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Finite-size errors

Expectation values obtained in a finite simulation cell differ from the corresponding values in an infinite
crystal. In this worksheet we will illustrate this point and consider some ways in which single-particle
finite-size effects and Coulomb finite-size effects in QMC calculations can be dealt with.

Single-particle finite-size errors in QMC are the analogue of k-point sampling errors in DFT calcu-
lations. One can therefore assess their magnitude by studying the convergence of the DFT energy with
respect to the k-point grid. Moreover, by making a sensible choice of k-vector grid, one can greatly
reduce single-particle finite-size errors.

Finite-size errors due to the long-ranged nature of the Coulomb interaction and the fact that corre-
lations are confined to a single simulation cell can be addressed by extrapolation, the use of the model
periodic Coulomb (MPC) interaction and the addition of corrections.

We will apply some of these techniques to calculate the total energy per unit cell of silicon in the
diamond structure. We will also learn how to perform wave-function optimisation using CASINO.

First optimisation calculation

Go to the Silicon222 directory. Two sets of plane-wave orbitals for a 16-atom cell of silicon can be
found here: (i) pwfn.data Gamma contains DFT orbitals generated using a 2 × 2 × 2 k-point mesh
that includes k = 0 (i.e., the simulation-cell Bloch vector ks is at Γ) and (ii) pwfn.data L contains a
2×2×2 k-point mesh that does not include k = 0 (ks is at L). Note that twisted boundary conditions
must be applied in case (ii), although the orbitals can still be chosen to be real.

First, copy pwfn.data Gamma to pwfn.data, and use BLIP to generate a bwfn.data file containing
the orbitals represented by blips (see Worksheet 1 if you’re not sure how to do this).

We will now try to optimise a Jastrow factor for these orbitals. Open the correlation.data file
with your favourite text editor and have a look at the Jastrow factor:

• Three terms are present: an electron–electron term u, an electron–nucleus term χ and an electron–
electron–nucleus term f .

• The form of the Jastrow factor is given in the CASINO manual. Basically each term is a polynomial
function of the interparticle distances, and the polynomial expansion coefficients are optimisable
parameters.

• The number of terms in the polynomials is controlled by the “expansion orders”.
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• The Kato cusp conditions are imposed, determining some of the parameter values. Only the free
parameter values are shown in correlation.data.

• Each term goes smoothly to 0 at a cutoff length, which is itself an optimisable parameter.

• All free parameters in correlation.data are followed by a flag specifying whether they are fixed
or optimisable.

• Different parameters can be used for different combinations of spins. The behaviour is controlled
by the spin-dependence flag. For example, for the u term, if this flag is 0 then the same u term
is used between all pairs of electrons; if it is 1 then different u terms are used for parallel- and
antiparallel-spin electrons; if it is 2 then different u terms are used for both-up, both-down and
opposite-spin electrons.

To get rid of the current Jastrow factor, delete all the lines containing parameter values between
“Parameter values ; Optimizable (0=NO; 1=YES)” and “END SET 1” for each of the u, χ and f
terms.

Now let’s optimise the Jastrow factor. In the input file, make sure that runtype is set to “vmc opt”
and that nwrcon=nmove=1000, meaning that 1000 configurations will be generated by VMC and
written out for use in the optimisation1. The corper parameter should be given a large value, e.g.
10, to ensure that the VMC-generated configurations are not serially correlated. A number of different
optimisation methods are available in CASINO; use the opt method parameter to select the method
that you would like to use2. “varmin linjas” is by far the most rapid optimisation method, although
it cannot optimise the cutoff lengths in the Jastrow factor. Note that opt cycles=3, meaning that
three cycles of VMC configuration generation followed by optimisation will be performed. When you
are happy with the input file, use RUNQMC to start the CASINO calculation.

At each cycle of the optimisation, CASINO will write out a correlation.out.x file, which holds
the Jastrow factor produced in that cycle. To examine the results of the optimisation, type ve; this
presents you with a summary of the energy and variance obtained in each VMC configuration-generation
calculation, and the name of the file containing the corresponding Jastrow factor. (You can make use of
VE while CASINO is still running.) The energy and variance usually decrease sharply in the first cycle;
thereafter they remain relatively stable.

Once CASINO has finished, use VE to select the correlation.out.x file that corresponds to the
lowest energy. Rename this file as correlation.data, then type clearup. Optimisation finished!

Careful optimisation (longer activity—optional)

Try to improve the Jastrow factor. You could investigate the effects of increasing the expansion or-
ders (i.e. using more parameters), using more configurations in the optimisation, or using a different
optimisation method such as linear least-squares energy minimisation.

It is fairly easy to do a reasonably good job of optimising a wave function, but doing a very good
job can be time-consuming.

VMC calculation

Now set up the input file to perform a long VMC calculation. (Set runtype=“vmc”, nwrcon=0,
corper=4 and nmove=5000.) Then run CASINO using RUNQMC.

1In general it is best to use at least 10000 configurations.
2Use CASINOHELP to check the meaning of input keywords that you are unsure about.
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When it has finished, use REBLOCK to analyse the VMC data in vmc.hist, and take a note of the
total energy. Then type clearup.

Comparing results at Γ and L

Now repeat all of the above steps3 for the plane-wave data in pwfn.data L. Do you get the same
energy?

Given that the DFT energies of the 2×2×2 k-point grids at Γ and L are −7.74128 and −7.83477 a.u.
per primitive cell, respectively, compared with the converged DFT energy of −7.84152 a.u. per primitive
cell, it would clearly be best to use L in your calculations. It will be assumed you are using the orbitals
at L in all subsequent activities.

How does the difference of VMC energies at Γ and L compare with the difference of DFT energies?
Estimate the size of the single-particle finite-size error in your data.

Model periodic Coulomb interaction

Generating the input file for the MPC interaction

The MPC interaction can only be evaluated if the Fourier transformations of the charge density and 1/r
within the minimum image convention are known. In order to generate an mpc.data file holding these
data, set runtype to “gen mpc” in input, and then run CASINO using RUNQMC. Have a look at the
out file to make sure that everything has worked OK, then type clearup. An mpc.data file should have
appeared in the directory.

VMC data with the MPC

Now calculate the VMC energy using the MPC interaction. Set the interaction parameter to “mpc”
instead of “ewald”4. Perform reblocking analysis on the data in vmc.hist, and note down the energy
obtained.

Extrapolation to infinite system size

Calculating the VMC energy of a 54-atom cell

Input files for a 54-atom cell can be found in the Silicon333 directory. The Jastrow factor in the
correlation.data file has been optimised, so you just need to (i) generate blip orbitals, (ii) generate
the mpc.data file, (iii) run a VMC calculation and (iv) analyse the results using REBLOCK.

Infinite-system limit

The finite-size errors in the Ewald and MPC energies per primitive cell fall off as 1/N , i.e. E∞ =
EN + b/N where b is a constant and EN is the energy per unit cell in an N -electron simulation cell.
Use this expression to calculate E∞ using the Ewald results and the MPC results. Hopefully you get
the same answer. . .

3Instead of deleting the parameters in the Jastrow factor before re-optimising it, you could just start off with the
parameters you optimised at Γ. In fact you should find that the Jastrow factor you optimised at Γ is perfectly good at L.

4For later reference, if you want to calculate the MPC and Ewald energies at the same time, set interaction to
“ewald mpc”.
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Plot EN against 1/N for both the Ewald interaction and the MPC interaction. You should find
that the finite-size errors with the MPC are smaller than the finite-size errors obtained with the Ewald
interaction.

Finite-size corrections (longer activity—optional)

Let’s look at the effect of adding finite-size corrections to the kinetic and potential energies. To do this,
we will need to add a plane-wave expansion in electron–electron separation (p) to the Jastrow factor.

Go back to the Silicon 222 directory and set up the input file to perform an optimisation calcu-
lation. Set interaction to “ewald”.

Type make p stars. You will be asked for the number of dimensions (choose “3”), the lattice (choose
“FCC”) and the number of stars (choose “5”). A blank p term will be written out between the lines
“START OF OUTPUT” and “END OF OUTPUT”. Copy and paste the p term into correlation.data
between the lines “END F TERM” and “END JASTROW”.

Run the optimisation calculation, and choose one of the correlation.out.x files to be your new
correlation.data file.

Now set up the input file to perform a VMC calculation, this time choosing finite size corr=“T”.
Run the calculation. Near the end of the out file you should find the line “Finite size correction data”,
with the finite-size corrections given below. Take a note of the total energy with both the XC and KE
corrections added.

Repeat this calculation for the Silicon 333 example. You should find that the corrected energies
in the 16- and 54-atom cells are relatively close to each other, and to the infinite-system energy.
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