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Motivation for Path Integral MC

There are difficulties with VMC and DMC

— Need to find good trial functions; this becomes
iIncreasing difficult as systems get more complex,
especially if one doesn’t know the correct physics.

— Mixed estimator problem for properties other than
the energy.

Temperature is important: e.g. finite temperature
phase transitions.

PIMC makes nice connection with DMC and with other
theoretical approaches and leads to concepts such as
Reptation MC, understanding of bose condensation,
superfluidity, exchange ...

Details given in : RMP 67, 279 (1995)



Imaginary Time Path Integrals

PHYSICAL REVIEW
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Atomic Theory of the 2 Transition in Helium
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(Received May 1§, 1953)

It is siown from first principles that, in spite of the large interatomic forces, liquid He! should exhibit a
truaisition aralogous to the transition in an ideal Bosc-Einstein gas. The exact partition function is written
as an integral over trajectosies, using the space-time approach to quantum mechanics. It is next argued
that the motion of one atom through the others is not opposed by a potential barrice because the others
may mouve out of the way. This just increases the effective inertia of the moving atom. This permits'a
simpler form to be written for the partition function. A rough analysis of this form shows the existence of a
transition, hut of the tkird ordcr. Tt is possible that a more complete analysis would show that the transiiion
impliad by the simnlisied partition iunction is actually like the experimental one.




PIMC Simulations

e \We do Classical Monte Carlo simulations to evaluate
averages such as:

_1 -BV (R)
<V >= EIdRV(R)e

B =1/(k,T)

e Quantum mechanically for T=0, we need both to

generate the distribution and do the average:
|
<V >= EdeV(R)p(R;ﬂ)
p(R; ) = diagonal density matrix

e Simulation is possible since the density matrix is
positive.



Notation

Individual coordinate of a particle r;
All 3N coordinates R= (ry,r,, .... Iy)

Total potential energy V(R)

Kinetic energy —1ZV where 1 = h2

i=1

Hamiltonian ﬁ — f 4 I}



The thermal density matrix

Find exact many-body
eigenstates of H.

Probability of
occupying state o is

eXp(—B Ea)

All equilibrium
properties can be
calculated in terms of
thermal o-d density
matrix

Convolution theorem
relates high
temperature to lower
temperature.

Hg,=E,g,
P(R; 5) = Z\qﬁ (R)| e p=1/kr

py=e" " operator notation

off-diagonal density matrix:
P(R.RB)=D 4, (R, (R)e™
o(R,R"; p) > 0“ (without statistics)
PR,R; B+ ) =

= [dR' p(R,, R B) (R, Ry; ,)

or with Operators: e-(ﬂﬁﬂz)H _ e-ﬁﬁH e-ﬁzH



Trotter’s theorem (1959)

= We can use the effects of operators  ~ _ e—,b’(f+l7)

separately as long as we take small

enough time steps.

e nis number of time slices.

e 1 Is the “time-step”

Ie,
p=lim___ [e‘ffe_”;}n
T=/[/n

e We now have to evaluate the density matrix for potential and

kinetic matrices by themselves:

e Do by FT’s

e Vs “diagonal”

(r
(r

e

e

e Error at finite n is roughly:
comes from communtator

A

—-7T

A

-7V

, '> _ (472_22_ )—3/2 e—(r—r')2/4ﬂ,z'

r '> =5(r—rNe
2 A A
e—%[T,V]



Evaluation of kinetic density matrix

P =D 4 (1), (e

—tT
e

(

In PBC eigenfunctions of T =

—

g
o

. 2
and eigenvalues are 1k

<r r'> _ Zie—iﬁei/}’f'e—rzkz
7 (2

convert to an integral

. 1 dkeiE(F'—F)—rikz _ (4741 —3/2 e—(r—r')z/“f
)3

r'>: (27

Danger: makes assumption about boundaries and statistics.

—tT
e

—tT
e




Generalized Trotter Theorem

True of any number of operators, as long as they are

each bounded below. /3 _ e—ﬂ(2+é+é)
~ ~ ~ Tn
,b — hmn_)oo |:eTAeTBeTC:|
T=/[/n

Interpret p as a probability; evolution equation is:

A

—a—p=(21+f§+é),b

I

Discrete-time version:
A - —C A
p(f+7)=e e e p(p)

We can use the effects of operators separately as long
as we take small enough time steps.



Using this for the density matrix.

e We sample the distribution:

M M
—Z S(R{,R;157) —Z S(R{,R;137)
e - /Z where Z=[dR,..dRe ”
Where the “primitive” link action is:
2
S(R,,R, ;1) = —37N1n(47z/12') + (ROMRI) +%[V(Ro) +V(R,)]
T

e Similar to a classical integrand where each particle turns
iInto a “polymer.”

— K.E. is spring term holding polymer together.
— P.E. is inter-polymer potential.
e Trace implies R,=R,,,; = closed or ring polymers



“Distinguishable” particles

Each atom is a ring
polymer; an exact
representation of a
quantum wavepacket
INn imaginary time.
Trace picture of 2D
helium. The dots
represent the “start”
of the path. (but all
points are equivalent)

The lower the real
temperature, the
longer the “string”
and the more spread
out the wavepacket.

/N

~—

10

—10

f Pt
- %0 o= &=
20 A
p o i
e e
NI YA

x (R)

10



Different schemes to picture PIs.

Descretized trace
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Main Numerical Issues of PIMC

e How to choose the action. We don’t have to use the
primitive form. Higher order forms cut down on the
number of slices by a factor of 10. We can solve the
2-body problem exactly.

e How to sample the paths and the permutations.
Single slice moves are too slow. We move several
slices at once. Permutation moves are made by
exchanging 2 or more endpoints.

e How to calculate properties. There are often several
ways of calculating properties such as the energy.

If you use the simplest algorithm, your code will run
100s or 1000s of times slower than necessary.

Calculations of 3000 He atoms can be done on a
workstation-- if you are patient.

Detalls see: RMP 67, 279 1995.
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Calculating properties

e Procedure is simple: write down observable:

dedR'<R O R'><R‘e‘ﬁﬁ‘R'>
<0 >= ~
e Expand density matrix into a “path”:

R >>
path average

<0 >= <<O(Rk)>> for "diagonal operators

path average

<0>=<<Ré

e Density, density-density, .... the potential
energy are diagonal operators. Just take
average values as you would classically.

e All time slices are the same — can use all for
averages.

13



Calculation of Energy
e Thermodynamic estimator: differentiate partition function
E:_Zilzﬁ 2l Bﬂ @ >
dsS dU 3N_(R—R')

dr dr 21 407"
Potential n*NI-KE spring energy

Problem: variance diverges as small time step.
 Virial Estimator: differentiate in “internal coordinates”
does not diverge at small time steps (Herman, Berne)

virial — dU 3N (R C) v U
dt 2 ,B 2t
/ f

Potential NI-KE deviation from centroid .force

14



Derivation of Virial Estimator

Write Z as integral over
iInternal scale-free
coordinates.

As temperature is
changed the path is
expanded or
contracted

DANGER with PBC
and exchanges

5=%lﬁ:rz
- r.—¢C
= I<7<M-1
é’} A <j<
A:m 6111/\: 1
T 2T
-2 (¢-uey)
Z=AN"[dcdS e
E=- 61222) 3N+jdcdg VU -(F—&)r
virial — dU 3N (R C) V U
dt 2,8 2t
/ f

Potential NI-KE deviation from centroid .force
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Can also calculate kinetic energy by differentiating with respect
to the mass md7

K=—
BZdm

Or use the “direct” form: K — <eS (_1V2)e—5>
path

For pressure, differentiate wrt the volume (virial estimator).

P:% 2T—12<FUVu(rij)>

4 i<j
In general, one can have different “estimators” having different
convergence of systematic (Trotter) or statistical errors.
Statistical errors require careful estimation.

Other errors can be bias and finite-size errors.

Free energy calculated just as in classical simulation, with all
the same problems.

16



Comparison
DMC  vs. PIMC

DMC uses et as projection = Samples the density matrix

Branching random walks
State is 3N*population.

Open boundary conditions
In time. Single state
method.

Uses importance sampling;
mixed estimator problem.
Iteration corresponds to
Imaginary time. Dynamics
determined and quickly
convergent

Zero variance principle

State is 3N*#of time steps

Cyclic BC in time. Finite
temperature properties.

No importance sampling
and hence no mixed
estimator problem. More
“physical.”

Can have slow convergence
(ergodic problems)

Longer time step because of
Improved actions (bosons)

17



Dictionary of the Quantum-Classical
Isomorphism

Properties of a quantum system are mapped into

properties of the fictitious classical polymer system

Attention: some words have opposite meanings.

Quantum

Classical

Bose condensation

Delocalization of ends

Boson statistics

Joining of polymers

Exchange frequency

Free energy to link polymers

Free energy

Free energy

Imaginary velocity

Bond vector

Kinetic energy

Negative spring energy

Momentum distribution

FT of end-end distribution

Particle

Ring polymer

Potential energy

Iso-time potential

Superfluid state

Macroscopic polymer

Temperature

Polymer length

18



Examples of distinguishable particle
calculations

e Solid H,: work of Marcus Wagner, DMC

e Wigner crystal: 3D Matt Jones, DMC
2D Ladir Candido, P. Phillips, DMC

e Vortex lattice: Nandini Trivedi, P. Sen and DMC

19



Example: Solid H,

Solid molecular hydrogen is a very quantum solid

KE=69K T, = 13.8K

()" =021,

Below T, interface between
solid and gas.

Top layer is at a lower density,
more delocalized and
Interesting quantum effects

Normally freezing at surface is
depressed by 10%.

In H, it is depressed by 100%.

[\
S



Layer Structure of Solid H,

N ° 0 o S S s  man S S S S S B B A B S S S B S B B B BN BN BN
Simulation is of 5 .88 | -
layers q ]
.07 | G -
Each layer is 30 H, 06 - | Q .
Hard wall on left T )

density [1/A%x%x3]

Top layer melts -1Sk

around 7K. 83 |- -
i NEw LluutD
N / LM?Q T7 bk

Very fluffy top layer. —

.81 -

ISK (10K

New layer above 6K T v i VAT,

-18 -8 -6 -4 -2 B 2 4 6 15‘12 14 16 18 28
Wagner, DMC, JPTP
102,275 (1996). Z (A) T=6K



Snapshots of H, density

T=6K
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“phase diagram of H,”

- 15 T T T I T 1 T | T T .I i.lﬁlgllciluci. T T T }

Each point B 1 i
represents a - 2 L — i
layer. i gas liquid i

Surface melting.N_ o s o _
1/liq

Low density
liquid is e @ solid
unstable to
separation into
a fully filled
layer and a
gas. superfluid

T (K)




Melting of the 3D Wigner Crystal

PIMC with Boltzmann

Jones & DMC PRL 1996

statistics

Phase boundary
determined with free
energy calculation

Sudden change from
pressure melting to
thermal melting.

Lindemann law is \
inaccurate 0.

Melting is first order with
no volume change

“I 1 1 I 1 L | | 1 i 1 t | | 1

[+ o (+] [4] o —4

QUANTUM PLASMA -

2x10-° 4x10-° Bx10-5 8x10-°

kgT [Ry]
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Improved Actions

e There exists an “exact link action”

)

S(R,,R. ;7) = —ln(< : e M
_iS(RiaRiH;T) iS(R Rin37)
e - /Z where Z=[dR,..dRe ”
e The “primitive” link action is:
3N R, —R,
S(RO,RI,I)——Tln(47MT) ( 4m) 2[V(R)+V(R )]

e \We often define the exact “inter-action” as:

UR,R ;7)=S(R,R_;7)—S,(R,R;T)

potential term =  total - Kinetic term (topological)

25



Improved Action

If we make better actions, we can drastically cut
down on the number of time slices.

eThis saves lots of time, because the number of
variables to integrate over is reduced

eput also because the correlation time of the walk is
reduced since “polymers” are less entangled

ePossible approaches to better actions:
—Harmonic approximation
—Semi-classical approximation (WKB)
—Cumulant approximation
—Pair-product approximation

eImproved actions are also used in lattice gauge
theory: the “perfect action.”

26



Differences between lattice and
continuum PIMC

For lattice models the Hamiltonian is bounded.
commutator expansion are a way of getting smaller
time step errors.

Potentials for continuum problems are unbounded.
Much more care needed to treat singular parts of the
potential. Watch out for expansions.

Detailed comparison with experiment for all
properties is possible for continuum models. Not just
exponents. Numerical convergence is important for
this.

Deadlocks do not arise. Paths can always wiggle out
but it may take a long time.

Paths are truly distinguishable. First quantitized
description is more natural. Allows fixed-node
fermion methods.

27



Higher Order Methods?

- Comparison of MD Statistical error for fixed CPU time.
integration 3 /
algorithms ? | |

e Higher order does
not always mean

better Y
. £m'’
e Problem is that =
potentials are not FZ O e .
i

analytic
e Systematic error
e Usually one tries

Tt biar {:fl'.
=

I 1

T 'R

to balance all 0o
sources of errors i
Berendsen 86 et

Wy E ’ e
time 2ten H{s)
1‘._15"- 4 - L. ihutliua.atinn '-:j:J’ the total energy over 100 steps in o molesular-dyaaraies
sialacion of the probein BT (458 atoma). Verlet and Gear algorithme sre compared,
The floctuation in ihe tetal kinelis energy is indiested ss o refererec [fvore 1ot [15]),
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Examples for 2 particles -

He-He action

e Exact action ——— 3.
- Cumulant action 5

= Primitive action \'

. WKB 

Exact action 1s
smoother than the

converge

primitive form

WKB does not

-Exact action ———— .|

eCumulant action

Primitive action

*WKB

29



Properties of the action

Positivity (U is real)

Hermitian property UR,RB)=U(R",R; )
Cusp condition (i.e. behavior when two

particles get close together)

Semiclassical behavior: expansion as mass
goes to infinity.

Defining property. Residual energy
should be small:

RN NG
E,=p 1[H+8— p(R,Rt)=0
[
Feynman-Kac Formula can be used for
Insight. Average over all “free particle”

bridges from R, to R.. Proof that density .
matrix is positive. o URoRei7) _ exp —J‘dtV(R(t))
0

RW

30



Generalized Feynman-Kacs

e We can generalize the FK formula to find the correction to any
density matrix just like with the trial function.

e Usual formula is the correction to the free particle density
matrix.

.
eV = p(Ry, Rys7)( exp| ~[ diE, (R(1)

0 P-RW
dR R—-R
— =p(t)-——L-2AVU(R; R,;1)
dt l
e The density matrix is average over paths from R, to R..
e (Gives intuition about how to how to improve it a given action
e Can be used to compute the action. FKPIMC code

31



Cumulant Approximation

In FK formula take the
average into the
exponent

It is possible to
evaluate the average
using fourier
transforms.

Very accurate for
Coulomb problems

However the CA does
not exist for non-
Integrable potentials.

g UFeRED) oy

T

- —j dtV(R(1))

RW |

Uc(Rys R37) =

dtV,[ R, +t(R. -R,),0, |




Harmonic Approximation

We can exactly calculate the action for a harmonic oscillator. It
IS just a shifted Gaussian.

In the neighborhood of (R,R’) let’'s approximate the potential by
a harmonic one.

Reasonable if the potential is really harmonic within a thermal
wavelength. (for example in the high temperature limit)

U, Ry, Ry37) =V (R)+ 52 VAV (R)-52[ VI (R) |
_%(RF _RO)VVV(R*)(RF _RO)

forL] r>=pr "+,

R™ is an arbitrary place to evaluate the potential. If we choose
It to be one of the end-points we get the Wigner-Kirkwood
approximation.

Bad idea for realistic potentials because expansion does not
converge uniformly. Problem is at small r. Look at derivatives.
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Cluster action

e For spherically symmetric pair potentials.

e Find the action for a reduced subset of particles exactly and put
together to get a many-body action.

etake the
uncorrelated
average:

eThis is now
a 2 particle
problem.

o URo-Reit) _ exp _J.dtzv(’”y(t))
0

i<j

~Janr 1)

[drv(r, 1)

e Generalization of T=0 of the Jastrow wavefunction to finite

temperatures.

e At finite T, it is the off-diagonal terms that are important.

RW

RW

RW

34



Exact pair action from “SQUARER”

How to determine the exact density matrix for a pair of atoms.

Use relative coordinates.

. Go into spherical coordinates. Angles become trivial
. Result is a 1-d problem for each angular momentum
. Solve 1-d problem by matrix squaring. Iterate:

A wN R

p,(r,r2r) = Idr "o,(r,r";7)p,(r",r'",7)
5. Complete density matrix is:

p(r.rsr) =Y p,(r,r;7)P,(cos(9))

6. Fit to a form easy-to-compute during the PIMC run.

35



PIMC representation
of pair density matrix

In bare form it is 3d+time. _ | T
q=—{]7+[71]
But as normally used 2
— Time is discrete (fixed) s :|;7_;7' |
— 2 other variables are oy =y (Small and symmetric
small (expand in them) Z—|r|—|r

J

1 2j 2(k—j
[ty (r) +uy ()] + Xy, (@) 5>
2 j<k

k is the “order”. Typically

we use k=1 or k=2.

This will take only 2-3 times

longer to compute action \ S
than the pair potential (bare r’

Trotter formula).

But with fewer time slices.

u(r,r') =

36



Compare pair action
for 3 He atoms

1 E 1 I IIlIlII 1 I IIIIIII 1 I I'IIIII_—__

Compute exact action for -

each pair using FKPIMC I ]

0.1 ¢ Pewmirve E

. E Ac.'ﬂou \ ,rp3 ]

Error in i i

action un 0.01_5__..?:2__-&!_ g g %L —

R >+ N

- AN -

3A : “L‘t\“h’ :

. 0.001 a -

How good is it for the g 3

triangle? N ]

Pair action will have 1/6 the I L4 b )

. . 00001 i NN 1 | I ] 1 1 4481t

number of time slices. _

lO"* lo"‘-’ (>} 2z 'o-l

Tl

Needed time steps
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Convergence on an (H,),, cluster

-46

-48

ad

Vv (K)

Potential energy Kinetic energy

-50

32 T 1 T T

LD DL L

1 Exad—> f

30

K (K)

it

28 |- |
|
L |
i
]
L
L}
i

[ Pl‘tm&:u{

I
]
]
i
METILS ( S TSRS BN AT SR BTN ST S | x

\ I“.‘i‘ R 26 MR BT T SR | -| MR N RS
001 002 003 004 005 0 001 o002 003
T (K1)

T (K™Y

Potential converges much faster than the kinetic energy
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Speed of calculation for
22 H, molecules

Efficiency (CPU time for a given error) versus time

step.
POTEMTIAL ENERGY Klwewnwe Eneely

100: T T 1 T v T T 1 T T T ] 100 L T T j' T +— T
o ] - ]
i ] I 1
) r RBisection 4

10 | 4 - 10 | \ o
- 3 - . \ R 3
£ ® (section ) 3 - / p ]
l o ] . T - s
/ e o r ./ ’{’ 1
:/. -® s «— ’

/.'/’ ”F?‘ 1 B A{I i
l 2 - / = o :
- s B E r £ Fpl T
. L 1
F 4

0.1 — Lt ol S SRS SR SRS Y S S S 0.1 — ol 1 PR S N

0.001 0.01 0.1 0.001 0.01 0.1
T (K1) T (K1)
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Beyond Pair product
Residual energy for pair product

Wlll vanl_sh for 2 particles. Ep ) Z /W,-u(r .)Viu(,,'k)
Since u is of order t then i<j<k "/ ;
the residual energy has to

be order 12 and by the GFK This is the analytic form
the corrections must be t3. to use for an action

Since u ~ r-5 for LJ potential beyond the pair form.

at small r, then the residual

energy goes as r° Called the “polarization

action” or 3-body term
In ground state
calculations because it
can be written:

But errors will depend on
density, since 3 particles
must be involved.

2

U, = —/172 Z?iﬁ(ﬁ.j) + pair terms
i L J

40



Special Potentials

Coulomb

Coulomb: eigenfunctions
are hydrogen atom
wavefunctions and
hypergeometric function

lots of analytic formulas,
asymptotic formulas.

Can use super-symmetry to
get rid of one variable:
simplifies making tables.

Gets rid of the infinity in the
attractive Coulomb
singularity.

Describes hydrogen atom
exactly.

Hard Sphere

e Expansion in partial waves
simple: spherical bessel
functions+phase shifts

e Various analytic approximations

Harmonic Oscillator

e First rotate to diagonal
representation to get a product
of 1D density matrices

e Can do analytically

41



How do we treat an arbitrary
potential?

Can do harmonic, cumulant or WK but not guaranteed
to be good if strong forces are present.

Harmonic approximation just fixes the “easy” part.

Basic idea is to remove a reference potential that we
can treat exactly and the rest is treated with primitive

approximation

H =H,+AV(R)

S(R,R:7)=S,(R,R"7) +§[AV(R) +AV(RY]
Errors are due to the commutator: 72 [HOaAV(R)]

Put the fast varying parts into H,. We want the “left-
over” part to be smooth so commutator is small.

42



Path Integral Sampling Methods

We need to perform integrals over the distribution:

M
—Z S(R{.R4157)

e = A

Where the exact link action is kinetic and potential
energy:
3N

2
S(Ry,R ;1) = —7111(472%2') + (R, -R))

4\t

+UR,,R))

Similar to a classical collection of ring “polymers”.

3NM degrees of freedom. 64 He atoms*40 slices=2560
classical particles

Available classical methods are Monte Carlo or Molecular
Dynamics. (in fact many different MC methods)

43



Multi-level sampling

We need to sample several links at once. Why?

Polymers move slowly as number of links increase.
Maximum moving distance is order: VAT

Calculate how much CPU time it takes the centroid of a
single particle’s path to move a given distance

Scales as M3 . Hence doubling the number of time slices
will slow down code by a factor of 8! Eventually you get
into trouble.

(also shows why good actions help)

Permutations/windings will not get accepted easily
because pair permutations need to have the path move
as well.

44



Metropolis algorithm

Three key concepts:
1. Sample by using an ergodic random walk.

2. Determine equilibrium state by using detailed
balance

3. Achieve detailed balance by using rejections.

Detailed balance: 7 (s) P(s »s’) = 7 (s’))P (s’ - s).

Put 7 (s) into the master equation.

ZS:ﬂ(s)P(s —> S') = Zslﬂ(s')P(s' — S) = ﬂ(S')ZS:P(S' —> S) =7(s")

e Hence 7x1(s) is an eigenfunction.

e If P(s =S’) is ergodic then 7 (s) is the unique steady
state solution.

45



General Metropolis MC

Metropolis achieves detailed balance by rejecting moves.

Break up transition probability into sampling and

acceptances: P(S—)S')zT(S—)S')A(S—)S')
T (s — s') =sampling probability
A(s — S ') = acceptance probability

The optimal acceptance probability that gives detailed
balance is:

A(S —> S') = min{l I(s'> S)ﬂ(S')}

"T(s > s")7(s)

Note that normalization of ©(s) 1s not needed or used!

46



PIMC Sampling considerations

e Metropolis Monte Carlo that moves a
single variable is too slow and will not

generate permutations. & i

e We need to move many time slices
together

e Key concept of sampling is how to
sample a “bridge”: construct a path —*
starting at R, and ending at R;.

e How do we sample R,,,? GUIDING
RULE. Probability is:

<Ro ‘e—zﬂ/z‘RH2><RN2 ‘e—tH/z‘Rt>

<R0 e Rt>

e Do an entire path by recursion from
this formula.

e Related method: fourier path
sampling.

P(R,,) =

47



How to sample a single slice.

e pdf of the midpoint of the - -
bridge:(a pdf because it is <R0 ‘8 tH/Z‘Rt/2><Rt/2 ‘8 tH/z‘Rt>
positive, and integratesto 1)  P(R,,) = —

= For free particles this is easy- <Ro ‘e Rt>
a Gaussian distribution

PROVE: product of 2 Gaussians R, = l(Ro +Rr)+77

IS a Gaussian. 2

= Interaction reduces P(R) iIn ol =14/2 = <772>
regions where spectator
atoms are.

1

e Better is correlated sampling: R, = (R +R )+MVU (Rt/2)+77
we add a bias given by 2
derivatives of the potential =2 -
(for justification see RMP pg o = M/21+(if) VVU (Rt/2 <7777>
326)

e Sampling potential U_ is a
smoothed version of the pair
action.

U.(R) = sampling potential
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How to sample a Normal distribution

Trick: generate 2 ndrn at a time: r=(x,y)
2

p(x,y)dxdy = (27)" exp(— %) = p(r)rdrd

1 —v/2

p(v)dv = Ee with v =7’

x = \=21In(w,) cos(27u,)
y =+/-2In(u,) sin(27u,)

e Or sample angle using rejection technique:
— Sample (x,y) in square
— Accept if x2+y? <1
— Normalize to get the correct r.
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Example of code to sample normal
distribution

Normal distribution <x>=x, and <(X-X,)?>=c?

1 x=sprng()-0.5
y=sprng()-0.5
F2=x*xX+y*y
iIf (r2>0.25) go to 1
radius= sigma*sqgrt (-2*In(sprng())/r2)
xnormal=x0+x*radius
ynormal=yO+y*radius

eNo trig functions
eMixes up regularity of random numbers

eEfficiency of angle generation is 4/x.
eCan get 2 ndrn’s each time.
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Multivariate normal distributions

How to sample a correlated Gaussian? (say with D
components)

e Assume we want <xx;= =T

e Make Choleski decomposition of T, its square root.

(see Numerical Recipes)
SSt=T

0
by assuming S is a triangular matrix ‘

e Generate D normally distributed numbers vy.
e Transform to correlated random distribution
X=S8Sy
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How to generate a random

Léevy construction

walk by starting in the
middle.

So you don’t fall into Zeno’s

paradox.

Construct a whole path by

recursively sampling
bridges

Midpoint
Midpoint of midpoints
Etc.

Stop when you are at
the desired level of
precision.

o |-t 2 ~iH /2
R, ‘e ‘Rz/z><Rz/z ‘e ‘Rz>

P(Rt/z) — <R ‘e_tH
0

")
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Bisection method

1. Select time slices

2. Select permutation
from possible pairs,
triplets, from:

O(R,PR'";47)

3. Sample midpoints

4. Bisect again, until
lowest level

5. Accept or reject entire
move

<

B A

R
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Multilevel Metropolis/ Bisection

Introduce an approximate
level action and sampling.

Satisfy detailed balance at

each level with rejections

Sample some variables

(PROVE) Sample r;nore variables
Ak(S—)S')Zmin|:1,];f(s'_)s)7z-k(s')7z-kI(S):|
T (s > sV (s)7, (s :
*Only accept if move is v

accepted at all levels. Finally accept entire move.

*Allows one not to waste time
on moves that fail from the
start (first bisection).



Efficiency for number of links moved

Total acceptance ratio

Best sampling is of 4-8
slices at once.

Center of mass diffusion

<a>

Dr

0.01

11 lllll

Sampliﬁ;g interval
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MC versus MD sampling

e MD can be used BUT basic algorithm is not ergodic
because spring terms do not exchange “pseudoenergy”
with the other degrees of freedom.

(in Fermi-Ulam-Pasta experiment, slightly anharmonic
chains never come into equilibrium.)

e Coupled themostats are introduced to solve this
problem--but requires some detailed tinkering to make
It work in many cases.

e Basic problem with MD-cannot do discrete moves
needed for bose/fermi statistics

e An advantage of MD is that multiparticle moves are
natural-allows fast computation of energy and forces
within LDA.

e Little systematic comparison for a realistic systems.
e Development of “worm algorithms” for lattice systems.
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