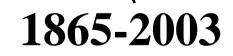

Seismic Zonation Map of Bangladesh

Mehedi Ahmed Ansary Member Steering Committee Bangladesh National Building Code & Bangladesh Earthquake Society (BES) Department of Civil Engineering BUET

Active Faults Surrounding Bangladesh (Bolt, 1985)



EARTHQUAKE HAZARD ANALYSIS

Earthquake Catalogue

- An earthquake catalogue forms a valuable input for seismic hazard assessment and microzonation studies.
- Critical structures such as nuclear power plants and dams, as well as siting of any new industry, require earthquake data that are accurate, homogeneous and as complete as possible.
- In this study an attempt is made to assess the seismicity of Bangladesh and adjoining region (20-28° north latitude and 86-95° east longitude) during the period 1865-1995 by reviewing instrumental data as well as macroseismic information retrieved from various sources.

Existing Earthquake Catalogue

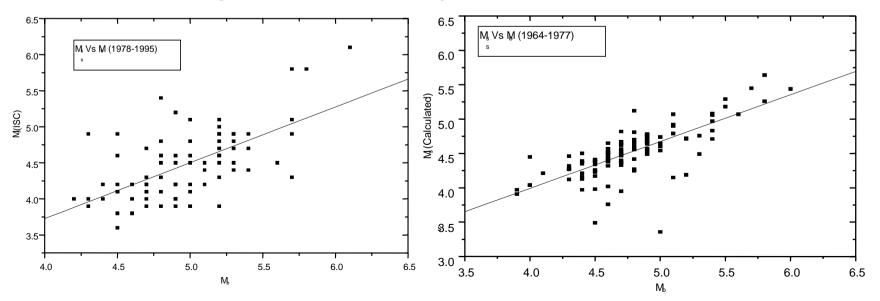
Date	Lat N°	Long E°	Magnitude M	Mb	Focal depth(km)	
16-08-1950	27.5	91.9	5.5			
17-08-1950	27.9	91.9	6.0			
24-12-1950	24.4	91.7	6.3			
07-04-1951	25.9	90.5	5.0	S.277.5		
07-11-1952	25.5	94.0	6.0			
23-02-1954	27.8	91.7	6.0			
17-04-1955	26.5	90.0	4.5			
29-08-1955	26.0	90.5	4.2			
20-09-1955	27.5	90.0	5.7			
23-11-1955	26.5	90.0	5.0			
14-12-1955	22.0	92.5	6.5			
21-01-1956	23.6	93.5	6.1			
14-03-1956	25.2	90.8	5.0			
12-06-1956	24.8	90.9	5.3			
12-07-1956	22.0	94.0	6.3			
01-07-1957	24.4	93.8	7.2			
12-12-1957	24.5	93.0	5.5			
09-02-1958	25.0	90.5	5.0			
13-02-1958	27.5	92.0	5.5			
22-03-1958	23.5	93.8	6.5	1		
13-04-1959	22.0	93.3	5.9			
07-06-1959	24.0	94.0	5.4			
02-11-1959	21.5	92.4	5.0		30	
26-05-1960	27.0	93.0	5.0			
29-07-1960	26.5	90.5	5.5			
21-08-1960	27.0	88.5	5.5		29	
29-09-1961	28.0	87.6	5.5		100	
06-11-1961	26.7	91.9	5.0		37	
25-12-1961	27.0	90.4	5.5		33	
23-10-1962	26.6	93.3	5.5			
17-08-1964	24.2	94.0		4.7		
30-08-1964	27.6	88.3		5.2	21	
30-08-1964	27.1	88.4		5.0		
01-09-1964	27.2	92.3		5.7	33	
12-01-1965	27.6	88.0		6.1	23	
12-01-1965	27.3	87.7	1	5.3	33	
11-04-1965	26.7	92.3		5.1	70	

Revision of Magnitudes

The idea of revising and unifying existing magnitudes is carried out. The main goal is to produce a file of reliable data that reflect, as homogeneously and completely as possible, the seismicity of the region.

Calculation of surface wave magnitude:

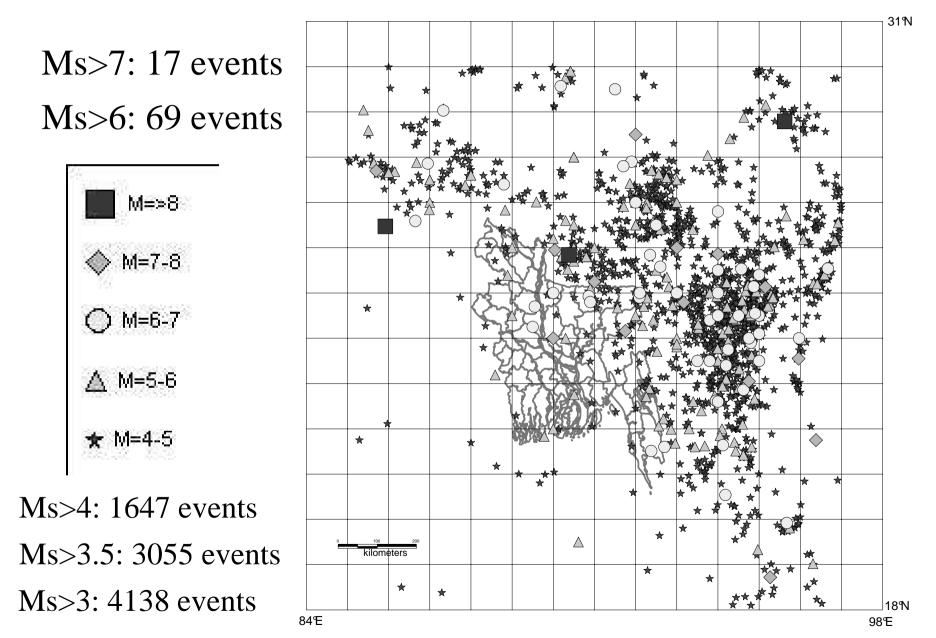
 $Ms = \log(A/T) + 1.66 \log \nabla + 3.3$


Use of correlations:

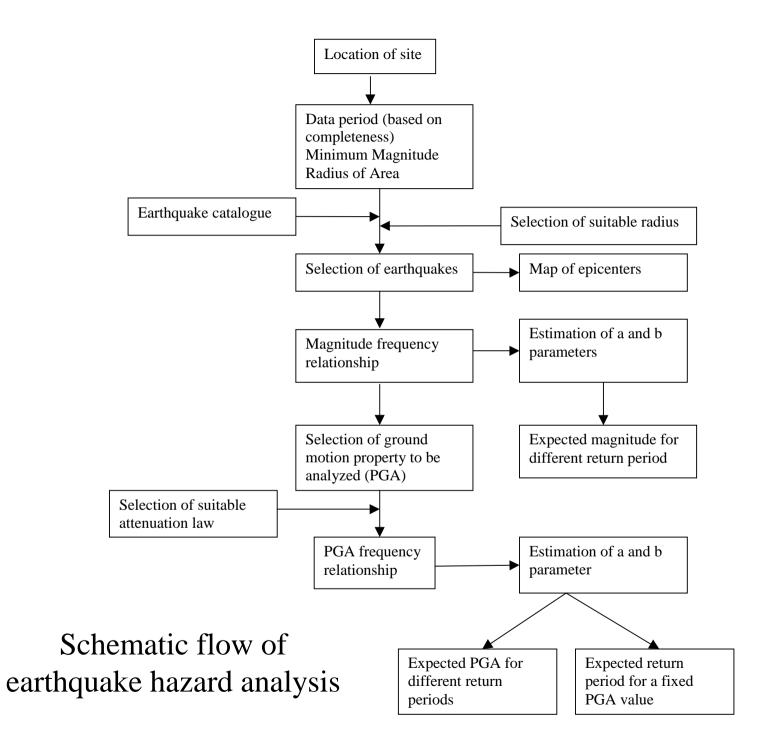
Surface-wave magnitudes are estimated where possible from semi-empirical relationships between M_s and M_b.

 $M_{s} = a + b^{*}M_{b}.$ Ms = 0.63+0.774*Mb - period 1978-1995 Ms = 1.27+0.68*Mb - period 1964-1977

- Surface-wave magnitudes are also assessed by using the number of stations (NS) that reported it to the ISS or ISC. Ms = a + b* Log (NS) a =4.21, b=1.12 - period 1900-1963 a =3.21, b=0.72 - period 1964-1977 a =2.77, b=0.81 - period 1978-1995
- Surface-wave magnitudes are also estimated where possible from semi-empirical relationships between M_s and Duration Magnitude M_d.


 $M_s = 0.57 + 1.057^*M_d$ - period 1993-1995

New Earthquake Catalogue


<u>YR</u>	<u>MNH</u>	DY	H	MIN	<u>s</u>	LON	LAT	DEP	Ms		Mb	Md	M	MI	Mw	ITSC	<u>NS</u>	RMK	LOCATION	REFERENCES
1964	1	22	15	58	47	9360	2240	88	544	()	610	-	600	-	-	-	153	-	MR-ID	ROT, ISC, MOS, SHL, USCGS, I
1964	2	1	11	28	19	8778	2730	33	442	()	480	-	-	-	-	-	20	-	NP	ISC,USCGS,ISETR
1964	2	18	3	48	36	9110	2750	30*	449	()	530	-	560	-	-	-	67	-	BU	ROT, ISC, MOS, USCGS, TS, IS
1964	2	18	4	26	34	9430	2500	-	-		-	-	540	-	-	-	-	-	-	TS
1964	2	27	15	10	48	9440	2170	102	545	()	640	-	650	-	-	-	212	-	Mandalay.MR	ROT, ISC, MOS, SHL, USCGS, I
1964	3	20	19	0	53	9440	2360	86	465	()	500	-	560	-	-	-	52	-	MR-ID	ROT, ISC, MOS, SHL, USCGS, I
1964	3	27	23	3	42	8930	2720	29	456	()	500	-	-	-	-	-	46	-	BU	ROT, ISC, MOS, USCGS, GS, IS
1964	4	13	3	20	5	9020	2760	52*	473	()	520	-	600	-	-	-	53	-	BU	ROT, ISC, MOS, USCGS, ISETI
1964	4	15	16	35	58	8800	2170	36*	468	()	520	-	560	-	-	7	80	-	Calcutta.ID	ROT, ISC, QUE, MOS, USCGS,
1964	6	3				9500	2600					-							MR-ID	ISETR
1964	6	9	12	33	22	8790	2150	0	390	[1]	-	-	-	-	-	-	9	-	ID	ISC,SHL
1964	6	13	17	35	58	9400	2300	61	449	()	520	-	600	-	-	-	108	-	MR-ID	ROT,ISC,MOS,USCGS,SHL,I
1964	7	12				9450	2700					-							Sagaing.MR	ISETR
1964	7	13	10	58	48	9470	2370	117	492	()	540	-	600	-	-	-	138	-	MR-ID	ROT, ISC, USCGS, MOS, SHL, (
1964	8	17	14	42	54	9418	2432	158	438	()	480	-	-	-	-	-	24	-	MR-ID	ISC,USCGS,ISETR
1964	8	30	2	35	8	8830	2760	21	456	()	510	-	560	-	-	-	78	-	Sikkim.BU	ROT, ISC, SHL, MOS, USCGS,
1964	8	30	5	12	32	8852	2790	33	377	[1]	-	-	-	-	-	-	6	A	Sikkim.BU	ISC,ISETR
1964	9	1	13	22	37	9230	2720	33	472	()	550	-	600	630	-	-	148	-	ID-CH	ROT, ISC, SHL, USCGS, MOS,
1964	10	4	20	55	38	9440	2600	-	372			-	-	-	-	-	5	-	MR-ID	NDI,ISETR
1964	10	6	2	55	0	9450	2790	413	422	()	450*	-	-	-	-	-	11	-	E.ID	ISC,USCGS,ISETR
1964	10	13	10	36	56	9120	2400	-	399			-	-	-	-	-	12	-	ID-BD	ISC,NDI,ISETR
1964	10	21				9370	2800	37		-		-	590						ID-CH	ISETR
1964	10	25	15	40	7	8860	2790	0	434	()	-	-	-	-	-	-	9	-	Sikkim	ISC,NDI,ISETR
1964	12	1	15	10	24	9446	2118	104	390	[1]	-	-	-	-	-	-	9	-	MR	ISC,ISETR
1965	1	12	13	32	24	8800	2760	23	529	()	580	-	650	-	-	-	151	-	NP	ROT, ISC, PEK, QUE, USCGS, §
1965	1	12	13	55	20	8770	2730	33*	454	()	520	-	560	-	-	-	52	-	NP	ROT, ISC, PEK, USCGS, ISETF
1965	1	18	8	17	38	9380	2500	-	-		-	-	590	-	-	-	-	-	-	PAPER
1965	1	22	2	41	35	9450	2010	76	454	[2]	480	-	560	-	-	-	37	-	MR-CH	ROT,ISC,ISETR
1965	2	18	4	26	34	9430	2500	36	479	()	540	-	600	-	-	-	122	-	ID-CH	ROT,ISC,ISETR
1965	2	25	10	34	7	9464	2363	94	471	()	520	-	-	-	-	-	98	-	MR-ID	ISC,PEK,USCGS,MOS,SHL
1965	3	27	20	45	51	8990	2730	33	360	[1]	-	-	-	-	-	-	7	-	BU	ISC
1965	4	11	22	33	7	9233	2682	70	465	()	490	-	510	-	-	-	50	-	E.ID	ISC,USCGS,TS,ISETR
1965	6	1	4	32	45	9490	2020	57	477	()	520	-	600	-	-	-	124	-	MR;MR-CH	ROT,ISC,GS
1965	6	18	8	17	38	9380	2500	46	464	()	520	-	600	680	-	-	105	-	MR-ID;ID-CH (Arakan Y	ROT,ISC,GS,TS,ISETR
1965	7	5	23	41	39	9480	2120	65*	427	[2]	440	-	-	-	-	-	29	-	MR	ISC,USCGS,NDI,ISETR
1965	8	4	15	27	1	8830	2350	-	343			-	-	-	-	-	2	-	ID-BD	NDI
1965		30	8	48	27	9400	2500	-	356			-	-	-	-	-	3	-	MR-ID	NDI
1965	11	6	16	4	59	9170	2710	40			430	-	-	-	-	-	9	-	BU	USCGS
1965	11	6				9160	2720	33				-	480						BU	ISETR
1965	12	5	22	1	28	9450	2330	13	467	()	500	-	560	-	-	-	82	-	MR-ID	ROT,ISC,USCGS,ISETR
1965	12	9	20	1	4	9250	2750	22			520		560	-	-	-	86	-	ID-CH	ROT, ISC, PEK, USCGS, TS, ISI

Earthquakes in and around Bangladesh (1664-2006)

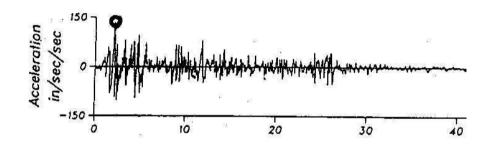
Results from Analysis of Completeness for the New Earthquake Catalogue

Magnitude Class	Period of Complete Reporting (year)
3≤M<4	1964-2006
4≤M<5	1964-2006
5≤M<6	1923-2006
6≤M<7	1927-2006
7≤M	1865-2006

Seismicity model:

- Available earthquake data
- Recurrence relationship

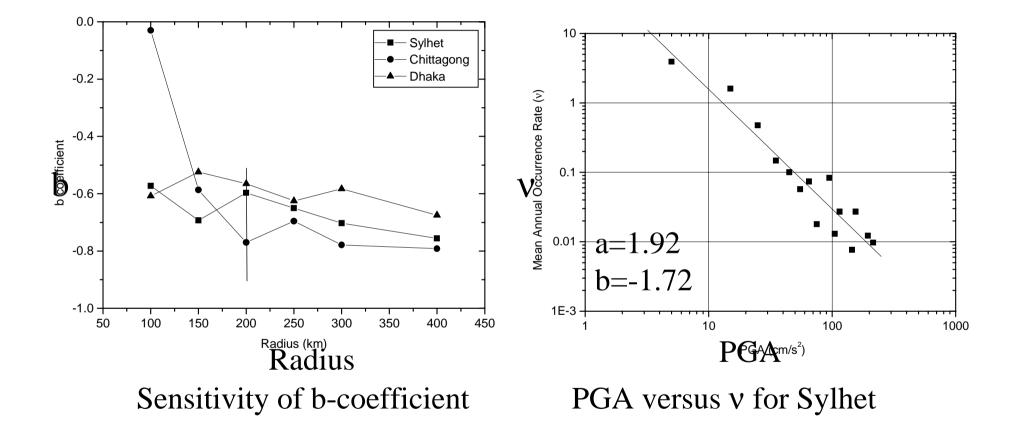
$$log(v) = a + blog(y)$$
$$log(y) = (-log(T) - a)/b \qquad [T=1/v]$$

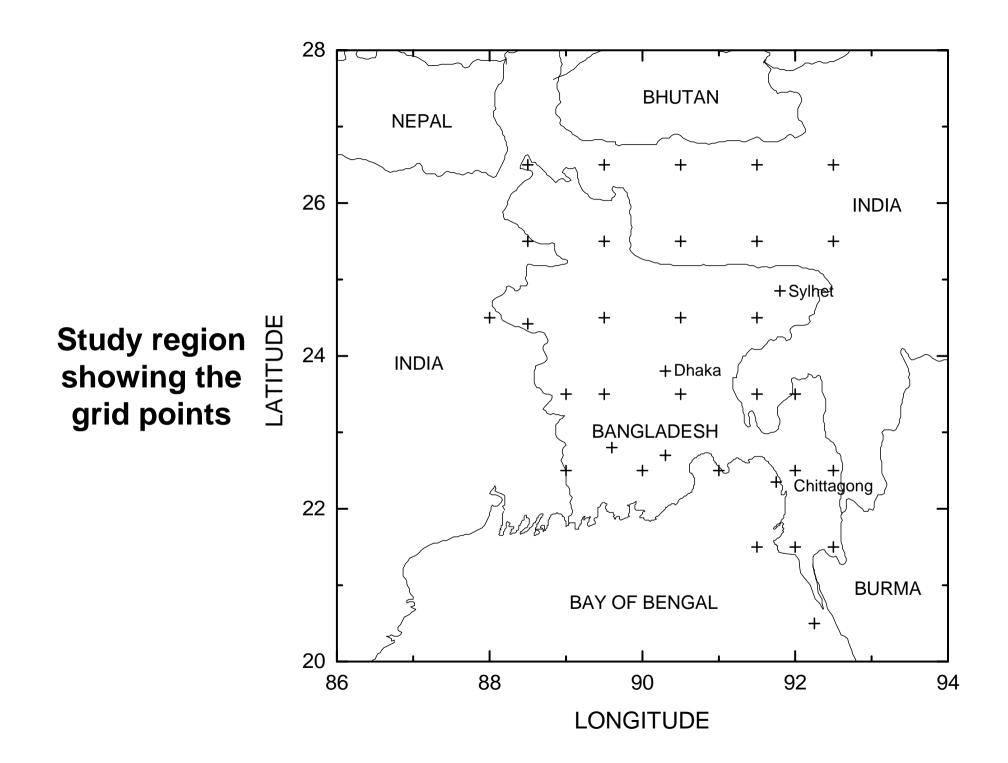

Attenuation models:

describes the transfer of ground motions from the source to a particular site in the form

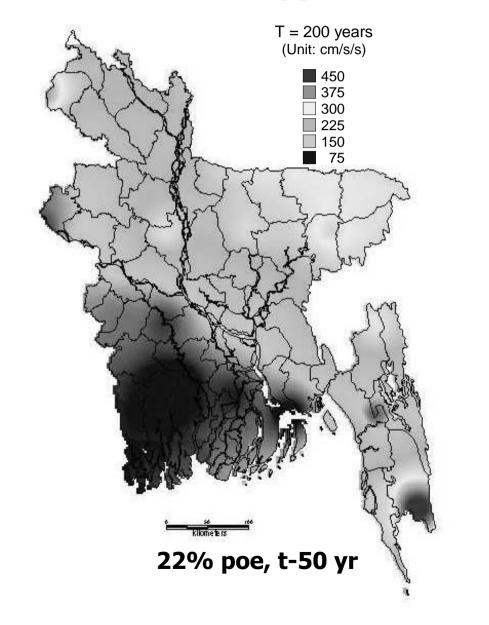
 $log(PGA) = b_1 + b_2(M_s) - b_3 log(r) - b_4(r)$

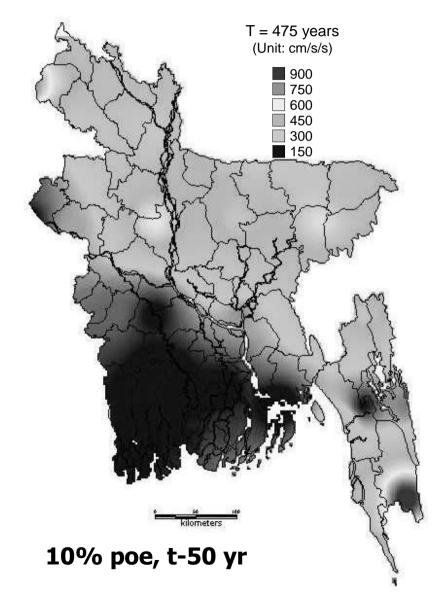
Selected Attenuation Law


Assessment of seismic hazard at any particular site requires an attenuation law for the Peak Ground Acceleration (PGA)

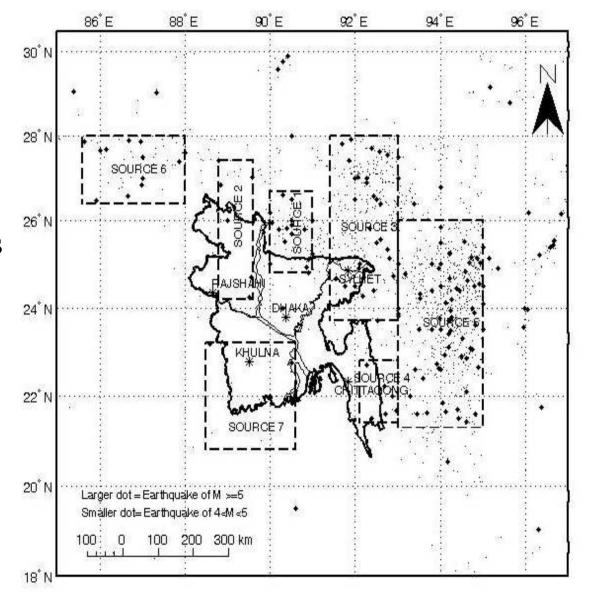


For Bangladesh no PGA is available due to the lack of seismic devices

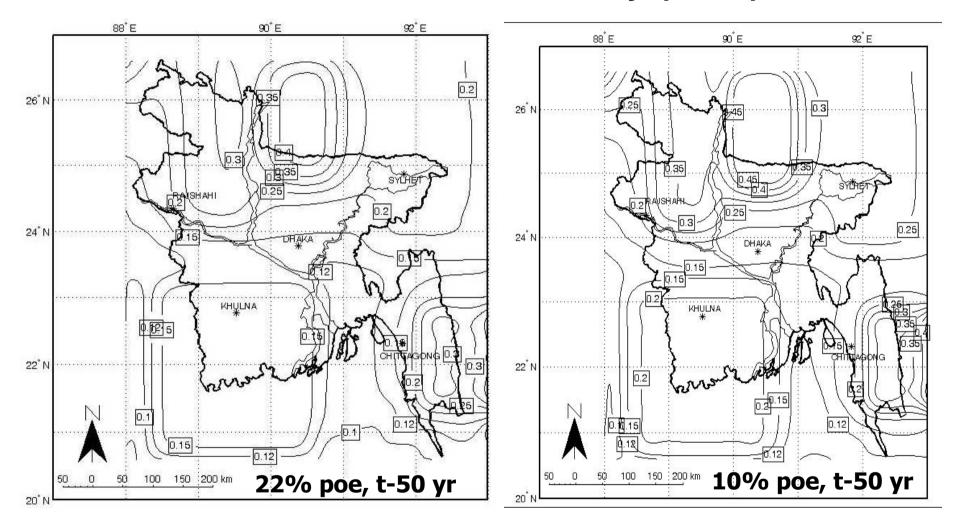

Attenuation law for alluvial soils:
 McGuire (1978) - PGA=0.0306e^{0.89M}r^{1.17}e^{-0.2} (in g)
 Duggal (1989) - PGA=227.3x10^{0.308M}(d+30)^{-1.201} (in cm/s²)


SELECTION OF EARTHQUAKES AROUND A SITE

Seismic hazard of Bangladesh based on Duggal's (1989) attenuation law

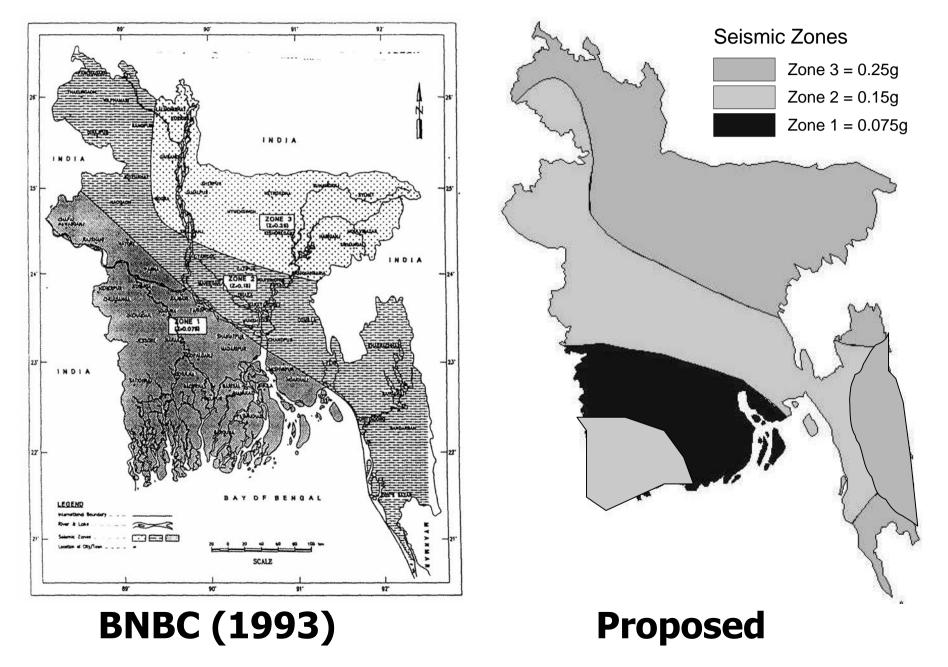


After Noor, Yasin & Ansary (2005)


Grid interval
of 0.3 degree are used
Uniform probability
distributions are assigned
to each source zone
implying that, earthquakes
are equally likely to occur
at any point within the
source zone

•Seven area sources are assumed

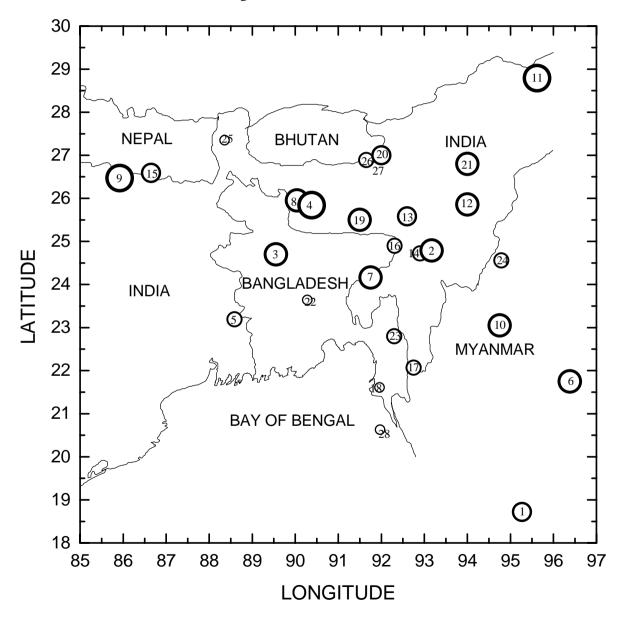
•The sources are so divided that area of each division is limited to 1200 sq km



After Noor, Yasin & Ansary (2005)

Seismic hazard of Bangladesh based on Duggal's (1989) attenuation law

Seismic Zoning Map of Bangladesh

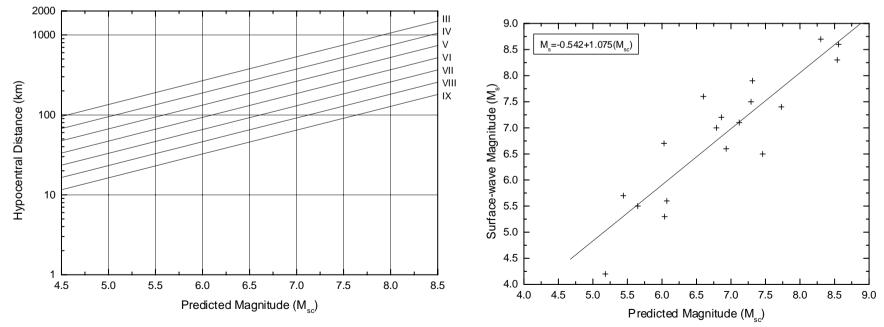

Development of Attenuation Law

Magnitude-Intensity & Intensity Attenuation

Data Preparation:

- The average radius of each isoseismal was determined from the radii measured in 16 directions at 22.5^o intervals of the compass
- Isoseismals with no reliable data were disregarded from the regression analysis
- The description of the 18 earthquakes used in this study is presented in the following table

Area under study and locations of 28 events

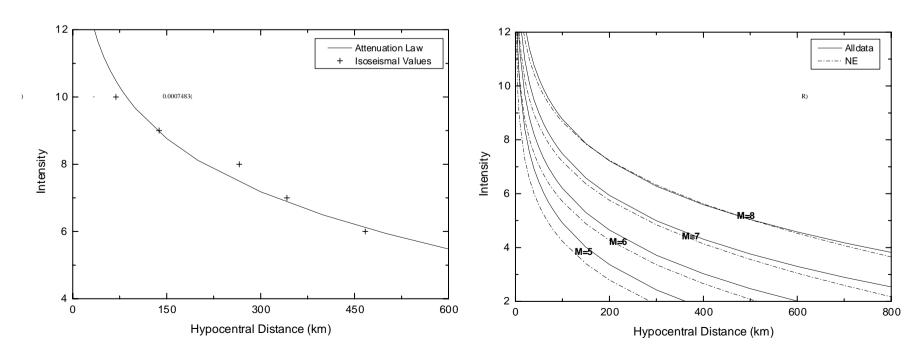

Magnitude-Intensity

Magnitude Intensity Model:

$$M_{sc} = A_1 + A_2(I_i) + A_3(R_i) + A_4 \log R_i + \sigma P$$

Bangladesh and its surrounding region, which consists of 25 events and 93 pairs (I_i, D_i) , is

 $M_{sc} = -3.336 + 0.549j^{-1}\sum_{i}^{j} (I_{i}) + 0.000505j^{-1}\sum_{i}^{j} (R_{i}) + 2.964j^{-1}\sum_{i}^{j} (\log R_{i}) \pm 0.61P$



Intensity Attenuation

Intensity-Attenuation Model:

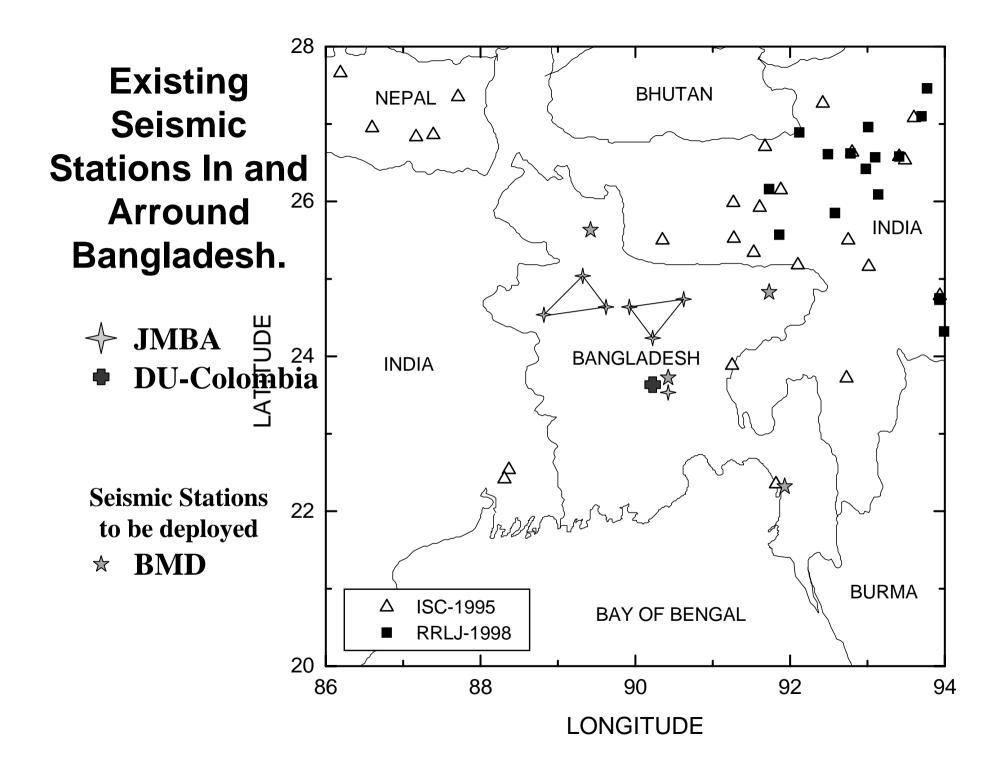
 $I = B_1 + B_2(M_s) + B_3(R) + B_4 \log R + \sigma P$

The regression analysis for the whole data set, which consists of **93** (**I**_i, **D**_i) pairs corresponding to 25 events, gives the following mean attenuation expression:

 $I = 6.702 + 1.254(M_s) - 0.0014(R) - 3.966(log R) \pm 0.92P$

STRONG MOTION INSTRUMENTATION

Why is Seismic Instrumentation Important?


It helps us to:

- Estimate the probable ground motion.
- Locate earthquakes (epicentre, magnitude, depth)
- Tell how the structure behaves.
- Confirm how to strengthen the structure.
- Improve our design procedures and codes leading to reduced costs but increased safety for future structures.

Jamuna Bridge Seismic Instrumentation Project

- BUET is the Consultant to JMBA, Ministry of Communication, GOB
- Total Project Cost: Tk 4 crore
- Instrumentation has recently been installed (May-July 2003)
- BUET will monitor and analyze seismic data for the next 5 years

Accelerometer Sensors on Bridge Deck

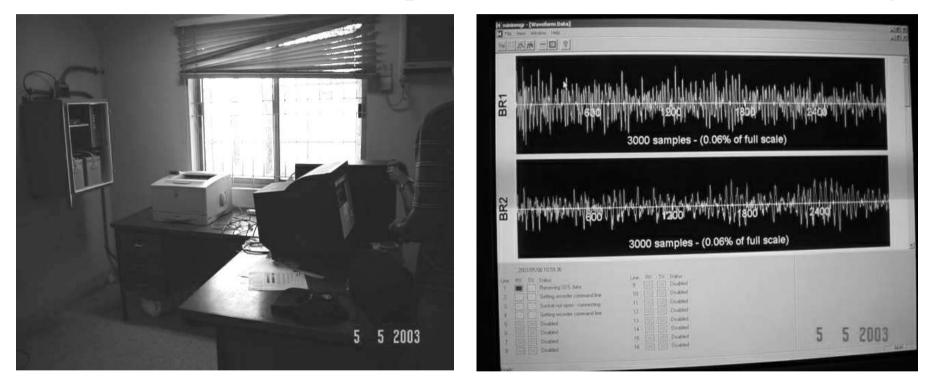
Triaxial Accelerometer

(Acceleration in 3 dirs.)

Uniaxial Accelerometer (Horizontal Transverse Acceleration)

Seismic Data Transmission Spread Spectrum / GPS

Transmitting from the Bridge



Receiving East End, Bhuapur

Data Control Centre

Communication Box / Computer Continuous Data Streaming

- Continuous digital data is transmitted to the Data Acquisition Computer
- Events exceeding threshold acceleration will be recorded on the computer

Free Field Stations (JMBA-BUET Project) East Side: Bridge End, Mymensingh, Gazipur West Side: Bridge End, Bogra, Natore

- Triaxial Accelerometer
- Internal Recorder (PCMCIA Card)
- Solar Panel Charging

Installation Team

Strong Motion Recording During June 16, 2004 Earthquake

20

20

20

Time (s)

West Free-field (16.06.04)

10

10

10

40

20 0

-20

-40

40

20

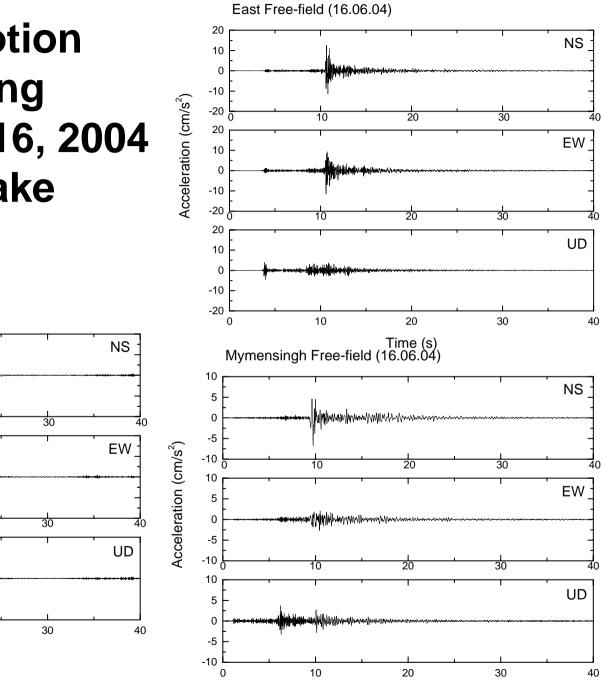
0

-20

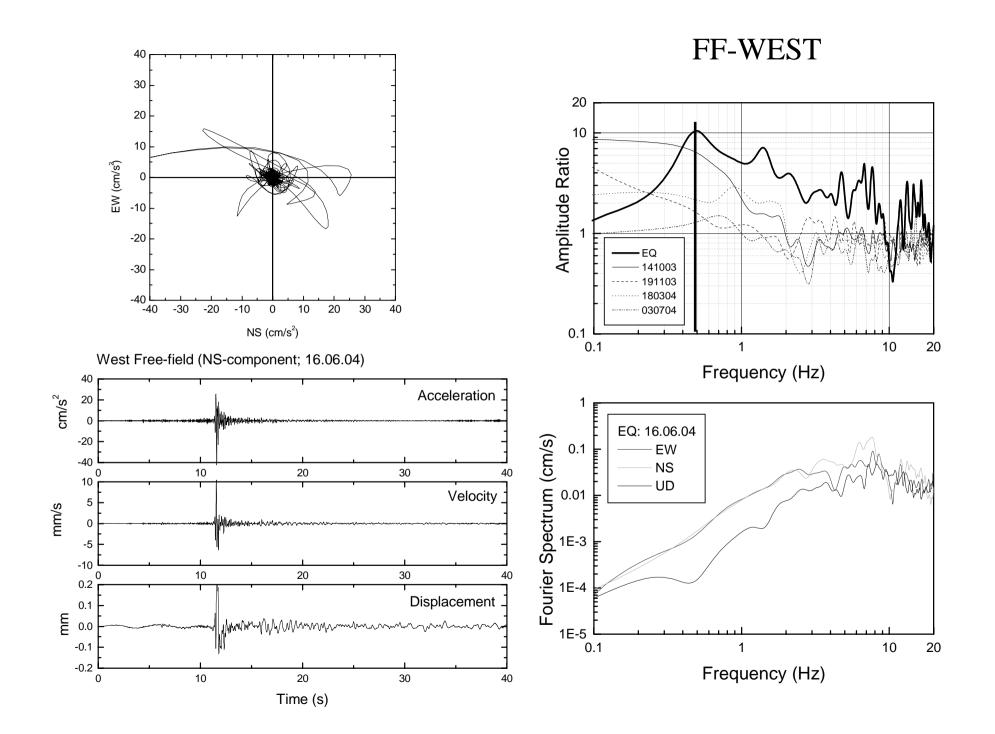
-40 L

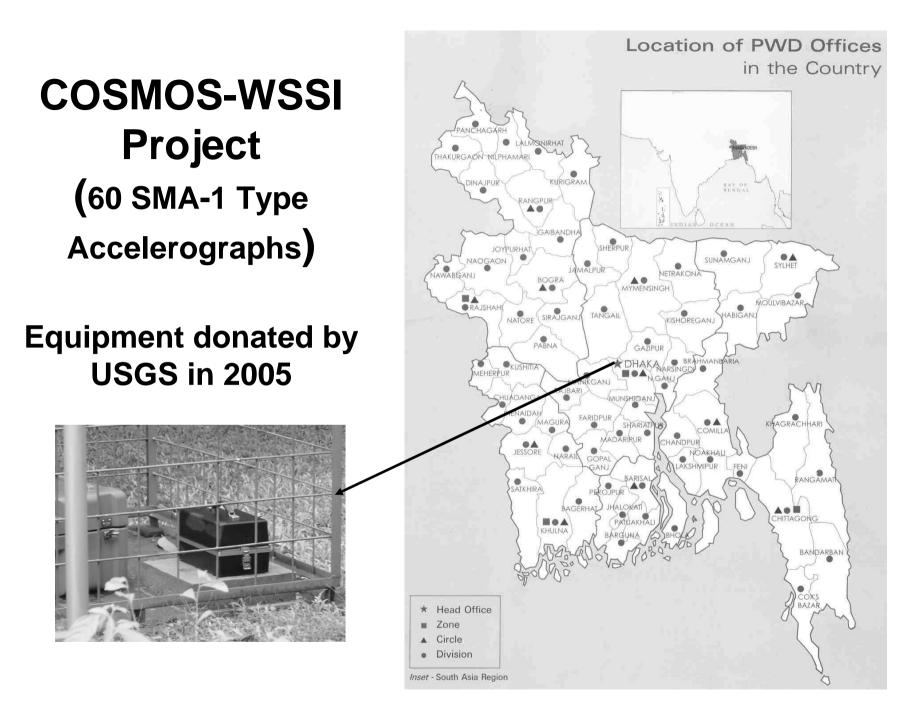
40

20

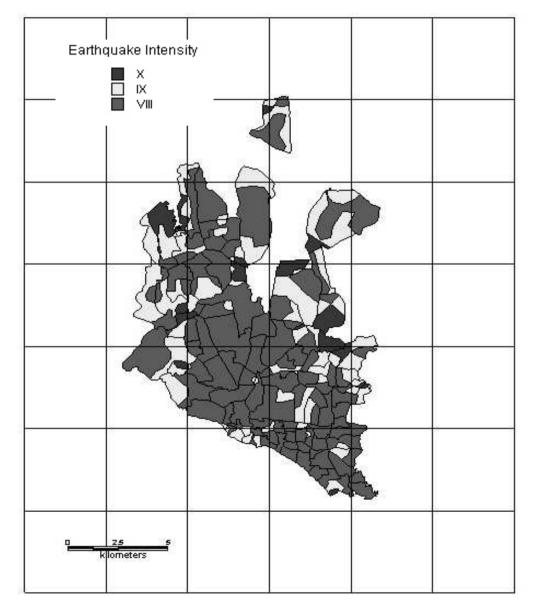

0

-20


-40


0

Acceleration (cm/s²)



Microzonation Maps based on SPT-N value and Microtremor Study

COMBINED HAZARD INTENSITY MAP FOR DHAKA, BANGLADESH

Thank You