywell
temperature, pressure, hydrogen concentration.

Secondary Containment Control - wetwell
water level; temperature and radioactivity.

Radioactivity Release Control - offsite
radioactivity release controls.




Answer #1

* Because in BWR, boiling core has steam

bubbles entrained 1n light water coolant,
which i1s also a moderator.

e Void in coolant has negative reactivity
feedback - more steam bubbles, more void,
more negative reactivity.

* Hence at high power, increasing the
recirculation flow rate will reduce void
density, thus less negative reactivity.




Answer #2

e Neutron flux distribution in BWR core 1s a
function of void fractions i1n core.

Since voids are abound 1n the upper part of the
core, the moderating power 1s highest in the non-
boiling section of the core (lower part).

This causes the peak neutron flux (power density)
for a boiling core to shift from the center position
towards the bottom of the core. Control rods
entering rom the bottom can partially correct the
skewed axial flux distribution




Answer #2

Flux Shape Flux Shape

Before Control Rods After Control Rods
entry from bottom entry from bottom




GE’s Generation llI+... ESBWR

* Design Highlights
« 1,550 MWe Boiling Water Reactor
* Passive safety
» Natural circulation

+ Key Benefits
* Reduced capital cost
« Shorter construction period
« Improved safety & security
* Improved O&M costs

« Status
« DOE 2010 awards completed May 2005
* NRC design certification submission complete
* NuStart, Entergy and Dominion select ESBWR




ICTP Workshop -
BWR Modeling - Steady State

Wilson Lam (wilson @ cti-simulation.com)
CTI Simulation International Corp.

WWW.ctil-simulation.com

Sponsored by IAEA




Boiling Reactor Mass & Heat Balance

saturated steam flow

<mg> hg

Steam Separator Overall mass 1n reactor

core.
e steam flow = feedwater flow

<mg> h;

Recirculation water flow

<H&>::<HM>--(1)

)"!”V feedwater flow

|||| | <my> hy e subcooled water flow at
reactor inlet = feedwater flow

<m.> + recirculation flow
1

<m> = <mg> + <mg>
or
<m;> = <mg> + <m>

.2

<m> = dm/dt = mass flow rate

h = specific enthalpy




Boiling Reactor Mass & Energy Balance

e The average exit quality by definition:

X = <mg>/(<mg> + <mg>) ....(3)
f 1

FW rate steam rate recir water rate
\

or X =<mg>/(<mg>+ <mg>)
= <mg >/ <m> =<m,>/<m> (%)
t & t

|
steam rate core flow rate

Recirculation Ratio = recirculation water / steam vapor produced
=<mg>/ <m> = (1 - X)/X ....(5)

<m;> = <mg> + <m> = <mg> + (X /(1 - X)) <mg>
=<m>/(1 - X) ....(6)




Boiling Reactor Mass & Energy Balance

* Energy Balance at reactor inlet:

or X = (h;-hy) / (h; - hy)

* Energy Balance at the core

<m,>.h, + <mg>.h; = Q, + <m;>.h;

Q, = <m>. [(hy + X. hy) -hy] ... (8)
where hg, = h, - h;

Q, =<my> (h, - hy) 9)

g




Exercises -BWR Modeling

* Derive Equation (8) & (9)




BWR Spreadsheet Model

e (Given the following data:

— Technical Data for US version of ABWR (see
BWR Simulator Manual)

— Technical Data for ABWR Power Flow Map
(see Binder - Miscellaneous Section)

— Technical Data for Available Energy for
condensing turbine (see BWR Simulator
Manual)




BWR Spreadsheet Model

Create an EXCEL spreadsheet (BWR)

Column A’s name 1s % FP - put in numbers 100%,
90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10%,
5%, 3%, 0%

Column B’s name 1s MW - first cell 1s MW(gross) at

100% FP (from AWBR Spec. sheet) = 1385 MW.
Compute the rest of the cells in Column B using %
numbers in Column A.

Column C’s name 1s KBTU/hr - to convert MW to
KBTU/hr, multiply the cells in Column B by 3413.
Compute all the cells in Column C using this energy
conversion.




BWR Spreadsheet

e Column D’s name 1s Steam Flow (Kg/s) - to compute steam flow
for the BWR plant in column D cells -

— first find the available energy BTU per Ib of steam from
technical data chart for condensing turbine given. Note inlet
steam pressure 6.8 Mpa = 1000 Psia; backpressure of 11.75
Hg = 3 1n backpressure; inlet steam temp 284 deg. C = 543
deg. F

— Multiply this number - BTU per 1b of steam, by the efficiency
of the turbine ~ assume 74 %, to get the “actual” BTU/Ib for
this turbine.

— Divide the C Column’s number (KBTU/hr) by actual BTU/lb
to get KlIb /hr.

— Multiply this number by 0.126 to convert Klb/hr to Kg/s

— To check your result, according to ABWR data spec., the 100
FP steam flow 1s 2122 Kg/s. You may have to adjust turb. eff.




BWR Spreadsheet

Column E’s name 1s Core Flow (Kg/s).
Enter the first cell = 14502 (from ABWR Spec.)

Column F’s name 1s Core Flow (%) - enter the % numbers to
match ABWR Power/Flow Map (given data), following the
typical startup path - e.g. 100%FP - 100 % coreflow; 90 %FP
- 80 % coreflow; 70 % FP - 65% coreflow, .... etc.

After all % numbers are entered for all cells in Column F,
compute the coreflow (Kg/s) in all the remaining cells in
Column E.

Column G’s name 1s Quality X - calculate X using other
columns’ cells values.

Column H’s name 1s Recirculation Flow (Kg/s) - calculate
recirculation flow using other columns’ cells values.




BWR Spreadsheet

e Plot a curve for the Quality X versus Power
(%)

 Comment on the Quality values as power
Increases.

 If you are to design a reactor power control
system, using Control Rods, and other
means, how would you do it ?




BWR Spreadsheet (cont’d)

Enter cell A23 name = Reactor Pressure; enter B23 value =
7.17 (as per ABWR spec.)

Enter cell A24 name = Sat. Coolant Enthalpy hf (KJ/Kg)

Enter cell B24 formula =
373.7665*POWER(B23,0.4235532)+415

Enter cell A25 name = Sat. Vapor Enthalpy hg (KJ/Kg)

Enter cell B25 formula =-0.9219176*POWER((B23-9), 2) -
16.38835%(B23-9)+2742.03

Now, enter Column I’s name as Reactor Thermal Power
(MWt). Compute Reactor Thermal Power values in Column 1,
using values in cell B24 - hf; cell B25 - hg; and other column
values. Use Feedwater Enthalpy at given temp = 932.007 kl/kg

Verify your calculation for 100 % reactor thermal power using
data in the ABWR Spec.(3926 MW ;)




Solutions: derivation of equation
(6) & (9)

* <m,>.h, + <mp>.hy = Q + <m>.h;

* Qt=<my>.h, + <mg>h; - <m>.h;
= <m>[(<m>/<m;>).h, + (<m>/<m;>).hg - by
= <m>[X. h, + (1-X) . h; - h;] (using equation (4) & (6))
= <mi>[h; + X.. (hg— h;) - h;], hence equation (8)

* Qt=<mg>.h, + <mg>.h; - <m>.h;
= <mg>.hg + <mg>. h - <m>.h - <m >. hy (using (7))
= <m,> (h, - hy), hence equation (9)
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* Fuel heat Transfer

Lumped Parameter Technique for heat transfer from UO2
fuel rods :
dT
dt
dT,
dt

Cl

¢,

()’, = nuclear heating of fuel rod (BTU/sec.ft)

C, = thermal capacity for fuel pellet (BTU/deg. F.ft)y= 7 ”12 Cp1 P
C, = thermal capacity of clad (BTU/deg. F.ft) = 27 Vz(Ail’) C P>
R

; = resistance of UO, and gap (sec ft deg. F/BTU) =
k, 18 UO2 thermal conductivity;
h, 1s gap conductance
T, =average pellet temp (deg. F) ; T, =average clad temp (deg. F)
T. = bulk coolant temp (deg. F)

C

|

_|_
4z k, 27x rh,




*

Boiling Heat Transfer Characteristics

local or nucleate C

boiling "\ bulk boiling
Heat Flux | 105
BTU/hr ft2

non-boiling
film boiling

100 1000

Temp difference (deg. F) between wall & coolant




¥ Heat Transferred to Coolant

¢ A-B: non-boiling; heat transfer by single phase convection.

¢ B-C: local or nucleate boiling; heated surface temp.
exceeds sat. temp by few degrees; bubbles formed; large
increase 1n heat flux due to mixing of liquid by bubbles.

C-D: bulk boiling; heated surface blanketed by unstable,
irregular film in violent motion. Heat transfer by
conduction and radiation - hence heat flux decreases
substantially.

D-E: film boiling or burnt-out. At D, film becomes stable,
and heat transfer improves as the surface gets hotter.
However, very high temperature reached with high heat

flux in this region, usually resulting in the destruction of
the fuel or sheath - BURNT-OUT

BWR operates in B-C nucleate boiling region, away from C.




*

The fuel element temperature 1n direct cycle
BWR 1s (lower/higher) for the SAME steam
conditions in indirect cycle (e.g. PWR) -
why ?

The direct cycle BWR can be operated at a
much (higher/lower) pressure than that
required to prevent boiling in the indirect
cycle NPP using water as a heat transport
fluid. What implications ?




% Nucleate Boiling Heat
T'ransfer

¢ Thom’s nucleate boiling heat transfer at
pressures from 750 to 2000 psia:

QZ.
T —T )=0.7123
( w sat) () 7 ( P ) ...“(3)

e 8690

where T, = fuel wall temperature (deg. C)

T ., = saturation temperature (deg. C)

q” = heat flux (MW/m?2)
P  =pressure (Kpa)




Average Fuel Energy
Equation

where

pf= volume average fuel density

V¢ = fuel volume in one zone

C¢ = average fuel specific heat capacity
T¢ = average fuel temperature

T, = average coolant temperature

P =reactor power

U = overall heat transfer coefficient (Thom’s nucleate boiling)
A = overall heat transfer area for fuel channel



Average Core Coolant Energy Equation

The average core coolant energy equation is given by:

Sy dh,

Ve — e = Wil =W b, + Xy +UAT, =T,) ... (6.4-3)

where

pc = volume average coolant density
V. = coolant volume in one zone
h; = average coolant specific enthalpy at inlet of the core

h, = average coolant specific enthalpy at outlet of the core

A = overall heat transfer area for fuel channel

U = overall heat transfer coefficient. In the non-boiling region, the Dittus-Boetler
correlation for forced convection is used, which is proportional to the (coolant
flow)"®. In the boiling region, the heat transfer coefficient correlation is derived from
Thom’s nucleate boiling (equation 6.4-1).”

T¢ = average fuel temperature
T. = average coolant temperature
W; = coolant mass flow rate at fuel channel inlet

W, = coolant mass flow rate at fuel channel outlet
X = quality of coolant
h¢, = latent heat of vaporization = hg — hf



¥ Boiling Core Dynamics

Sat. liq. enthalpy H Fo= f(P) -(4) | P - Dome Pressure
H,.- Enthalpy of fluid at downcomer

Sat. Steam enthalpy H , = f(P) ...(5) W, - Downcomer flow

Latent heatof vap. H , = H, - H,

Sat. liq. density P = J(P) ...

2 phase core exit enthalpy H _ ,

Quality

Void Fraction = 1— x where W= p—gS , S = slip ratio
1 +( 1174 Py
X ...(10)

Heat Generated from the core: Q, =W, (H , + X.H, — H,) ....(11)




AV | V= fluid vol. in dome
W = core flow
Mass balance at dome: —%* =—((1- X).W -W, + 4+ v
dt p (=20 W, =W Wy + W) W ,. = downcomer flow
/ ...(12)

Wy = reheater drains flow
Dome water level: L,=f(V,) .. .a3 W= feedwater flow

Energy balance at dome:

dH 1
a’td = [((I-X).W.(H, —H,) + W,,(Hyp,, —H) + Woy(Hpy— Hy)I -..(14)

A%

H = fluid enthalpy at dome after mixing with feedwater W, = downcomer .ﬂOW
H,, = feedwater enthalpy W= reheater drains flow

W= feedwater flow

Calculation of sat. steam density:
dv P, = sat. steam enthalpy
X.W,-W, +p,.

dp s _ dt W = steam flow from dome

— V= volume of dome
dt VD Vw + VSM i Vr' & V=volume of steam main

...(15) V., =1liq. vol. of core

Calculation of Dome Pressure: & — void fraction in core

P =fp,) ..as




XDriving Pressure in Boiling Core

_ P

A

D
In steady state, AN

K

PLOSSdC

Ppc =Pp + Pgrge - Prossge -+ (17) P} osscore

N Pr CQ\PD

re—writing (18)’ Pr — PD + PLOSScore + PELr - APH (19)

Equating (17) & (19),  (Py - Pe) + APH = (P, oocut Proggec) «veer(20)

AP,
Note: AP, = g.Z,,.(p,. —p.) ....(21) Pc ; P, = mean fluid density at downcomer & core

where g = 0.00981 KPa/(Kg/m?) - conversion constant from Kg/m? to Kpa;
/., = elevation (m) of dome from bottom of reactor pressure vessel (RPV).

Observation : if sum of pressure losses < pressure difference due to fluid densities in core &
downcomer, natural circulation can be sustained, without circulation pump. Otherwise
forced circulation is required with circulation pump.




i) Recirculation Flow &
Pressure Losses

Applying Navier Stokes Equations of motion for an
incompressible fluid,

dW A
de = Sclde AP+ AP, — P . — P ) . (22)

dt 872,

where g = gravitational constant, 9.81 m/s?
A = cross-sectional area of downcomer section (m?)

Pressure Losses calculation - important for reactor design
e Sum of frictional pressure losses in core and downcomer
all computed 1n the flow direction.
e Sum of acceleration pressure losses
e Sum of pressure losses due to area contractions and expansions
* Consider all single phase & two phase flow losses in the
calculations

Reference: Nuclear Heat Transport - EL. Wakil, ISBN 0-7002-2309-6




.,_’_,

Flow Network for Core Hydraulics
(one phase & two Phase flow)

Dome
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Applying the following notations:

o H, = non-boiling height.

o Hp - boiling height.

o H = total active height of core

The height ratio Ho/H is related to the ratio of sensible heat, q; added per unit mass of

incoming coolant (KJ/Kg) to the total heat q; added in the channel per unit mass of
coolant channel (KJ/Kg), assuming uniform heat addition:

q, H

Where
h¢ = saturated coolant enthalpy, KJ/Kg
h; = coolant enthalpy at inlet of channel KJ/Kg

hg, = h, - hy = latent heat of vaporization KJ/Kg



*

Model Summary

¢ Divide core into number of lumped channels

¢ Each lumped channel divided vertically into
nodes (or zones) - the nodalization fineness
depends on application.

¢ Each coolant channel node 1s assumed to have
its own coolant flow, its own lumped fuel
element




*

Model Summary - continued

¢ Fuel heat transfer to coolant calculations start
with lowest nodes, with nodes coolant inlet
temperatures derived from the core lower
plenum temperatures, and with coolant flows
derived from hydraulic flow network at the
lower plenum




*

¢ After obtaining the lowest node coolant outlet
temperatures and average fuel temperatures,
the calculations proceed to the next higher
nodes, and so forth...

Model Summary - continued

¢ A program check 1s performed 1n each node to
see 1f coolant outlet enthalpy exceeds
saturated coolant enthalpy at the prevailing
pressure. It so, 2 phase flow techniques will
be used.




*

Model Summary - continued

¢ At the core exit upper plenum, the coolant
temperatures from all lumped channels are
mixed by the flow turbulence to determine the
average coolant mixing temperatures at the
upper plenum.
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BWR Simulator Familiarization

® BWR Simulator Manual.

® Practice BWR Simulator Startup,
Initialization.

® Review BWR screens. Note the “hot”
buttons on the screens, which bring up
control pop-ups for user’s interactions.
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transfer

¢ Reactivity control rods

¢ Essential control loops -
Reactor Pressure Control;
Core Recirculation Flow

Control; Reactor Power
Regulation; Reactor
Water Level Control;

Turbine Load/Frequency
Control

e Manual control

of core
recirculation
flow rate

e Manual
adjustment  of
reactor water
control level
setpoint

insertion of one
bank of control
rods

e [nadvertent
reactor isolation

e Power loss to 3
Reactor Internal
Pumps (RIPs)
eReactor bottom
break
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EE BWR Control Loops
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EE BWHR Reactivity & Setpoints
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Scram Causes
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Resetting Scram
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BWR Simulator Manual
Exercise 4.1.1 - Power
Reduction

® POWER MANEUVER: 10% Power
Reduction and Return to Full Power.

® Record (1) Control Rods position (2)
Recirculation Flow (3) Quality (4) Void

reactivity feedbacks during this maneuver.

® Explain how reactor power 1s controlled
during this maneuver.
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BWR Simulator Manual
Exercise 4.1.3, 4.2.9 - Turbine Trip

® Practice Turbine Trip & Recovery.
® Record Reactor Pressure during thisitransient.

® Does Reactor Pressure resume to the setpoint
of 7170 Kpa after the transient settles down ? It
so, explain how reactor pressure 1s being
controlled now.

® Re-1nitialize the Simulator. This time insert the
malfunction “Turbine Trip with Bypass Valves

Failed Closed”. Explain what happens. See
4.2.9




Malfunction 4.2.1 - Loss of FW

® L.oad 100 % FP IC. Open BWREeedwater
& Extraction Steam Screen

® Insert Malfunction “Loss of FW - Both FW
Pumps Trips”

® Follow text on P.26, and answer questions.




Malfunction 4.2.3 - Decreasing
Core Flow

® Follow Text on P. 29 to practice
Malfunction” Decreasing Core Flow due to
Flow Control Failure”

® As coolant flow decreases, core quality
increases. Why ? What happens to reactor
power ?

® Explain the responses of the Reactor Power
Control System




Malfunction Exercise 4.2.4 -
Decreasing Steam Flow

® Re-1nitialize the Simulator to 100% FP.
® Go to Power/Flow Map Screen.

® Insert the Maltunction “Decreasing Steamnklow
from Dome due to Pressure Control Function.”

(see P.30)

® What happens to Reactor Pressure ?

® What happens to the Reactor Power ?

® Can you explain the Reactor Power transient
responses




Malfunction 4.2.12 -
Inadvertent Reactor Isolation

® Practice Malfunction 4.2.12 * Inadvertent
Reactor Isolation™.

® Follow Text on P.38 of BWR Simulator

Manual. Record parameters.

® What happens to reactor power ?

® What 1s the cause for reactor scram ?




Malfunction 4.2.13 - Loss of
FW Heating

® Practice Malfunction 4.2.13 “ Loss of FW
Heating”.

® Follow Text on P.39 of BWR Simulator
Manual. Record parameters.

® Explain the changes 1n reactor power and
other BOP parameters.




Malfunction 4.2.15 - Steam
Line Break

® Practice Malfunction 4.2.15 “ Steam Line
Break inside Drywell”

® Follow Text on P. 42 of BWR Simulator
Manual. Record parameters.

® Explain changes to reactor power and other
BOP parameters.

® Explain the actions of ECC.




Malfunction 4.2.16 -
Feedwater Line Break

® Practice Malfunction 4.1.16 “ FW._line
Break inside Drywell”

® Follow Text on P.43 of BWR Simulator
Manual. Record parameters.

® Explain changes to reactor power and other
BOP parameters.

® Explain the actions of ECC.
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