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Ilce volume changes through time are one of the most dramatic
of all climate signals. Without an explanation, in particular,

of the approximately 40,000 year and 100,000 year variations,
it is difficult to maintain that the climate system is understood.

What is the nature of observed climate change?

Is it periodic? Or at least deterministic? Is it controlled by
orbital influences? How can we tell?

How much of what we see is definitely attributable to
known causes?

Can one predict the time of onset of a new ice age (with and
without anthropogenic interference)?



The story of ice ages starts with terrestrial geology: Adhémar, Agassiz and
others.

Much of what we know today comes from cores---those from the
seafloor and from the Greenland and Antarctic ice caps.
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Note change in character about -800,000y
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Ice Cores

EPICA Community Members, Nature, 2004: Greenland.
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Note backward running time and specific insolation curves. Nothing is periodic.



The astronomical story apparently begins with J.A. Adhémar (c.1842)
and James Croll (c.1875). Refined and completed by M. Milankovitch in the
early 20t century.

The modern story largely begins with a paper by Hays, Imbrie and Shackleton,
Science, 1976.

Why does one fix on astronomical control? The search for causality.

Has been known for a long time that there are several elements of the earth’s
orbit about the sun that change the distribution of insolation (incoming
radiation) through time: eccentricity of the orbit; change in obliquity; precession
of the equinoxes. (So do the diurnal and annual cycles!)
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Gravitational solar tides and insolation forcing (Milankovitch forcing)
can be derived together systematically. Conventional tidal frequencies
are the high frequency limit of Milankovitch forcing (usually ignored)
and Milankovitch forcing frequencies are the low-frequency limit of the
gravitational tides (usually ignored). Because atmospheric tides are
primarily thermal, and there is a measurable oceanic thermal forcing
response, makes sense to discuss them together (see also,

Munk and Bills, J. Phys. Oc., 2007).
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Gravitational Forcing
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Label | Name Frequency (° /mean solar day) | Period (tropical years)
h | eyele/lunar day 347.81 2R83= 1079

f2 | eyele/tropical month 13.18 7.4Tx1072

fs | eyele/tropical year 0.986 1.0

fa | eyele/lunar perigee period | 0.1114 8.98

fs | eyele/lunar nodal period | 0.0529 I18.63

fe | eyele/solar perigee period | 4.71x 1077 20,940)

“Perigee period” corresponds to what the climate community calls the
“precession band”, and is the point of overlap of the conventional tidal and
insolation developments. Tidal development includes lunar components which
are not directly relevant to insolation.




Insolation forcing:
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If omit all terms of frequencies greater than 5 cycles/tropical year:
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Averaging over a tropical year (Rubincam, 1994):

involves eccentricity, e, and obliquity €5 not precession



P. Huybers, 2004.
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Note the broadband character of the low frequency insolation forcing. Not a line spectrum.
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Insolation through time and time of year/latitude. P. Huybers, 2004
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Eccentricity would give rise to a 100,000 and 400,000 year very
weak quasi-periodicity in net insolation, and modulates (splits)
the other forcing terms

Obliquity gives rise to a quasi 41,000y periodicity in high latitude
insolation symmetric about the equator (a redistribution to/from
the polar regions).

Precession gives rise to a quasi-21,000y periodicity in the amplitude
of the annual cycle, symmetric about the equator. (No energy at
21KY).

The hypothesis of the 100,000 year time-scale glacial cycles as
being controlled by eccentricity is a radical and eccentric idea.
(Compare the invariable-plane idea of Muller and Macdonald.)

How does one get a 100,000 year quasi-periodicity out of
ones at 40,000 and 21,000years? Why does the character change
at -800,000y?



Fig. 7.4. Components of precession: (a) axial precession akin to that of a spinning top; (b) precession effect due to
changes in elliptical orbit; (c) combined effect of the two results in a slow shift of the equinox through the earth’s
elliptical orbit. [From Pisias and Imbrie, 1986/87] Courtesy of Oceanus Magazine (©) 1986 by Woods Hole Oceano-

graphic Institution.
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Fig. 7.2. Schematic diagram illustrating effect of planetary forces on the earth’s axis and orbit. These forp:s cause
changes in the eccentricity or ellipticity of the orbit (a), the tilt of the rotational pole (¢), and the gyroscopic spin of
the planet (| ion). The ion effect is i more fully in Fig. 7.4. [Modified from Vernekar, 1968]
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Milankovitch Control - The Standard Story

"It is widely accepted that climate variability on time scales of 10° to 10° years is driven
primarily by orbital, or so-called Milankovitch, forcing." (McDermott et al., Science, 2001).

"...itis now quite clear that orbital forcing played a key role in pacing glaciations during the
Quaternary...." (Bradley, R. S., Paleoclimatology, Academic Press, 1999, p. 281)

"The orbital theory of climate is the prevailing theory of glacial-interglacial climate change over
tens of thousands to hundreds of thousands of years." (Cronin, T. M., Principles of
Paleoclimatology, Columbia Un. Press, 1999, p. 131)

"...we confirm that moisture source temperature signal recorded in Vostok deuterium excess over
the last 150ka fully reflects the obliquity time-varying relative contribution of low and high latitudes
to Vostok precipitation.” (F. Vimeux et al., Earth and Plan. Sci. Letts., 203, 2002, p. 829)

"...a strong case has been made that on the time scale of tens of thousands of years, the Earth's
climate is being paced by the so-called Milankovitch cycles..." (W. Broecker, Earth Sci. Revs., 51,
137-154, 2000).

"Nevertheless, my null hypothesis is not that these time series are white noise or AR(1) processes,
but that they contain climatically relevant signals." (Emphasis added. From well-known European
climate modeler, private communication, 2002. "Climatically relevant" is a euphemism for
"deterministic.")
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Possible to discern three types of Milankovitch hypotheses (original hypothesis
being that northern hemisphere summer insolation controls climate):

1.0bliquity and precessional band energy is discernible in spectra of climate
proxies. Surely true.

2.0bliquity and precessional band energy dominate climate variability between
about 18,000Y and 42,000Y periods

3.0bliquity and/or precessional band energy, irrespective of (2) control ("pace"(?))
the 100,000Y variability characteristic of the glacial-interglacial shifts.

What is the evidence?
Note that there have been some dissenting views: Winograd et al., 1992;
Roe and Allen, 1999; Steig and Roe, etc. but a distinct minority.



The rectifier problem (Huybers & Wunsch, 2004)
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precession and 1/41 obliquity cycles per annual cycle.
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Rectification problem. Precession signals are problematic because

any proxy dependent upon seasonality automatically produces apparent
21KY signals — amplitude modulation just as in a radio receiver. Must
model the proxy (growing seasons, dust seasons, etc.)

What is the specific evidence for astronomical control?

Consider three null hypotheses. No control by:
(1) Eccentricity

(2) Obliquity

(3) Precession

Formal tests (Huybers and Wunsch, Nature, 2004) permit one to reject
the hypothesis for obliquity, not for eccentricity or precession.

Given the minuscule fraction of the variance in the insolation bands, how
is it possible to control (“pace”) the climate system with obliquity?
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Connection of resonance idea to appearance
of strong lines, and forcing at Milank. frequency. Rahmstorf idea.

Does the climate system have any form of resonance?

Development of Milankovitch and tides.



Four “successful” glacial models: 1

& Saltzman, Hansen and Maasch, 1984: glacial cycles are
due to the interaction of land ice, ice shelves and deep
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Four “successful” glacial models: 2

2 Palllard 1998: 3 steady states, one equation, transition between
steady states based on Milankovitch forcing.

Glacial cycles are due to jumps between steady states of ocean
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Four “successful” glacial models: 3

Gildor and Tziperman 2000: “sea ice switch”: land ice grows
during warm periods (small sea ice cover) and retreats during
cold periods (large sea ice cover);

With orbital tuning
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There are 8 glacial cycles in the last
million years. Some of the models
have as many as 20 parameters.
What is one to do?



Almost any nonlinear model produces entrainment of the carrier.

A variety of nonlinear models all works: see Tziperman, Huybers, Raymo,
Wunsch, 2006, Paleoceanog.



Why is it so ‘simple' to fit the glacial cycles?

The question (Saltzman, Hansen & Maasch 1984): “How does small
amplitude periodic forcing control phase in a complex nonlinear
oscillatory system, and is there a good physical interpretation for this

phase locking phenomenon?”

The answer: It's “nonlinear phase locking™:

1665, Christiaan Huygens, Dutch mathematician, astronomer and physicist.
While working on design of precise pendulum clocks, suitable for
determination of a ship coordinates in the sea, he observed and described

synchronization of two clocks placed on a common support.
http://www.agnld.uni-potsdam.de/~mros/synchro.html



Which orbital parameter is responsible for the phase
locking? Obliquity? Precession? Both?

Model time series under obliquity forcing and under precession
forcing:
(d) obliquity, no noise

0.8
0.4

(e) precession, no noise
0-8 7‘:- : ‘\' o T ""-4’? ‘\

..........................

—0900 -800 -700 -600 -500 -400 -300 -200 -100 0
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=—>Possible to obtain a reasonable fit to ice volume record with precession,

obliquity, or 65N 1nsolation forcing. Model too simple to determine which 1s

more important. Huybers and Wunsch (2005): found correlation with obliquity,

inconclusive regarding precession.



“Quantization” of glacial period by obliquity/ precession:
Nonlinear resonance/ phase locking:

0/0f = p/q
# Linear resonance: forcing frequency = natural oscillator
frequency ®/o;= 1/1
0/0f=p/q

@ Nonlinear resonance: any Integer ratio
@ Glacial periods: 80 kyr = obliquity X 2; p/qg = 2/1
100 kyr = obliquity X 5/2; p/q = 5/2
120 kyr = obliquity X 3; p/q = 3/1
80 kyr = precession X 4; p/q = 4/1
100 kyr = precession X 5; p/q = 5/1
120 kyr = precession X 6; p/q = 6/1



 Fourth model ---Stochastic
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Vostok core power density estimate. Obliquity and precession
frequencies marked. Main characteristic is a red noise behavior.
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A simple autoregressive fit --- AR(2)---
succeeds in describing the

time series: x(t) =ax(t-1)+bx(t-2)+white
noise. Except right at the deglaciations.
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A random walk plus a weak obliquity forcing.



Huybers and Tziperman, 2007, submitted, made an ice/atmosphere
model to explore further the reasons why obliquity seems to dominate:

A zonally averaged energy balance model (as in Pollard, 1978)
coupled to an ice sheet which deforms by Glen’s Law and ablates
by a simple assumption about insolation above a threshold.
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Other oddities of determinism

Does the climate system support linear (or non-linear) resonances?
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Figure 1. (a) A multitaper spectral estimate of the Polar Circulation Index (PCI) of Mayewski et al.
(1997]. An approximate mean 95% confidence limit is shown. The peak is a moaximum at ~~1452 ycars.
The power seale is logarithmic, permitting the nse of a near-constant confidence interval shown as a
vertical line segment. The vertical dashed lines show the predicted alias position of the anomalistic year
at 1/1508 cycles per year and the position of the tropical year at 1/1407 cycles per year. (b)The same
as in Figure la, except on an expanded scale. The inset is the periodogram (simply the square of the
Fourier series coeflicients) showing that the peak has a bandwidth of no more than two cycles in 110,000
years, Vertical dashed lines are the same as in Figure la,

Why is there a spectral peak in the GISP ice core at exactly 1452y? Oceanic
resonance? Solar oscillation? Tidal interaction?



Simplest explanation (not accepted by the paleocommunity): core is
sampled at integer multiples (50) of the civil year (365 days). Alias periods of the
tropical and anomalistic years occur at exactly 1470y. (The stroboscope effect.)

1/(50x365)-m/365.25=1/(1470x365)
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Figure 2. a) Lomb Scargle [Scargfe, 1982; flawsold and
freer, 1952) power spectrum of the ''Be flux in the time
imgerval 25 to SO kyr BP. b) MsMitaper Method (MTM)
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Wagner et al., GRL, 2001

Claim of pure frequencies in the sun — driving pure frequencies in climate



Rahmestorf argues that so-called Dansgaard-Oeschger events
occur at integer multiples (2,3,...,7) of the 1470 year period.

17 -2 RAHMSTORF: TIMING OF ABRUPT CLIMATE CHANGE
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Figure 1. The GISP2 climate record for the second half of the glacial. Dansgaard-Oeschger warming events found by the

objective detection algorithm are labeled with red flags. The grey vertical lines show 1,470-year spacing, small numbers at
the bottom count the number of 1,470-year periods from DO event 0.

What sort o mechanism could create such a phenomenon?



Magic of 65N June insolation controlling climate. How is this possible?
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Fiz. 1: Relationships between insolation and temperatures. (a) Tempe ratume in *C contoured as
a function of latitude and month. Temperatures, T, are diumal ave rages from WMO stations and
are averaged according to latitude afler adjusting forelevation using a laps rate of 6.5°C/Km.
(h) Insolation at the top of the atmesphere. (¢} T' plotted against insolation for different latitudes
(r >099). Latitude bins are 10° and insolation bins are 10W/m® where insolation has been
lagged by one month. (d) Positive dagree days plottad against summer energy (=098). (e)
Positive degree days plotted against the intensity of diurnally averaged insolation on June 21st
=011

P. Huybers, 2006
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Fiz. 3 The Earh's vaniabl orbit amoond the sun. {a) Banh's orbit when peribelion cocurs at
Merthern Hemisphare summer sslste (ed), fall equinc (black), winter solstice (hlue), and
Spring quine | green) coresponding to the crbital configuration near 2202, 214.6, 2002, and
2055 Ky ago mepectively. The ecoentricity of Earth's arbit averages 0005 during thiz ink rval
Fig. 2: Insolation forcing and Pleistocens glacial variability. (a1 Number of days insclation is The arhit is o scak and oented so that vemal equine always cocurs at the thes o'elack
above 273 Wi (blue) and the averags insolation intensity during this inkrval (rd). Intensity positicn. March 21st iz eferenced to the vernal equinoe, and the location of the Earth is shown

and duration are anti-correlaied. (b Spectral estimate of the duraticn (klue) ard intensity (ped) i . B .
shawing that the majority of the variability is at the prcesicn periods. Shaded bands from every 457 days (eelomd dars and daks given as month’day ). Earth moves counter-cleckwiss.

kit to right indicate the 100Ky, 41Ky (obliquity), and 21Ky (prcassion) bands. (c) Summer Mesk that the orbit having perihalicn during Morthern Hemispher summer (red) maches fall

energy (red) and the time rate of change of J130 (black) for the early Pleistocene, and (db the aquinex the soonast, (hi Seascnal variations ininsclation at 63° M. The x-axis iz labelled with the

cormesponding spectral estimates, Positive rates of change indicate decreasing ice-volume, Vari- mid-pint of each month. The arbitwith peribelion at summer solstices (red) achieves the greatest

ability in both records is predominantly at the 41Ky obliquity pericd. (e, Same as e and d but insolation intersity bt also hes the shortest duration above a 273Wen? thresheld indicaked by

for the late Pleistocene. Nate that the time rate of change of 5150 has variahility at the 100Ky the horizontal dashed lingd. (c) Anomalies in mzclation for obliquity valves of 22.1° (dashed)

period not present in the forcing, 12 and 24.5° (s0lid} mlarive t a mmean obliquity of 23,3 for the orbit with perihelion at surmer
solshice.

Strongly suggests that insolation control depends upon the hemispherically integrated
insolation above the ablation temperature of ice.

P. Huybers, 2006



Inferences/Conclusions:

There are no internal pure resonances in the climate system. (Although a
favorite among much of the paleoclimate community, would be an

amazing phenomenon in a turbulent fluid.)

There is evidence that obliquity controls the timing of glacial cycles
during the last 800,000 years. Obliquity dominates prior to that time.

There is no direct evidence for precessional control of climate, and supposed
signals may be nothing but rectification of the seasonal cycle by the proxies

Conceivably the signal is suppressed in deep-sea records, but there are
other reasons why it can be artificially present.

With only eight nominal 100KY glacial cycles, distinguishing among the infinite
number of possible models is likely impossible if restrict attention to the
poles or a limited number of age-model uncertain deep-sea cores.

System is likely combined stochastic and deterministic, somewhat like weather
and the seasonal cycle.



Thank you.



