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Introduction

Introduction

DMC simulations for solids work almost exactly as for atoms and
molecules.
So why a special lecture on solids?

� Periodic boundary conditions
� Coulomb interactions in periodic systems
� Construction of trial functions for periodic systems
� Finite-size errors
� Interesting applications
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Introduction

Large Many-Particle Systems

Tight-binding model
2 orbitals and 1 electron per site
N sites/electrons altogether

Hilbert space dimension =
(2N)!

N!N!
≈ e2N ln 2

using Stirling’s approximation.

The exponential increase in the number of relevant configurations
makes quantum chemistry hard.
But MC methods were invented for high-dimensional problems . . .
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Introduction

QMC for Large Systems

No serious competition except DFT.
Lower standards expected than in molecules.
Scales well with system size.
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Introduction

Scaling with System Size

Work to move N electrons M times ∝ M(N2 + εN3)

Error ∆E in mean energy ∝ σN√
M

Hence, number of moves M required to achieve a given error ∆E scales
as

M ∝ σ2
N

(∆E)2 ∝ N
(∆E)2

and total run time Trun scales as

Trun ∝ N3 + εN4

(∆E)2

(If you are only interested in achieving a given relative error f = ∆E/E , then
∆E = fE ∝ N and Trun ∝ N + εN2.)
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Introduction

The Earth’s Core

What is it?
How hot is it?

About 5500K at inner/outer core boundary

How viscous it is?
Estimates span 12 orders of magnitude
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Introduction

Cytochrome P450 Family of Enzymes

RH + O2 + 2H+ + 2e− −→ ROH + H2O
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Introduction

Energy Scales I

Total electronic > 102 eV (> 103 eV)
Chemical bond few eV
Chemical reaction < 10−1 eV
Room temperature 2.5 × 10−2 eV
High Tc superconductivity < 10−2 eV
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Introduction

Energy Scales II

C atom

Etotal = −1075 eV
EHF = 99.6% Etotal = −1070.7 eV
Ecorr = 0.4% Etotal = −4.3 eV

C pseudo-atom

Etotal = −150 eV
EHF = 98.2% Etotal = −147.3 eV
Ecorr = 1.8% Etotal = −2.7 eV
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Periodic Boundary Conditions Periodic Boundary Conditions

Periodic Boundary Conditions in One-Electron Theory

Ĥ = −1
2
∇2 + Veff(r)

Translating the electron by a primitive lattice vector leaves Ĥ
unchanged:

Ĥ(r + Rp) = Ĥ(r)

No need to replace infinite system by a finite simulation cell.
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Periodic Boundary Conditions Periodic Boundary Conditions

Periodic Boundary Conditions in Many-Electron
Theory

Cannot even write down the Schrödinger equation for an infinite
many-electron system (periodic or not).
Instead, consider a simulation cell of L × L × L unit cells

subject to periodic boundary conditions.

W.M.C. Foulkes (Imperial College London) DMC for Solids Wednesday 23rd January 2008 14 / 79



Periodic Boundary Conditions Periodic Boundary Conditions

Periodic Hamiltonian

Insist that

Ĥ(r1 + Rp, . . . , ri + Rp, . . . , rN + Rp) = Ĥ(r1, . . . , ri , . . . , rN)

Ĥ(r1, . . . , ri + Rs, . . . , rN) = Ĥ(r1, . . . , ri , . . . , rN)

The first invariance (on translation of all electrons by a primitive
lattice vector) seems "natural". Corresponds to conservation of
centre-of-mass crystal momentum.
The second invariance (on translation of any one electron by a
simulation-cell lattice vector) follows if

� We assume that the simulation cell is subject to strict periodic
(toroidal) boundary conditions, or

� The potential energy appearing in Ĥ is the energy per cell of an
infinite periodic lattice of identical copies of the simulation cell.
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Periodic Boundary Conditions The Ewald Interaction

The Ewald Interaction

The cluster Hamiltonian

Ĥ = −1
2

N∑
i=1

∇2
i +

1
2

Nq∑
α �=β

qαqβ

|rα − rβ|

does not have the right symmetries. For example,

Ĥ(r1, . . . , ri + Rs, . . . , rN) �= Ĥ(r1, . . . , ri , . . . , rN)

To fix the problem, we replace 1/|rα − rβ| by the Ewald interaction,
vEw(rα − rβ), which has the periodicity of the simulation cell by
construction.
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Periodic Boundary Conditions The Ewald Interaction

Coulomb Interactions in Periodic Systems

Start with a simulation cell containing charges (electrons + ions)
qα at positions rα. The cell is neutral overall:

∑Nq
α=1 qα = 0.

Embed the simulation cell in a finite lattice of identical copies of
itself.

Calculate the Coulomb energy per cell as a function of lattice size
and let the lattice size tend to infinity to get a result for the solid.
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Periodic Boundary Conditions The Ewald Interaction

But which answer do you want?

Because of the long range of the Coulomb interaction, result depends
on cluster shape even in the limit as the cluster size → ∞!
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Periodic Boundary Conditions The Ewald Interaction

The Periodic Limit

To obtain a periodic result, we adopt “tin-foil” boundary conditions,

The Coulomb potential deep within the cluster is then periodic and
takes the form

φ(r) =

Nq∑
α=1

qαvEw(r − rα)
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Periodic Boundary Conditions The Ewald Interaction

Reciprocal-Space Representation

To within an (irrelevant) arbitrary constant, the Ewald potential due to a
point charge δ(r), a neutralising uniform background, and all its
images, may also be obtained by solving Poisson’s equation

∇2vEw(r) = −4π
(
δ(r) − 1

Ωs

)
,

within one simulation cell subject to periodic boundary conditions.

Evaluating the reciprocal lattice vector Fourier components gives:
∫

Ωs

e−iGs·r∇2vEw(r)dr = −4π
∫

Ωs

e−iGs·r
(
δ(r) − 1

Ωs

)
dr

−G2
s ṽEw(Gs) =

{ −4π Gs �= 0 ,
0 Gs = 0 .
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Periodic Boundary Conditions The Ewald Interaction

Although the Fourier components ṽEw(Gs) are well defined, the
corresponding Fourier series

vEw(r) =
1
Ωs

∑
Gs �=0

ṽEw(Gs)eiGs·r =
1
Ωs

∑
Gs �=0

4π
G2

s
eiGs·r

does not converge absolutely and is useless in practice.

W.M.C. Foulkes (Imperial College London) DMC for Solids Wednesday 23rd January 2008 21 / 79



Periodic Boundary Conditions The Ewald Interaction

The Ewald Formula

A practical method for evaluating the Ewald interaction is obtained by
splitting up the charges as follows:

The periodic potential corresponding to the first, smooth,
distribution may be expressed as a rapidly convergent Fourier
series.
The short-range potential from a delta function plus its neutralising
Gaussian may be evaluated in real space.
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Periodic Boundary Conditions The Ewald Interaction

The resulting Ewald formula is

vEw(r) =
1
Ωs

∑
Gs( �=0)

4π exp
(
−κ2G2

s
2 + iGs · r

)
G2

s
− 2πκ2

Ωs
+

∑
Rs

erfc
( |r−Rs|√

2κ

)
|r − Rs|

where κ is the width of the auxiliary Gaussian charges.
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Periodic Boundary Conditions The Ewald Interaction

The Coulomb Energy

The total Coulomb energy per simulation cell takes the form

ECoulomb =
1
2

Nq∑
α �=β

qαqβvEw(rα − rβ) +
1
2

Nq∑
α

q2
αvM

where

vM = lim
|r|→0

(
vEw(r) − 1

r

)

is called the Madelung potential. It is the potential at a unit point charge
due to the cancelling background and all the images of that charge.
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Periodic Boundary Conditions The Ewald Interaction
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Periodic Boundary Conditions The Ewald Interaction

"Dodgy" Fourier Representations

vEw(r) =
1
Ωs

∑
Gs( �=0)

4π exp
(
−κ2G2

s
2 + iGs · r

)
G2

s
− 2πκ2

Ωs
+

∑
Rs

erfc
(

|r−Rs|√
2κ

)
|r − Rs|

Although numerically efficient, the Ewald formula is analytically awkward.

If we choose ε = κ/
√

2 very small and assume that |r − Rs| � ε, then

vEw(r) ≈ 1
Ωs

∑
Gs( �=0)

4πe−ε2G2
s eiGs·r

G2
s

.

This convenient Fourier representation is far wrong in tiny regions of radius ε
about each lattice point, but very accurate elsewhere. Similarly

vM = lim
r→0

(
vEw(r) − 1

r

)
≈ 1

Ωs

∑
Gs( �=0)

4πe−ε2G2
s

G2
s

−
∫

all space

4πe−ε2G2

G2
dG

(2π)3
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Trial Wave Functions for Periodic Systems Bloch’s Theorem

Bloch’s Theorem in One-Electron Theory

Hamiltonian is periodic: Ĥ(r + Rp) = Ĥ(r)
Bloch’s theorem enables you to study the infinite system by
solving the Schrödinger equation within a single primitive cell
subject to twisted (Bloch) boundary conditions:

ψ(r + Rp) = eik·Rpψ(r) , k ∈ primitive BZ ,

and integrating over twists (the BZ).
Any eigenfunction can be written in the form

ψ(r) = eik·ru(r) where u(r + Rp) = u(r)
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Trial Wave Functions for Periodic Systems Bloch’s Theorem

Bloch’s Theorem(s) in Many-Electron Theory

In many-electron theory, we have two translational symmetries

Ĥ(r1 + Rp, . . . , ri + Rp, . . . , rN + Rp) = Ĥ(r1, . . . , ri , . . . , rN)

Ĥ(r1, . . . , ri + Rs, . . . , rN) = Ĥ(r1, . . . , ri , . . . , rN)

These lead to

Two different versions of Bloch’s theorem
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Trial Wave Functions for Periodic Systems Bloch’s Theorem

The Primitive-Cell Bloch Theorem

Ψ(r1 + Rp, . . . , ri + Rp, . . . , rN + Rp) = eikp·RpΨ(r1, . . . , ri , . . . , rN)

kp may be reduced into the primitive BZ.
Not very useful because it only fixes the boundary conditions in 3
of the 3N configuration-space directions.
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Trial Wave Functions for Periodic Systems Bloch’s Theorem

The Simulation-Cell Bloch Theorem

Ψ(r1, . . . , ri + Rs, . . . , rN) = eiks·RsΨ(r1, . . . , ri , . . . , rN)

ks may be reduced into the simulation-cell BZ.
Antisymmetry implies that all electrons have the same ks.
If you regard the simulation cell as a torus

ri + Rs ≡ ri

then ks must be zero (and kp ∈ {Gs}).
Fixes the boundary conditions in all 3N configuration-space
directions.
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Trial Wave Functions for Periodic Systems Bloch’s Theorem

3 × 3 simulation cell Primitive and simulation-cell
Brillouin zones

W.M.C. Foulkes (Imperial College London) DMC for Solids Wednesday 23rd January 2008 32 / 79



Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Bloch’s Theorem and Slater Determinants

Any point ks in the simulation-cell BZ of an L × L simulation cell lies on
an L × L grid of points of the form k = ks + Gs in the primitive BZ. All
grid points are equivalent modulo Gs.

Consider a Slater determinant constructed using any set of N
one-electron orbitals with Bloch wavevectors k on the grid:

Dks =

∣∣∣∣∣∣∣∣∣∣∣∣

ψk1(r1) ψk1(r2) · · ψk1(rN)
ψk2(r1) ψk2(r2) · · ψk2(rN)

· · · · ·
· · · · ·
· · · · ·

ψkN (r1) ψkN (r2) · · ψkN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣
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Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Since, for any ki = ks + Gs on the grid,

ψki (r + Rs) = ei(ks+Gs)·Rsψki (r) = eiks·Rsψki (r)

it is easy to see that Dks satisfies the simulation-cell Bloch
theorem,

Dks(r1, . . . , ri + Rs, . . . , rN) = eiks·RsDks(r1, . . . , ri , . . . , rN)

Moreover, since

D(r1 + Rp, . . . , rN + Rp) = ei(
P

i ki )·RpD(r1, . . . , rN)

it also satisfies the primitive-cell Bloch theorem with

kp =
∑

i

ki (modulo Gp)
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Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Procedure for Constructing Bloch Slater Determinants

1 Choose grid offset ks ∈ simulation-cell BZ.
2 Construct the grid of L × L × L k points of form ks + Gs in the

primitive BZ.
3 Solve non-interacting (DFT or HF) problem to obtain the

one-electron orbitals at every point on grid.
4 Occupy the N lowest orbitals in the set.

If ks = 0 or ks = Gs/2 and Ĥ is real, the one-electron
orbitals can be chosen to be real.
For other values of ks, need complex wavefunctions and
hence fixed-phase DMC.
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Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Orbital Representation

The most time-consuming part of calculation is repeated
evaluation of ψki (rj).

� For one move of all N electrons, need to evaluate N2 orbitals.
If each orbital is expanded in plane waves

� ψk(r) =
∑
Gp

ck(Gp)ei(k+Gp)·r

this is very time consuming, especially when the primitive unit cell
is large.
Better to use a basis of localised functions

� Blips (splines)
� Gaussians
� . . .
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Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Wannier Functions
In insulators, one can find exponentially localised linear combinations
of the occupied one-electron orbitals.

But taking linear combinations of rows has no effect on the value of a
determinant.

When D is expressed in terms of Wannier functions,
many elements are nearly zero

(Very useful at LLNL!)

W.M.C. Foulkes (Imperial College London) DMC for Solids Wednesday 23rd January 2008 37 / 79



Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Bloch Slater-Jastrow Functions
Multiply a Bloch Slater Determinant by a Jastrow factor:

Ψ = eJ({ri},{rI})D

where

J =
∑
i>j

u(rij) +
∑

i

∑
I

χI(riI) +
∑

I

∑
i>j

fI(riI , rjI , rij)

+
∑
i>j

p(rij) +
∑

i

q(ri)

u, χI , fI are polynomials chosen to approach zero smoothly at cut-off
distances (which ≤ the simulation-cell Wigner-Seitz radius).

Cusp conditions satisfied.

p and q are plane wave terms useful in the "corners" of the WS cell.
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Trial Wave Functions for Periodic Systems Bloch Slater-Jastrow Functions

Optimize parameters (in our case in Jastrow factor only) using
energy or variance minimisation.
Multiple determinants are rarely used in solids.

� Which (of the millions) to choose?
� Some evidence that they don’t help much.
� Would certainly be necessary, e.g., to describe localised states on

defects.

Off you go!
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Finite-Size Errors Introduction to Finite-Size Errors

Introduction to Finite-Size Errors

The small simulation cell size leads to finite-size errors.
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Finite-Size Errors Introduction to Finite-Size Errors

Finite-size errors (and pseudopotentials . . .) are the main problem in
solid-state simulations. Normally much larger than fixed-node errors.

To help understand them, it helps to consider the constituent terms in
the expression for the total energy.

E = 〈Ψ|T̂ +
∑

i

Vnuc(ri) +
1
2

∑
i �=j

vEw(rij) +
1
2

NvM |Ψ〉 + Enn

= T +

∫
Ωs

Vnuc(r)n(r)dr + Eee + Enn
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Finite-Size Errors Introduction to Finite-Size Errors

E = T +

∫
Ωs

Vnuc(r)n(r)dr + Eee + Enn

Enn/N and Vnuc(r) are independent of simulation-cell size.
n(r) has the periodicity of the primitive cell and so (normally)
settles down quickly as the simulation-cell size increases.
The main finite-size errors are in the T and Eee terms.
If we write

Eee = EHartree + Exc

we find that the errors in Eee are actually in the
exchange-correlation energy.
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Finite-Size Errors Independent-Particle Errors

Independent-Particle Errors

Most of the finite-size error is also present in independent-particle
(DFT/HF) calculations:
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Finite-Size Errors Independent-Particle Errors

LDA Finite-Size Corrections

. . . so apply LDA (or HF) corrections:
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Finite-Size Errors Independent-Particle Errors

LDA corrections fix most of the error in T .
The residual finite-size errors arise from Exc and the many-body
parts of T .
They are negative and decay very slowly — roughly like 1/N.
They can be very problematic.
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Finite-Size Errors Independent-Particle Errors

Twist Averaging

DFT-based independent particle corrections are straightforward
and easy to apply, but ugly.
Twist averaging is an alternative method for taking care of the
independent-particle errors in T .
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Finite-Size Errors Independent-Particle Errors

Consider a non-interacting electron gas with E =
∫

k<kF

1
2k2d3k .
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Finite-Size Errors Independent-Particle Errors

Consider a non-interacting electron gas with E =
∫

k<kF

1
2k2d3k .

What happens if we use a simulation cell with some given ks?

The integral is replaced by a summation
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Finite-Size Errors Independent-Particle Errors

One way to get closer to the right answer is to average the
simulation cell energies over twist vectors ks:

� Grand canonical averaging: For each twist ks, occupy all grid point
with k < kF . (The number of electrons depends on ks.)

� Canonical averaging: Occupy the lowest N grid points at each twist
ks. (Equivalent to integrating over the first N simulation-cell BZs —
almost, but not quite, the same as the Fermi sphere).

Some single twists (e.g. the Baldereschi point) give better results
than others. One of the worst is ks = 0.
Averaging over surprisingly small numbers of twists dramatically
decreases the independent particle error.
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Finite-Size Errors Independent-Particle Errors

0 2000 4000 6000 8000 10000
Number of Electrons

-0.48

-0.475

-0.47

-0.465

-0.46

-0.455

-0.45

E
xc

ha
ng

e 
E

ne
rg

y 
pe

r 
E

le
ct

ro
n

1x1x1 twist
2x2x2 twists
3x3x3 twists
6x6x6 twists

Exchange Energy of the rs=1 Electron Gas
Convergence with number of twists in the canonical ensemble

W.M.C. Foulkes (Imperial College London) DMC for Solids Wednesday 23rd January 2008 50 / 79



Finite-Size Errors Independent-Particle Errors
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Finite-Size Errors Independent-Particle Errors

The Good and the Bad

The Good: No increase in number of QMC steps.
The Bad: Need separate trial functions and (parallel) QMC runs for

each twist. Most of these trial functions are likely to be
complex (⇒ fixed-phase approximation).
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Finite-Size Errors Independent-Particle Errors

Everything I said about LDA corrections

LDA corrections fix most of the error in T .
The residual finite-size errors arise from Exc and the many-body
parts of T .
They are negative and decay very slowly — roughly like 1/N.
They can be very problematic.

applies to twist averaging too. The two methods fix the same problem.
(Don’t do both at once.)
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Finite-Size Errors Coulomb Errors

Coulomb Errors

The twist-averaging results above showed a long-ranged
finite-size error in the exchange energy.
In QMC simulations, analogous Coulomb errors appear in the
exchange-correlation energy.
These errors converge like 1/N.

Questions
1 Why 1/N?
2 Can we do anything to alleviate the problem?

Before we can make progress, we need to understand a little about
exchange and correlation.
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The Exchange-Correlation Hole

The exchange-correlation hole nxc(r, r′) is defined by

n(r′|r) = n(r′) + nxc(r′, r)

The sum rule∫
Ωs

n(r′|r)dr′ = N − 1 ⇒
∫

Ωs

nxc(r′, r)dr′ = −1
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The Exchange-Correlation Energy

By definition, the XC energy per electron, ε̄xc = Exc/N, is the mean
energy of interaction between an electron and its XC hole

ε̄xc =
1
2

∫
Ωs

nAv
xc (r)(vEw(r) − vM)dr

=
1
2

∫
Ωs

nAv
xc (r)vEw(r)dr +

vM

2

where vM is the Madelung potential and nAv
xc (r) is the system-averaged

XC hole:

nAv
xc (r) =

∫
Ωs

n(r′)nxc(r′, r′ + r)dr′∫
Ωs

n(r′)dr′
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Why vEw(r) − vM?

The Ewald potential vEw(r) includes contributions from
� the electron at the origin,
� its background,
� all its images.

Only the first of these ought to contribute to the XC energy.
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Real-Space Approach to Coulomb Errors

ε̄xc =
1
2

∫
Ωs

nAv
xc (r)(vEw(r) − vM)dr

Since nAv
xc (r) converges quite rapidly to the infinite system-size

limit, the error must be in the interaction.
Expanding vEw(r) − vM about r = 0 gives

vEw(r) − vM =
1
r

+
2πr2

3Ωs
+ O(r4) .

In an infinite system, this reduces to 1/r as expected; in a finite
system, the quadratic term gives a 1/Ωs ∼ 1/N error.
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The Modified Periodic Coulomb Interaction

Replace

ε̄xc =
1
2

∫
Ωs

nAv
xc (r)(vEw(r) − vM)dr

by

ε̄xc =
1
2

∫
Ωs

nAv
xc (r)
r

dr

Use minimum image convention to extend 1/r periodically.
Keep Ewald interaction for Hartree energy terms.
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Fixes 1/N error. Works well for exchange-correlation energy.
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Reciprocal-Space Approach to Coulomb Errors

Re-expressing ε̄xc in k -space using the "dodgy" Fourier
representations of vEw and vM gives

ε̄xc =
1

2Ωs

∑
Gs( �=0)

4π(ñAv
xc (Gs) + 1)e−ε2G2

s

G2
s

− 1
2

∫
4πe−ε2G2

G2
dG

(2π)3

S̃(Gs) = ñAv
xc (Gs) + 1 is called the static structure factor.

Since S̃(Gs) is (normally) proportional to G2
s at small Gs, the

summand does not diverge as Gs → 0.
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In the Ωs → ∞ limit, the sum becomes an integral and we obtain the
standard result

ε̄xc → 1
2

∫
4π(S̃(G) − 1)e−ε2G2

G2
dG

(2π)3 .
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ε̄xc =
1

2Ωs

∑
Gs( �=0)

4πS̃(Gs)e−ε2G2
s

G2
s

− 1
2

∫
4πe−ε2G2

G2
dG

(2π)3

Chiesa asserts that the leading contribution to the error arises
from the omission of the Gs = 0 term.
Expanding ñAv

xc (Gs) and S̃(Gs) about Gs = 0,

ñAv
xc (Gs) = −1 + αG2

s + . . . S̃(Gs) = αG2
s + . . . ,

gives the finite-size correction

∆Chiesa =
2πα
Ωs

.

The constant α can be obtained from RPA theory or by
extrapolating the calculated S̃(Gs) towards Gs = 0.
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Link between the two approaches

According to Chiesa,

ε̄xc = ε̄Ew
xc +

2πα
Ωs

, where ñAv
xc (Gs) = −1 + αG2

s + . . . .

Since ñAv
xc (Gs) =

∫
Ωs

nAv
xc (r)e−iGs·rdr

= −1 − 1
6

G2
s

∫
Ωs

nAv
xc (r)r2dr + . . . ,

it follows that

α = −1
6

∫
Ωs

nAv
xc (r)r2dr .
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Hence, the reciprocal-space correction is equivalent to

ε̄xc = ε̄Ew
xc − π

3Ωs

∫
Ωs

nAv
xc (r)r2dr .

According to the real-space MPC approach,

ε̄xc =
1
2

∫
Ωs

nAv
xc (r)
r

dr

=
1
2

∫
Ωs

nAv
xc (r)

(
vEw(r) − vM − 2πr2

3Ωs
+ . . .

)
dr

= ε̄Ew
xc − π

3Ωs

∫
Ωs

nAv
xc (r)r2dr + . . . .

Conclusion
Reciprocal-space correction is more or less equivalent to the MPC
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Don’t use both MPC and Chiesa Coulomb corrections.
Choice is up to you: would you rather modify the Hamiltonian or
apply a correction after the simulation?
Reciprocal-space approach works better when the XC hole does
not "fit in" to the simulation cell, as in Hartree-Fock theory.
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Kinetic Energy Errors

Chiesa also points out that a Slater-Jastrow trial function of the form

exp
[−∑

i>j

u(rij) +
∑

i

χ(ri)
]
D

with u(r) ∼ 1/r at large r (and hence ũ(Gs) ∼ 1/G2
s at small Gs)

contributes a term of the form

− 1
4Ωs

∑
Gs( �=0)

G2
s ũ(Gs)

to the expected KE per electron.
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− 1
4Ωs

∑
Gs( �=0)

G2
s ũ(Gs)

Since u(Gs) ∼ 1/G2
s as Gs → 0, the Gs → 0 limit of the summand

is finite.
The omission of the Gs = 0 term again looks fishy.
Adding a contribution from the region near Gs = 0 yields a second
1/N correction of the same sign and magnitude as the Coulomb
correction.
This many-body KE correction works well at very low density but
not at more realistic densities.
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Summary

Summary

DMC has very favourable system-size scaling.
DMC in solids works almost the same as in molecules.
The only serious problem is the finite-size errors. My current
recommendation is:

1 Take care of the independent-particle errors by applying LDA
corrections or twist averaging.

2 (Use MPC or apply analytic 1/N Coulomb correction).
3 (Apply analytic 1/N KE correction).
4 Fit any residual error to c/N and extrapolate to infinite N.
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