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Electrochemical Power Sources for fighting 
Global Warming

Bruno Scrosati
Laboratory for Advanced Batteries

and Fuel Cell Technology
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The  energy forms used in the World today
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..to better implement renewable 
energies in our day-to-day lives
Sun doesn’t shine on demands…
Wind doesn’t blow every days..

Cost-efficient, long-life, high-power energy 
electrochemical power sources (e.g. batteries or fuel 

cells) are urgently needed!

To control environment pollution and..

1% 0.5%6%4% 1% 0.5%6%4%



How we can we address the CO2 issue 
and control the pollution in urban area ?

Among other actions, the replacement of 
a large fraction of internal combustion 
vehicles with controlled-emission (hybrid 
car) or zero emission (hydrogen car) is 
urgently needed!

Advanced energy storage systems, i.e. 
cost-efficient, long-life, high-power energy  
storage systems, i.e., batteries or fuel 
cells, are needed to meat this goal!



WHY HEV?

Source : International Energy Agency - http://omrpublic.iea.org/ - Feb 2006

Crude Oil Demand, worldwide, million 
tons, 1973-2005
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HEV MARKET

HEV sold per year, units, worldwide,
2000 - 2005
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FOTO HYBRID CAR 



.

Lithium batteries can do the job…..

…provide that they can assure, high energy, low 
cost safety and  high rates!

The hybrid car, HEV

…. however, new types of batteries having higher 
energy density and lower cost than Ni-MH, are 
urgently needed to assure high performance and 
market competitiveness.

A nickel-metal hydride batteries is presently 
used as the energy storage unit in HEVs …..



The lithium ion battery

Conventional lithium/ion  batteries  
are based on the following 
electrochemical system:

Anode:  grafite

Electrolyte: liquid solution of a 
lithium salt in an organic solvent 
mixture

Cathode: layered LiMO2 lithium oxide, 
e.g. LiCoO2

The lithium-ion rechargeable battery

Process: yC + LiCoO2 LixCy + Li(1-x)CO2 ;   x ~ 0.5  ; ~ 4V

Lithium ions are exchanged between the two electrodes by  
reversible extraction and insertion from and in open host 
structures with a concomitant removal and addition of electrons.



High Power

High Capacity

Power-Tools

　Robot

Cordless-Applications
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HEV

Mobile 
Applications

MP3

Camcorder

Power 
Applications

Lithium ion battery is the power sources of choice in a 
large range of  consumer electronic devices!



However, lithium  batteries fall 
short of satisfying needs for 
high energy for application in 
more demanding markets, such as 
efficient use of renewable 
energy and hybrid vehicles.
If improvements in energy
density and safety are obtained, 
the lithium ion battery can enter
in the HEV market!



Long  Term HEV Battery forecast

HEV market, million units, 
worldwide, 2010-2015
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ENERGY DENSITY

So far,  the energy density of lithium ion 
batteries has been improved by 
engineering cell  optimization, however, 
still keeping the original chemistry.  

The limit has been now reached and jumps in 
energy density can only be obtained by 
renewing the overall cell chemistry.



Cathodes: Lithium manganese spinels and lithium iron 
phosphate phospholivines, lithium manganese layered.
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Anodes: lithium metal  alloys and lithium titanium oxides

Various electrode materials are suitable 
for progress in lithium battery technology

Courtesy of Prof. K. Kanamura, Tokyo Metropolitan University



SAFETY

Safety is still an issue for conventional                  
C/ LiPF6-EC-DMC/ LiCoO2 lithium-ion batteries.

In addition to energy density, also safety is a key
parameter for batteris designed for HEV 
applications

Dell computer burnt in the conference in Osaka  in June 2006



Approaches to improve safety:

Use of electrode combinations operating 
within the stability window of the polymer 
electrolyte.                                                    
(plastic novel types of lithium-ion batteries)

Replacement of liquid electrolytes with
lithium conducting polymer electrolytes.



Solvent-free membranes, formed by blending , 
poly(ethylene oxide), PEO,  with a lithium salt, LiX
(SPEs)

Polymer electrolytes

Two main types

Liquid-polymer hybrid membranes, formed by 
formed by trapping  liquid solutions (e.g., a  LiPF6-
PC-EC solution ) in a polymer matrix (GPEs).



POLYMER ELECTROLYTES

Gel-type membranes, formed by trapping  liquid solutions 
(e.g., a  LiPF6-PC-EC solution ) in a polymer matrix (e.g. a 
poly(vinylidene fluoride), PVdF matrix (GPE).
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Li4Ti5O12 / GPE/ LiFePO4

lithium ion polymer cell

A 2V lithium-ion polymer battery!

P.Reale, S. Panero, B. Scrosati,J. Garche, M. Wohlfahrt-Mehrens, M.Wachtler, 

J.Electrochem.Soc, 151 (2004) A2138



The Li4Ti5O12 / GPE/ LiFePO4 battery is  
characterized by reliability, long life an a high degree 
of safety.

However, this  battery does not entirely meet 
the requirements for use in HEV where, in 
addition to safety and stability, also high rate is 
a key parameter.

Nanotechnology is a popular path to improve the 
rate capability of solid-state electrodes because of 
the reduced lithium diffusion length.
Examples are the nano-structured nano-modified 
titanium oxide and the Ni-substituted manganese
spinel. 

A.S. Aricò, P. Bruce, B. Scrosati, J-M.Tarascon, W. van Schalkwijk
Nature Materials, 4 (2005) 366



Hydreothermal
synthesis:

TiO2 in NaOH

400°C 4h in air

Voltage profile

morphology

Brookite structure   Pbca

TiO2 + xLi+ + xe- LixTiO2    1.5V 

A.R.Armstrong, G.Armstrong, J.Canales, P.G.Bruce, Journal of Power Sources 146 (2005) 501
A.R.Armstrong, G.Armstrong, J.Canales, P.G.Bruce, Electrochemical and Solid-State Letters, 9(2006) A139

a
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z

*In collaboration with Prof  P.Bruce
of University of St.Andrews, UK

New type of high rate anode: nanstructured TiO2 *

Theoretical specific capacity: 335 mAhg-1
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Wet chemistry synthesis:
Li+, Ni2+ and Mn2+ nitrides 

¯ in water
800°C 16h in air

Voltage profile

morphology

Spinel structure   P4332

LiNi0.5Mn1.5O4 Li0.5Ni0.5Mn1.5O4 + 0.5Li+ + 0.5e-

Li0.5Ni0.5Mn1.5O4 Ni0.5Mn1.5O4 + 0.5Li+ + 0.5e-. 4.5 V

a
b

c
x y
z

MnO6 LiO412d 8cNiO64b

Ni-substituted LiNi0.5Mn1.5O4 spinel

P.Reale, S. Panero, B. Scrosati, J.Electrochem.Soc, 152 (2005) A1949

Theoretical specific capacity: 146 mAhg-1

0 50 100 150

3,0

3,5

4,0

4,5

5,0

Vo
lta

ge
 / 

V

Specific capacity / mAh/g



TiO2 /  GPE  / LiNi0.5Mn1.5O4

lithium ion polymer cell

A 3V Lithium-ion Polymer Battery!

G. Armstrong, A.R. Armstrong, P.G. Bruce, P. Reale, B. Scrosati
Adv. Mater., 18 (2006) 2597



Lithium ion polymer battery



Future research trends for HEV lithium
battery R&D progress 

Develop proper electrode nanostructures 
(rate).

Replace conventional anode and cathode with 
higher capacity electrode materials(energy
density).

Replace liquid with polymer electrolytes
(safety).



Zero emission hydrogen fuel cell 
vehicles

High
Performance

On-Board 
Power

Environmentally
Clean

High
Efficiency

Low
Maintenance

Reliability

Comfort
(no vibration)Low Noise

Design Freedom



General Motor’s  ELECTROVAN (1967)
(with 400V, 160 kW UCC Alkaline FC System, liquid H2 und O2)





FC Cars TodayFC Cars Today

Source: Prof. Panik, DC
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Energy renewal                                               
(hydrogen-economy)

Environmental control                                           
( No-emission vehicles)

Major drawback:  cost                                           
the catalyst (noble metals) 
the polymer electrolyte 
membrane (Nafion™ -type)

O2

H2O

H2

H+

Load

PEM

H2O

The most promising for electric vehicle applications the 
Polymer Electrolyte Membrane Fuel Cell, PEMFC



40 nm
Carbon
support

Catalyst 
particles

electrolyte

Gas-diffusion 
layer

Carbon-
supported
catalyst

O2

Three-phase zone

Impregnated 
ionomer

Fuel cell electrode structure

Courtesy of Professor E.Peled, Tel Aviv University



The cost of the electrode structure may be controlled by 
using high surface area substrates on which nanoscale
catalyst (Pt, Pt-Rh) particles may be dispersed.

Fuel cell electrode structure

Catalyst (Pt) particle

High 
surface
area carbon
substrate

With this approach, the 
precious metal loading may 
be reduced to very low 
levels, e.g few mg/cm2 and, 
with the new technologies, 
to 0,5 mg/cm2.

The goal of the car 
companies is to reach Pt 
loadings even lower than 
this limit.

Courtesy of  Prof. Tom Zavodinski, Case Western University, Cleveland, USA



Successful R&D Work
Pt-Catalyst Content

Time
Pt content
 [mg/cm²]

1997 4

2002 0.1

Today
(labotatory results) 0.007



Common electrolytes for PEMFCs: 
perfluorosulphonic membranes, e.g.,  NAFION®

* CF2 CF2 n
 CF* CF2 *x

 

* CF2 CF m
 O

CF3

O-CF2-CF2-S H
+

O3

Nanoscale phase separated microstructure as determined by SAXS (small angle X-ray scattering)

K. D. Kreuer, J. Membr. Sci., 185 (2001) 2



Common electrolyte membrane: NAFION®

* CF2 CF2 n
 CF* CF2 *x

 

* CF2 CF m
 O

CF3

O-CF2-CF2-S H
+

O3

•☺high chemical stability
•☺ good conductivity
•/ high cost
•/ transport dependent on        

hydration state
•/ methanol crossover

9 Assisted protonic transport:Grotthuss mechanism

9Methanol crossover



New types of proton membranes, 
having lower cost, higher thermal 
stability and  higher selectivity 
than Nafion, are urgently required!



In lithium battery technology:                                                            
lithium conducting membranes formed by 
trapping  liquid solutions (e.g., a  LiPF6-PC-EC 
solution ) in a  suitable polymer matrix (e.g. a 
poly(vinylidene fluoride), PVdF matrix)                 
Gel polymer electrolytes.

Extension to fuel cell  technology:                                                     
proton  conducting membranes formed by trapping acid 
solutions (e.g., H2SO4 solutions ) in  suitable composite 
(polymer + ceramic filler) matrices.                            
Composite gel  electrolyte membranes.

The main goal is to develop low-cost, low-methanol-
permeability, temperature-resistant membranes for 
PEMFCs (DMFCs).

Strategy
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M.A. Navarra, S. Panero, B.Scrosati, J.Electrochem.Soc., 2006



Ionic Liquids, ILs

Sodium chloride melts at 800 oC (Hot solution).        
Ionic liquids melts at much lower temp (Cool  solution). 

NaCl IL



Liquids composed of only ions!!

Moderate polarity

Thermal/chemical stability

Solubility (affinity) with several 
compounds

Low 
viscosity

Low melting point

Ion conductive materials 
for

Electrochemical devices

Solvents
for

Chemical reaction

Non-volatility

Non-flammability

Variation of ion structure

High ionic conductivity

Ionic liquids

They may have …



Appearance of protic
IL-based 
membranes

T = 60 °C

T = 25 °C

A. Fernicola, S. Panero, B.Scrosati, 
M.Tamada, H. Ohno, PhysChemChemPhys, 
submitted



IL-based membranes  have a significant ionic 
conductivity. The conductivity increases with 
temperature, reaching at 130 °C high and stable 
values.  

Conductivity of IL 60%-
PVdF 40% membrane at 130 
°C.
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Future research trends for fuel cell R&D
progress 

Develop ionis-liquid- based membranes 
(thermal stability).

Develop adequate electrode nanostructure 
(Pt loading).

Replace conventional Nafion-based membranes 
(Cost, crossover).

Search of alternate, not-precious metal 
catalysts (Cost).



Ecologic car                                      
Prospective

Hybrid car: in the market      
Controlled emission

Hydrogen car: in the 
market by 2010 (prevision) 
Zero emission?

Electric car: prototypes
Zero emission




