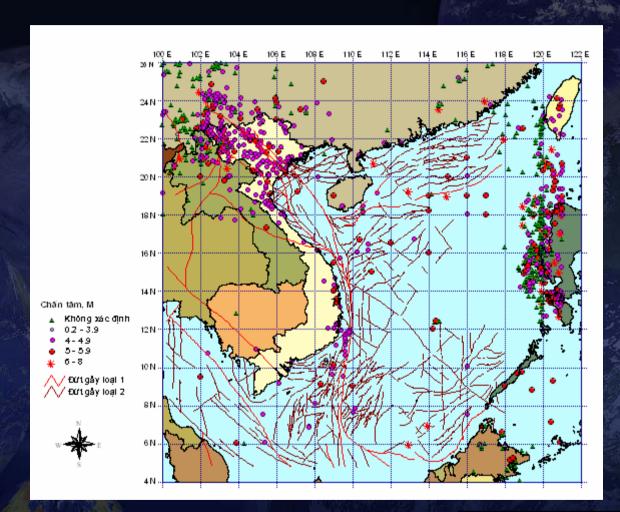
Outline


- Introduction
- Earthquake Hazard in Vietnam
- Seismic Hazard Assessment : State of the Art
- Urban Risk Assessment and Loss Estimation
- Application Examples
- Conclusion

Introduction

A reliable, up-to-date earthquake hazard assessment is an essential tool in national disaster mitigation in the sense that it sets out the appropriate design levels that can ensure safe, cost-effective construction.

In the long term, a national building stock that is appropriately designed will prove a sound investment, in the mitigation of future disaster.

Seismotectonic map of Vietnam and adjacent sea areas

Seismicity

- The largest earthquakes in country: 3
- -1 historical (in the 14th century)
- 2 recorded: Dien Bien 1935 (M=6.7) and Tuan Giao 1983 (M=6.7)
- Offshore volcanic earthquake 1923 (M=6.1).
- Most recent earthquakes on 8th November 2005: 2 (M=5.1 and 5.5) offshore Vung Tau city, SouthVietnam
- Many others ...

Threat

- A number of large cities and industrial centers are laying in zones, vulnerable to seismic shakings.
- Hanoi, the capital city, is located in the zone of intensity 8 (by MSK scale).
- The biggest in the country Son La hydropower plant might expect shakings of intensity 8-9 in the future.
- Da nang, Dung Quat and several urban areas in Central Vietnam can be affected by 7 intensity shakings.

Awarness

- Since all the largest earthquakes have occurred in remote areas, far from the urban and development cities, they were not recognized as the devastating ones.
- Even with the events of magnitude 6.7 or higher observed in Vietnam, earthquakes have not been considered as a highest priority disaster in the country until last two year events (the Sumatra tsunami of 26/12/2004 and two offshore earthquakes that shook Ho Chi Minh city in 2005).

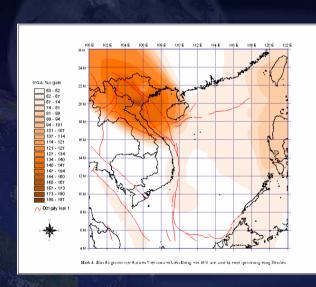
seismic Hazard assessment: State of the art

The four-decade history of earthquake hazard assessment in Vietnam can be divided roughly into two periods, which reflect two different approaches on methodology used: the deterministic and the probabilistic ones.

seismic Hazard assessment: state of the art

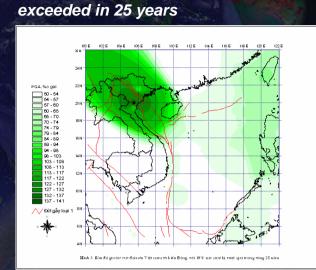
Deterministic approach

- 1968-1985
- Parameters estimation using deterministic methods
- Seismic zoning maps: North Vietnam (1968), South Vietnam (1980) and entire country (1985, frequently updated).
- In terms of Intensity (MSK-64)
- Based on seismotectonic regionalization
- Both seismic shaking zones and seismogenic zones are depicted
- For each seismic zone, a set of parameters such as expected maximum magnitude *Mmax* and average focal depth *h* are indicated.

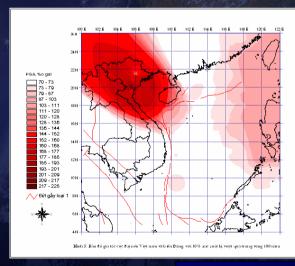

seismic Hazard assessment: state of the art

Probabilistic approach

- 1985 now
- Hazard parameters estimation: Gumbel's extreme value distributions, maximum likelihood method
- Probabilistic seismic hazard maps: Cornell-McGuire method, EQRISK program
- Mostly in terms of PGA
- Based on seismotectonic regionalization
- First published in 1993, frequently updated (1997, 2003)


seismic Hazard assessment: state of the art

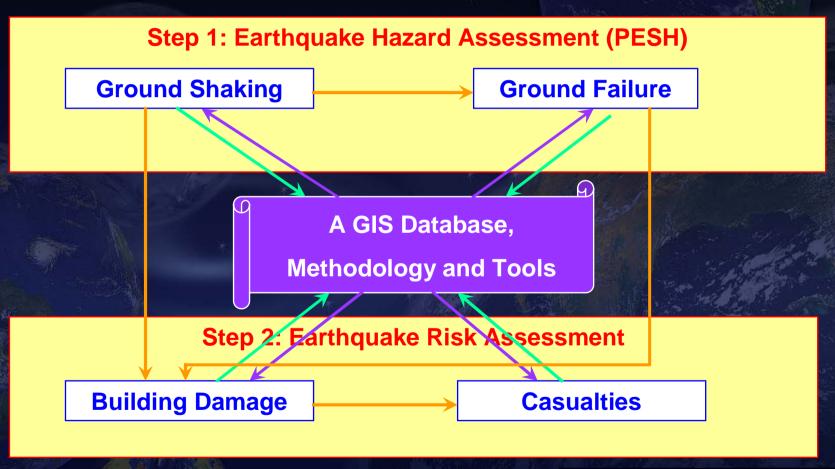
Probabilistic approach



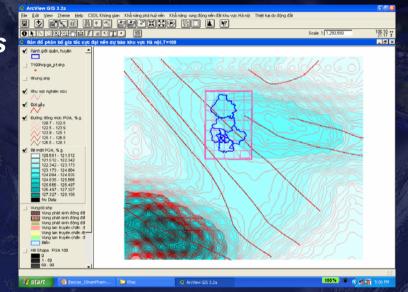
10% of being exceeded in 50 years

PGA maps:

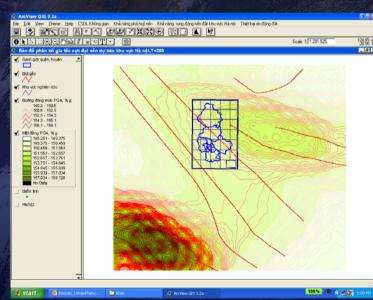
10% of being


10% of being exceeded in 100 years

Urban risk assessment and loss estimation

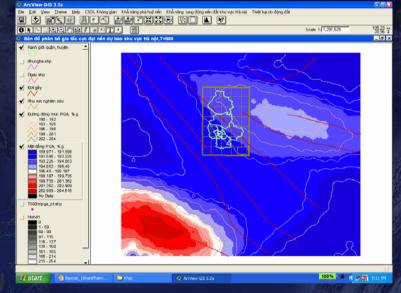

- Starting from 2000s
- Hanoi Projects on urban seismic risk assessment (2000 2003, ongoing since 2006), Ho Chi Minh city Project on urban seismic risk assessment (starts 2007)
- Incorporate Seismic hazard and Risk Assessments as two stages of a whole prcedure
- Using Geographical Information System (GIS)
- In terms of Decision Support System (DSS)

Urban risk assessment and loss estimation

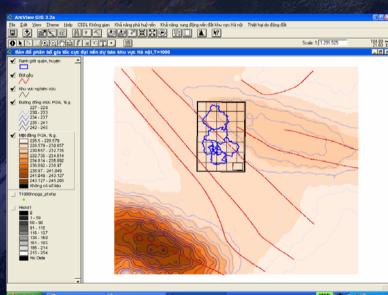


Ground Motion assessment

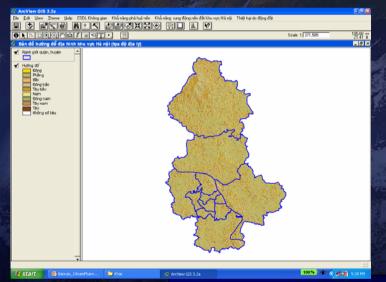
100 years



200 years

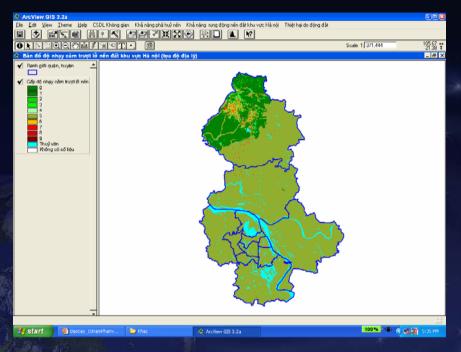


Ground Motion assessment


500 *years*

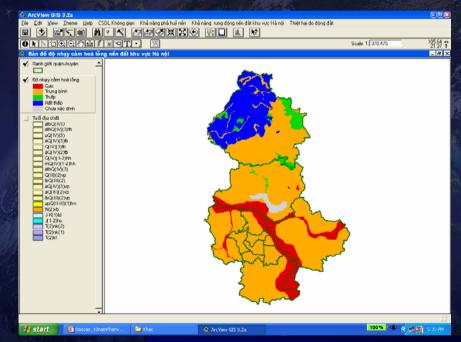
1000 years

The Hanoi's case study Ground failure assessment Slop map LOCATION DATE THE COLUMN PAGE SET THAN THE PART HE PAGE SET THE PAGE S



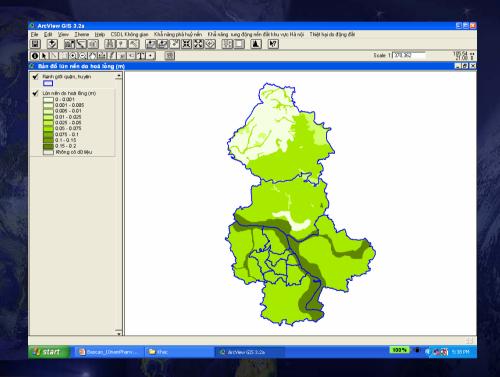
Aspect map

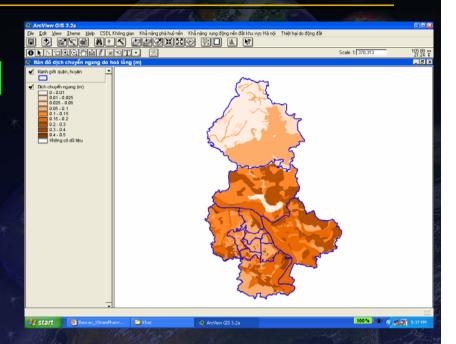
DEM


The Hanoi's case study

Ground failure assessment

Landslide susceptibility

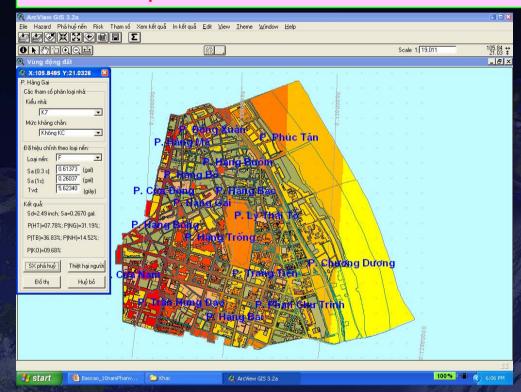

Liquefaction susceptibility

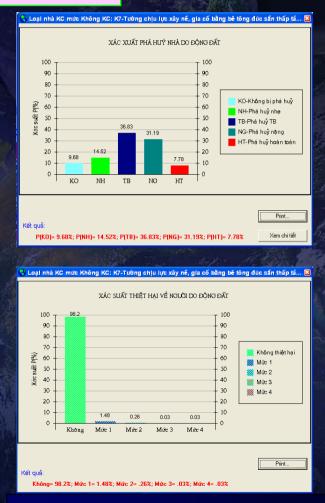


The Hanoi's case study

Ground failure assessment

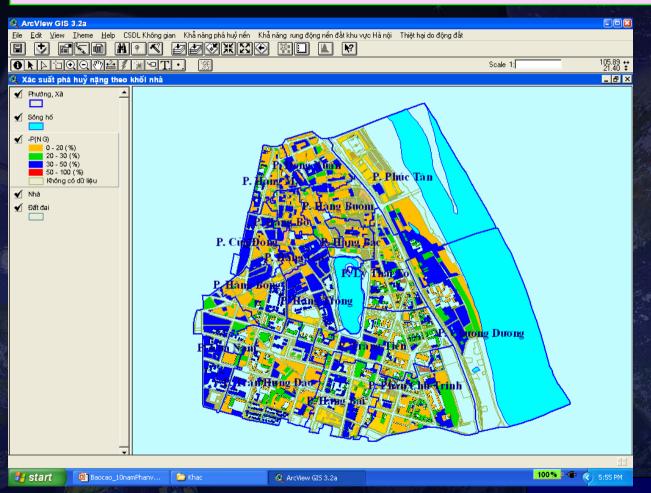
Ground lateral spreading due to Liquefaction




Ground settlement due to Liquefaction

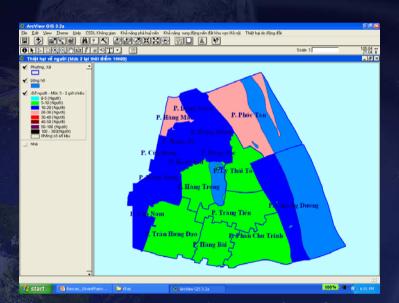
Earthquake loss estimation: Hoan Kiem District

Building damage state probability and Casualties: calculation at points

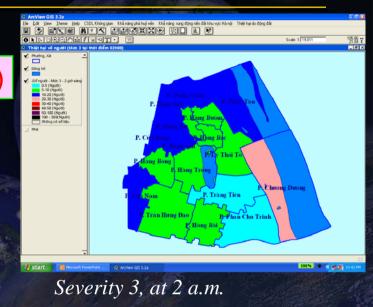


Building damage: the Hoan Kiem district

- Earthquake scenario
- Building damage is described by five damage states:
 none, slight, moderate, extensive or complete.



Building damage: the Hoan Kiem district



Mapping the probability of damage states of building stocks: extensive damagae

Casualty estimation (The Hoan Kiem district)

Severity 3, at 2 p.m.

Severity 3, at 5 p.m.

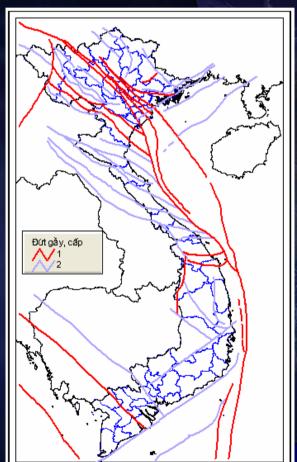
Application Examples

- F-Hazard: a GIS-based tool for Deterministic Seismic Hazard Assessment, using a Fault Source Model
- ArcRisk: a GIS-based DSS, a powerful tool for Urban Seismic Risk Assessment and Loss Estimation.

Magnitude-fault parameter relationship

Wells and Coppersmith Formula (1994):

$$Log10(L) = a + b. M$$


where L is the fault rupture length, km; M is the Moment Magnitude of the earthquake; a and b: empirical cofficients

Regression Coefficients of Fault Rupture Relationship of Wells and Coppersmith (1994)

Rupture Type	Fault Type	a	b
Surface	Strike Slip	-3.55	0.74
	Reverse	-2.86	0.63
	All	-3.22	0.69
Subsurface	Strike Slip	-2.57	0.62
	Reverse	-2.42	0.58
	All	-2.44	0.59

Database of Seismically Active Fault sysyems

 46 faults systems, capable of originating earthquakes

NguyÔn Hảng Ph-¬ng

Institute for Marine Geology and Geophysics

Attenuation relationship

- Nguyen Dinh Xuyen et al. (1999)
- Xiang Jianguang and Gao Dong (1994)
- Cambell and Bozorgnia (1994)
- Youngs, Chiou, Silva and Humphrey (1997)
- Boore, Joyner and Fumal (1993, 1994)
- Munson and Thurber (1997): Hawaii earthquakes.
- Sadigh, Chang, Abrahamson, Chiou and Power (1993)
- Frankel et al (1996)
- Toro, Abrahamson and Schneider (1997)
- Lawrence Livermore National Laboratory (Savy, 1998)

Tool

- Name : F-Hazard
- Environment: ArcView GIS
- Programming language: Avenue

1. Select a Study Region

2. Select a Fault

3. Define a Scenario Earthquake

4. Calculate and Mapping Hazard

Application Examples: Arcrisk

- ArcRisk: a GIS-based software, a powerful tool for eartquake hazard and risk assessment.
- Environment: ArcView GIS
- Programming language: Avenue
- Two main components of ArcRisk: 1) Earthquake hazard assessment (Ground motion and ground failure) and 2) Earthquake Risk assessment (Estimation of Building damage and casualties due to earthquake)
- More important is the function of *ArcRisk* as a Decision Support System, which enables users to anticipate the consequences of future earthquakes and to develop plans and strategies for reducing risk. This forecasting capability makes *ArcRisk* useful for many users with different needs.

Application Examples: Arcrisk

and loss

estimation

A DSS

1. Define the study region 2. Define an earthquake scenario

3. Ground motion assessment

4. Ground failure assessment

Demographic data inventory and vulnerability

Decision making:

Earthquake disaster
reduction planning

- •Preparedness
- •Emergency response
- •Recovery

NguyÔn Hång Ph-¬ng

Institute for Marine Geology and Geophysics

Trieste, 04-08 December 2006

Conclusion

Probably, it's the time for Vietnam to start with the NeoDeterministic approach of Seismic Hazard and Seismic Risk Assessment ?...

Seismic Hazard and Risk Assessment in Vietnam: Application Aspect

Thank you!

