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OBJECTIVE

The objective of this work is to investigate, by means of a one-dimensional numerical
ecosystem model, the role of stagnation and enhanced productivity for the
deposition of S1, trying to gain insight on the dynamics of the development of anoxic
conditions in the water column and at the sea-floor.

S1 is the most recent sapropel in the succession of organic carbon-rich layers found
in normal Neogene sedimentary sequences. Different theories have been invoked to
explain the deposition of this peculiar layer.
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BACKGROUND

«Sapropel: cyclic (orbitally driven) occurrence of dark carbon-rich sediment layers
with an organic carbon content greater than 2%.

«Sapropel S1 (the most recent) was deposited during the Climatic Optimum interval
of the Holocene (9500-6000 years BP).

*In this period increased precipitation and river runoff determined the freshening
of the surface layers at a basin scale.

*The occurrence of sapropels has been linked to anoxic bottom waters induced by
increased productivity and/or decreased deep water ventilation. A 200-years
interruption found within S1 seems to indicate the rapid transition from anoxic to
oxic bottom conditions (Rohling et al., 1997).
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During precession minima, the
northern hemisphere
experiences enhanced
summer insolation and
reduced winter insolation. The
seasonal insolation contrast
and the thermal gradient
between ocean and continental
regions are considerably
higher during a precession
minimum than today.
Therefore the monsoonal
circulation is also enhanced.



Difference in the depth of
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Waters interface between the
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sapropel deposition,
relative to the depth of
light penetration. N
indicates nutrients, C
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photosynthesis, DCM
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At the same time the formation of a less saline surface layer preventing dense-
water formation could provoke the halting of oxygen ventilation in the deep layers.

Rohling, E.J. (2001), The dark secret of the Mediterranean -
a case history in past environmental reconstruction



Schematic of the Mediterranean Sea thermohaline circulation
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Both circulations allow
sapropel formation
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THE ONE-DIMENSIONAL ECOSYSTEM MODEL
IMPLEMENTATION

Physical profiles are diagnostically imposed from the simulations of Myers et al.
(1998) for the present day and for the Holocene.
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Seasonal cycle of
Temperature, Salinity
and Sigma-t profiles
for the present-day
(left) and Holocene
(right) physical
conditions.
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THE ONE-DIMENSIONAL ECOSYSTEM MODEL
IMPLEMENTATION

Physical profiles are diagnostically imposed from the simulations of Myers et al.
(1998) for the present day and for the Holocene.

The different depth of reventilation (Myers et al., 1998) is parameterized as
follows:

Present day = Oxygen relaxation to the initial profile from the surface to the
bottom

Holocene = Oxygen relaxation to the initial profile from the surface to 500 m
depth

The hypothesis of enhanced productivity is tested using three different boundary
conditions:

Present day lonian Sea - No nutrient fluxes at the surface

Reconstruction 1 = Surface PO4=0.03 mmol m-3, other nutrients in Redfield
Ratio

Reconstruction 2 = Surface PO4=0.04 mmol m-3, other nutrients in Redfield
Ratio



Main experiments

Six main experiments have been carried on to test the role of oxygen reventilation
and enhanced productivity:

Now Low: Present day physics, reventilation (to the bottom) and nutrients
Now 1: Present day physics and reventilation (to the bottom), nutrient
Reconstruction 1

Now 2: Present day physics and reventilation (to the bottom), nutrient
Reconstruction 2

Holo Low: Holocene physics and reventilation (to 500m), present day nutrients

Holo 1: Holocene physics and reventilation (to 500m), nutrient Reconstruction 1
Holo 2: Holocene physics and reventilation (to 500m), nutrient Reconstruction 2



Productivities
fall within a
wide range
(from 120 mgC
m-2d-1 for
present day
nutrients to
2000 mgC m-
2d-1 with the
Reconstruction
2).

Little ecosystem
sensitivity to the
different
physical
conditions
between
present day and
Holocene.
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Fig 3 — Annual primary productivities
(mgC m=3 d-1) for the main experiments
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Rapid formation of an
oxygen minimum when
reventilation is shut off
(Holocene).

Holo 1 and Holo 2
show a ‘top-to-bottom
progressing oxygen
depletion’.

Holo 2 : anoxic
conditions reach the
bottom, allowing the
depositional flux of
organic detritus (15
mgC m-2d-1) and its
preservation in the
sediment. The
timescale of the
process is in the order
of 2000 years.
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SENSITIVITY TO PARTICULATE SEDIMENTATION
VELOCITY

Four additional experiments, under the Holocene physical conditions, to test the
sensitivity to an increased sedimentation velocity (VSED) for particulate organic
matter from 1.5 to 5.0 and 10.0 md-1.

H1-V1: Reconstruction 1; VSED=5.0 md-1
H1-V2 : Reconstruction 1; VSED=10.0 md-1
H2-V1 : Reconstruction 2; VSED=5.0 md-1
H2-V2 : Reconstruction 2; VSED=10.0 md-1



Net primary
productivities fall in
the range 150-500
mgC m-2d-1 (Fig. 5),
In agreement with
estimates for S1
times.

Organic carbon
fluxes, in the range of
10-30 mgC m-2d-1,
are comparable to
observations.
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Fig 5 — Annual primary productivities
(mgC m2 d1); sensitivity experiments




Anoxic conditions
develop at mid

depth and at the °
sea floor, where
an ‘anoxic
blanket’ is formed.
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CONCLUSIONS

*The enhanced nutrient supply and the interruption of deep reventilation are
both necessary to allow organic matter deposition and preservation at the sea-
floor

*A low sedimentation velocity for particulate organic matter determines a
downward expansion of anoxia from middle-depth. The timescale is in the order
of 2000 years

*An increased sedimentation velocity for particulate determines the formation of
anoxic conditions both at mid-depth and in a thin layer at the sea-floor. The
timescale of the process in the order of 200 years. This result is consistent with
the short-timescale interruption found within S1.



