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Outline
• Sources of uncertainty
• How can we estimate the reliability of global

climate models in simulating future climate
change?

• Conclusions



Sources of uncertainty



Construction of climate projections

Each step of the calculation has its own sources of error. This
talk focuses on the last step: how reliable are simulations
of climate change in the optimal case that forcing is known?

Greenhouse gas and
aerosol emissions

Climate change

Assumptions about
population, economy, 
technology etc.

Carbon cycle model
etc.

Greenhouse gas and 
aerosol concentrations

Climate model



Global climate model (CMIP3 set-up)

Other components (carbon cycle, interactive vegetation, 
atmospheric chemistry...) not included in CMIP3

Atmosphere

Land
surf.

Sea
iceOcean

Exchange of heat (         ), water (         ) and
momentum (         ) between the model components



Structure of an AGCM
• Global 3-dimensional grid

(∆λ ~ ∆ϕ ~ 2.5° ~ 250 km; ~20-30 levels)
• Primitive equations
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Equations are near to exact
but need to be solved with
limited resolution.

The effect of unresolved
processes on the resolved
scales needs to be presented
in a semi-empirical fashion, i.e.,
by parameterization.



Resolved
processes

Parameterisized
processes

small scales

en
er

gy
et

c.

≥ grid scale

Energy and water cycles are strongly affected by parameterisized
processes important uncertainty in climate change simulations

The problem will be reduced by improving model resolution,
but it will never be eliminated.

clouds, 
convection,
turbulence,
radiation...

large scales

Parameterization problem
scale interaction



Internal climate variability
• Climate varies even without

external cause – both in 
model simulations and in 
nature

• This internal variability defines
a lower limit of uncertainty that
can not be reduced by any
model

• In century-scale projections, 
genuine modelling uncertainty
(due to parameterizations, 
etc.) generally dominates over
internal variability - but not
necessarily in the near future.

Example:
Annual mean temperature
in southern Finland
in a climate model simulation



How reliable are simulations
of future climate change?

In terms of verification, climate modellers are less well-off
than weather forecasters. However, there are indirect
methods.



How to estimate the reliability of 
simulations of future climate change?

• All these methods have limitations
– None of them alone tells everything
– Even the three methods together do no tell everything
– Three methods together tell more than any of them alone

(1) Comparison of 
simulated present-
day climate with
observations

(2) Intercomparison
of climate change
simulations between
different models

(3) Simulation of
past (20th century
and earlier) climate
changes

Assessment of reliability



How well do global climate models
simulate present-day climate?



’Observed’ vs simulated (multi-model
mean) annual mean present-day climate

’Observations’ Mean, 21 models
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A high degree of similarity (particularly for temperature) but differen-
ces in details (larger for individual models than multi-model mean!).

r = 0.996

r = 0.872
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Biases in present-day annual mean surface air 
temperature in some individual models
(WG1 AR4, Fig. S8.1b)



Temperature biases in 21 CMIP3 models
(Räisänen, 2007, Tellus 59A, 2-29)

multi-model mean bias inter-model StDev

Mean / StDev
In most areas, |Mean| < StDev:
biases more random than
systematic.

Very few areas (2%) with the 
same sign of bias in all models
(stippling)



Precipitation and sea level pressure
biases in 21 CMIP3 models: ratio between
multi-model mean bias and StDev

Biases in precipitation tend to be slightly more systematic
than those in temperature and sea level pressure – but is
this because precipitation is more difficult for models or
because observations of precipitation are more unreliable?



Verification statistics for annual mean present-
day climate: analysis of 21 CMIP3 models

Räisänen (2007) Tellus, 59A, 2-29

Mean, Min, Max: statistics for individual models
21M: statistics for 21-model mean climate

1) In comparison with the overall spatial variability, temperature is 
simulated best, followed by sea level pressure and precipitation

2) Biases in individual models tend to cancel out: performance of the
21-model mean similar to the best individual models



Performance of individual models for 
different variables: rms errors in 
annual mean T, P and SLP

Temperature (x) vs.
Precipitation (y)

Temperature (x) vs. 
Sea level pressure (y)

Precipitation (x) vs. 
Sea level pressure (y)

r=0.06 r=0.13 r=0.27

’Universal’ ranking of models extremely difficult!



An important, but unresolved issue

• Biases in present-day time mean climate tend to vary
in sign between different models (for most variables
and areas)

• This is – in principle – good news:
– if the same is also true for simulated climate changes, 

then the variation of climate changes between
different models might be a good measure of the 
actual uncertainty

• However, modellers know the present-day climate
– if the unsystematic nature of the biases results from a 

’pull towards a common attractor’ (= tuning), then the 
previous suggestion may not hold



Uncertainty in climate change
simulations, as inferred from

variation between models

1. Global mean temperature change



Equibrium climate sensitivity (ECS)* and Transient
climate response (TCR)** in CMIP3 models

*  Equilibrium global mean warming due to doubling of CO2
** Warming at CO2 doubling (70 years) when CO2 increases 1% per year

Equilibrium climate sensitivity (ºC)
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ECS: 2.1-4.4ºC (mean: 3.3ºC)
TCR: 1.2-2.6ºC (mean: 1.8ºC)

The difference mainly reflects
the effect of ocean heat uptake

All uncertainty not
necessarily captured by
the CMIP3 ensemble



Uncertainties in feedbacks to equilibrium
global warming: changes is clouds dominate

(IPCC AR4 
WG1 Fig. 8.14)
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Global mean warming from 1980-99 to 2090-99, 
under six SRES marker scenarios (IPCC AR4, 

WG1 Fig. 10.29)

’Likely’ uncertainty ranges, including uncertainty in carbon cycle:
B1: 1.1-2.9ºC; A1B: 1.7-4.4ºC;   A2: 2.0-5.4ºC; A1FI: 2.4-6.4ºC
Range of CMIP3 simulations (varying set of models)
B1: 1.2-3.1ºC; A1B: 1.9-4.3ºC;   A2: 2.4-4.1ºC 



Uncertainty in local / regional
climate changes

• Intercomparison of CMIP3 simulations for the A1B 
scenario
– 22 models
– only one ensemble member for each

• Differences in simulated climate change result from
– differences between models
– internal variability
– to small extent, differences in forcing? 

• Uncertainty in emission scenarios is not included in 
this comparison



22-model mean (°C) Standard deviation (°C)

Annual mean temperature change:
1970-1999 to 2070-2099, SRES A1B

Both the average warming and the inter-model differences
are largest in high northern latitudes



mean / standard deviation fraction of models with ∆T > 0 

Annual mean temperature change:
agreement between models

1) All models simulate some warming over practically all land areas
2) Best ’relative agreement’ in the tropics: standard deviation increases

more sharply towards high latitudes than the average warming



22-model mean (%) Standard deviation (%)

Annual mean precipitation change:
1970-1999 to 2070-2099, SRES A1B

Largest intermodel variation (in per cent units) in the subtropics
and in the the Actic



mean / standard deviation fraction of models with ∆P > 0 

Annual mean precipitation change:
agreement between models

1) Models agree less well on changes in precipitation than temperature
2) Best ’relative agreement’ in high latitudes (increase) and in parts of

the subtropics / lower midlatitudes (decrease)



• Temperature: high correlation in most land areas and 
low-latitude oceans

• Precipitation: low correlation, exluding some high-
latitude regions

Are differences in local climate change
connected to differences in global warming?

corr(∆T, ∆Tglob) corr(∆P, ∆Tglob)



• In the late 21st century, inter-model differences in climate
change are generally much larger than the differences
expected from internal variability alone. This is particularly
true for temperature.

Role of internal climate variability (1)

Annual mean T change, A1B, 1970-1999 2070-2099

StDev between 22 models
StDev in a single-model
ensemble (CCSM3, 7 runs)

Single-model initial-condition ensembles give a far too
optimistic idea of the actual uncertainty



• In closer-term projections, internal variability covers a 
somewhat larger part of the uncertainty – simply because the 
inter-model differences play a smaller role when climate
changes are smaller. 

Role of internal climate variability (2)

Annual mean T change, A1B, 1970-1999 2008-2037

StDev between 22 models
StDev in a single-model
ensemble (CCSM3, 7 runs)



• For precipitation, internal variability is a relatively more
important uncertainty than for temperature – but still second to 
model differences in the late 21st century

Role of internal climate variability (3)

Annual mean P change, A1B, 1970-1999 20XX-20YY

StDev between 22 models
StDev in a single-model
ensemble (CCSM3, 7 runs)
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What do biases in control climate tell
about model reliability in simulating

climate changes?
• ”Biases in control climate indicate that there must be

something wrong in the model”
– but what does this mean in quantitative terms?

• Biases in control climate might adversely affect
some of the feedback processes that regulate the 
simulated climate changes

• This important issue is still poorly understood!



Inter-model variation of present-day biases
vs. inter-model variation in climate changes

StDev in TAnn, 1970-99
StDev in ∆TAnn, 
1970-99 to 2070-99 (A1B)

Magnitude of present-day biases is not a direct measure of
uncertainty: errors in the simulation of present-day and future
climates tend to cancel out – at least to the extent that this can
be judged from intercomparison of model simulations



Inter-model correlation between present-day
temperature and 21st century warming
Annual mean Winter (DJF)

In most areas, the correlation is low: simulated present-day
climate is a poor predictor of simulated climate changes
(this also turns out to be true for other variables).

Areas near the ice edge are an important exception



DJF temperatures in the North Atlantic in 
the **** model

∆TDJF(1970-1999 2070-2099)

TDJF (1970-1999)

Present-day TDJF
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Scatter plot of CMIP3
simulations for the
North Sea (55ºN, 5ºE)



Implications
• In most cases

– no simple relationship between present-day climate and 
simulated climate changes – at least not for those variables that
are most commonly and most easily verified

• Thus
– good performance in simulating local present-day time mean

climate may not be a very strong predictor of model reliability
• However

– be aware of outliers. Don’t be shy to throw away bad models, if
you have strong reasons to suspect that their biases have a 
serious impact on their climate change response

• Analysis of variability and individual processes
– potentially more useful than verification of time mean climate, but

also more challenging to conduct



How well can models simulate past
climate changes?

• In principle
– for the simulation of future changes, the simulation of past

changes provides the most objective test that is available

• Complications
– Uncertainties in forcing
– Internal climate variability (particularly on regíonal scales)
– Lack / uncertainty in observations (for many variables)

• Focus in this talk on the instrumental period
– palaeoclimates also provide opportunities for model evaluation, 

but with (at least) equally large complications in interpretation



Radiative forcing components (2005)

Greenhouse
gases

Aerosols

Total anthropogenic
(range: 0.6-2.4 Wm-2)

Both good and bad agreement between simulated and observed
climate changes may partly result from errors in forcing.

(IPCC AR4 WG1, Fig. SPM.2)



Simulation of global mean temperature
changes, 1900-2005 (IPCC AR4 WG1 FAQ 8.1, Fig. 8.1)

Black: observations
Red and yellow:
mean and variability
of 58 simulations by
14 CMIP3 models,
including both
natural and
anthropogenic
forcing.

1) Good agreement!
2) Warm period around 1940 not well captured by models?

(extreme event of internal climate variability??) 



Simulation of continental-scale
temperature changes (IPCC AR4 WG1 Fig. SPM.4)

Simulations with anthropogenic + natural forcing
Simulations with only natural forcing

”It is likely that there has been significant anthropogenic warming over
the past 50 years averaged over each continent except Antarctica”



Comparison between observed and 
simulated temperature trends, 1955-2005

Observations (CRU) CMIP3 21-model mean

Similar global mean warming, but only broad similarity
(r = 0.48) in geographical patterns

But: because of internal variability, no perfect agreement
would be expected even if the models were perfect!

Räisänen (2007) Tellus, 59A, 2-29



Comparison between observed and sim-
ulated temperature trends, 1955-2005 (2)
Fraction of models with ∆Tsim > ∆Tobs

In most areas, observed temperature changes were within
the range of the changes simulated by the 21 models

The reverse was true in only 12% of the verification domain. 
Räisänen (2007) Tellus, 59A, 2-29



Comparison between observed and sim-
ulated precipitation trends, 1955-2005 

Observed precipitation change out of the range
of model simulations: 23% of the verification domain

Observations (CRU) 21-model mean
Fraction of models
with ∆Psim > ∆Pobs

Correlation = 0.23



Comparison between observed and 
simulated climate trends: conclusions
• Low signal-to-noise ratio on regional scales, particularly for 

precipitation but also for temperature
– therefore: compare observations against the range of 

simulations, not only the multi-model mean
• Temperature trends well captured by the range of model

simulations in most areas, precipitation trends less well
– errors in precipitation response to increasing GHGs?
– problems with forcing (aerosols, land use changes etc)?
– Inhomogeneity in observations? 
– Underestimation of natural variability in models?   

• Past performance is not a water-proof predictor of 
future performance
– With increasing greenhouse gas forcing, the relative importance

of model errors will grow larger



General conclusions
• Global climate models show substantial skill in 

simulating both
– the present-day climate, and
– 20th century climate change, particularly the large-scale

temperature evolution
• Nevertheless, models are not (and will never become) 

perfect
• Variation of model results gives a first useful estimate

of uncertainty in future climate changes
• The non-trivial question is how the actual uncertainty

relates to this inter-model variation!


