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Motivation for Path Integral MC
• There are difficulties with VMC and DMC

– Need to find good trial functions; this becomes 
increasing difficult as systems get more complex, 
especially if one doesn’t know the correct physics.

– Mixed estimator problem for properties other than 
the energy.

• Temperature is important: e.g. finite temperature 
phase transitions.

• PIMC makes nice connection with DMC and with other 
theoretical approaches and leads to concepts such as 
Reptation MC, understanding of bose condensation, 
superfluidity, exchange …

• Details given in : RMP 67, 279 (1995)
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Imaginary Time Path Integrals
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PIMC Simulations
• We do Classical Monte Carlo simulations to evaluate 

averages such as:

• Quantum mechanically for T>0, we need both to 

generate the distribution and do the average:

• Simulation is possible since the density matrix is 
positive.
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Notation
• Individual coordinate of a particle  ri

• All 3N coordinates   R= (r1,r2, …. rN)

• Total potential energy    V(R)

• Kinetic energy 

• Hamiltonian 
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The thermal density matrix

• Find exact many-body 
eigenstates of H.

• Probability of 
occupying state α is 
exp(-βEα)

• All equilibrium 
properties can be 
calculated in terms of 
thermal o-d density 
matrix 

• Convolution theorem 
relates high 
temperature to lower 
temperature.
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Trotter’s theorem (1959)

• We can use the effects of operators 
separately as long as we take small 
enough time steps.

• n is number of time slices.
• τ is the “time-step”

• We now have to evaluate the density matrix for potential and 
kinetic matrices by themselves:

• Do by FT’s

• V is “diagonal”

• Error at finite n is roughly:
comes from communtator
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Evaluation of kinetic density matrix
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Generalized Trotter Theorem
• True of any number of operators, as long as they are 

each bounded below.

• Interpret     as a probability; evolution equation is:

• Discrete-time version:

• We can use the effects of operators separately as long 
as we take small enough time steps.
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• We sample the distribution:

Where the “primitive” link action is:

• Similar to a classical integrand where each particle turns 
into a “polymer.”
– K.E. is spring term holding polymer together.
– P.E. is inter-polymer potential.

• Trace implies R1=Rm+1 closed or ring polymers
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“Distinguishable” particles

• Each atom is a ring 
polymer; an exact 
representation of a 
quantum wavepacket
in imaginary time.

• Trace picture of 2D 
helium. The dots 
represent the “start”
of the path. (but all 
points are equivalent)

• The lower the real 
temperature, the 
longer the “string”
and the more spread 
out the wavepacket.
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Different schemes to picture PIs.

Space filling picture
Fourier smoothed trace

World line picture
Descretized trace
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Main Numerical Issues of PIMC

• How to choose the action. We don’t have to use the 
primitive form.  Higher order forms cut down on the 
number of slices by a factor of 10. We can solve the 
2-body problem exactly. 

• How to sample the paths and the permutations.
Single slice moves are too slow.  We move several 
slices at once. Permutation moves are made by 
exchanging 2 or more endpoints.

• How to calculate properties.  There are often several 
ways of calculating properties such as the energy.

If you use the simplest algorithm, your code will run 
100s or 1000s of times slower than necessary.

Calculations of 3000 He atoms can be done on a 
workstation-- if you are patient.

Details see: RMP 67, 279  1995.
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Calculating properties

• Procedure is simple: write down observable:

• Expand density matrix into a “path”:

• Density, density-density, …. the potential 
energy are diagonal operators.   Just take 
average values as you would classically.

• All time slices are the same – can use all for 
averages.
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Calculation of Energy
• Thermodynamic estimator: differentiate partition function

Problem: variance diverges as small time step.
• Virial Estimator: differentiate in “internal coordinates”

does not diverge at small time steps (Herman, Berne)
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Derivation of Virial Estimator

Write Z as integral over 
internal scale-free 
coordinates.

As temperature is 
changed the path is 
expanded or 
contracted

DANGER with PBC
and exchanges

Potential   NI-KE     deviation from centroid .force
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• Can also calculate kinetic energy by differentiating with respect 
to the mass 

• Or use the “direct” form:

• For pressure, differentiate wrt the volume (virial estimator).

• In general, one can have different “estimators” having different 
convergence of systematic (Trotter) or statistical errors.

• Statistical errors require careful estimation.
• Other errors can be bias and finite-size errors.
• Free energy calculated just as in classical simulation, with all

the same problems.
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Comparison 
DMC vs.      PIMC

• DMC uses e-tH as projection
• Branching random walks 

State is 3N*population.
• Open boundary conditions 

in time. Single state 
method.

• Uses importance sampling; 
mixed estimator problem.

• Iteration corresponds to 
imaginary time. Dynamics 
determined and quickly 
convergent

• Zero variance principle

• Samples the density matrix
• State is 3N*#of time steps
• Cyclic BC in time. Finite 

temperature properties.
• No importance sampling 

and hence no mixed 
estimator problem. More 
“physical.”

• Can have slow convergence 
(ergodic problems)

• Longer time step because of 
improved actions (bosons)
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Dictionary of the Quantum-Classical 
Isomorphism

Properties of a quantum system are mapped into 
properties of the fictitious  classical polymer system

Attention: some words have opposite meanings.

Polymer lengthTemperature

Macroscopic polymerSuperfluid state

Iso-time potentialPotential energy

Ring polymerParticle

FT of end-end distributionMomentum distribution

Negative spring energyKinetic energy

Bond vectorImaginary velocity

Free energyFree energy

Free energy to link polymersExchange frequency

Joining of polymersBoson statistics

Delocalization of endsBose condensation

ClassicalQuantum
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Examples of distinguishable particle 
calculations

• Solid H2:   work of Marcus Wagner, DMC

• Wigner crystal:  3D    Matt Jones, DMC
2D    Ladir Candido, P. Phillips, DMC

• Vortex lattice: Nandini Trivedi, P. Sen and DMC
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Example: Solid H2

Solid molecular hydrogen is a very quantum solid

KE=69K      Tt = 13.8K

Below Tt interface between 
solid and gas.

Top layer is at a lower density, 
more delocalized and  
interesting quantum effects

Normally freezing at surface is 
depressed by 10%. 

In H2 it is depressed by 100%.

1/ 22 0.21 NNr r=
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Simulation is of 5 
layers

Each layer is 30 H2

Hard wall on left

Top layer melts 
around 7K.

Very fluffy top layer.

New layer above 6K
Wagner, DMC,  JPTP 

102,275 (1996). Z  (A)      T=6K

Layer Structure of Solid H2
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Snapshots of H2 density

Layer 0

Layer 1

Layer 2

T=6K           T=7.5K        T=10K

Gas

Liquid

Vacancy

crystal



23

“phase diagram of H2”

Each point 
represents a 
layer.

Surface melting.

Low density 
liquid is  
unstable to 
separation into 
a fully filled 
layer and a 
gas.

1
bulk liqiud

2 1
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Melting of the 3D Wigner Crystal

• PIMC with Boltzmann 
statistics

• Phase boundary 
determined with free 
energy calculation

• Sudden change from 
pressure melting to 
thermal melting. 

• Lindemann law is 
inaccurate

• Melting is first order with 
no volume change

Jones & DMC PRL 1996

superfluid
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• There exists an “exact link action” :

• The “primitive” link action is:

• We often define the exact “inter-action” as:

potential term =     total  - kinetic term (topological)
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Improved Action

•If we make better actions, we can drastically cut 
down on the number of time slices.
•This saves lots of time, because the number of 
variables to integrate over is reduced 
•but also because the correlation time of the walk is 
reduced since “polymers” are less entangled
•Possible approaches to better actions:

–Harmonic approximation
–Semi-classical approximation (WKB)
–Cumulant approximation
–Pair-product approximation

•Improved actions are also used in lattice gauge 
theory: the “perfect action.”
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Differences between lattice and 
continuum PIMC

• For lattice models the Hamiltonian is bounded. 
commutator expansion are a way of getting smaller 
time step errors. 

• Potentials for continuum problems are unbounded. 
Much more care needed to treat singular parts of the 
potential. Watch out for expansions.

• Detailed  comparison with experiment  for all 
properties is possible for continuum models. Not just 
exponents. Numerical convergence is important for 
this. 

• Deadlocks do not arise. Paths can always wiggle out 
but it may take a long time.

• Paths are truly distinguishable. First quantitized
description is more natural. Allows fixed-node 
fermion methods.
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Higher Order Methods?
• Comparison of MD 

integration 
algorithms

• Higher order does 
not always mean 
better

• Problem is that 
potentials are not 
analytic

• Systematic error
• Usually one tries 

to balance all 
sources of errors

Berendsen 86

Statistical error for fixed CPU time.
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Examples for 2 particles
• Exact action
• Cumulant action
• Primitive action
• WKB

Hydrogen atom

•Exact action

•Cumulant action

•Primitive action

•WKB

Exact action is 
smoother than the 
primitive form

WKB does not 
converge

He-He action
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Properties of the action

• Positivity (U is real) 
• Hermitian property
• Cusp condition (i.e. behavior when two 

particles get close together)
• Semiclassical behavior: expansion as mass 

goes to infinity.
• Defining property.  Residual energy              

should be small:

• Feynman-Kac Formula can be used for 
insight. Average over all “free particle”
bridges from RO to RF. Proof that density 
matrix is positive. 
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Generalized Feynman-Kacs

• We can generalize the FK formula to find the correction to any 
density matrix just like with the trial function.

• Usual formula is the correction to the free particle density 
matrix.

• The density matrix is average over paths from RO to RF.
• Gives intuition about how to how to improve it a given action
• Can be used to compute the action. FKPIMC code
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Cumulant Approximation

• In FK formula take the 
average into the 
exponent

• It is possible to 
evaluate the average 
using fourier
transforms.

• Very accurate for 
Coulomb problems 

• However the CA does 
not exist for non-
integrable potentials.
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Harmonic Approximation

• We can exactly calculate the action for a harmonic oscillator.  It 
is just a shifted Gaussian.

• In the neighborhood of (R,R’) let’s approximate the potential by 
a harmonic one.

• Reasonable if the potential is really harmonic within a thermal 
wavelength. (for example in the high temperature limit)

• R* is an arbitrary place to evaluate the potential. If we choose 
it to be one of the end-points we get the Wigner-Kirkwood
approximation.

• Bad idea for realistic potentials because expansion does not 
converge uniformly. Problem is at small r. Look at derivatives.
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Cluster action
• For spherically symmetric pair potentials.
• Find the action for a reduced subset of particles exactly and put 

together to get a many-body action.

• Generalization of T=0 of the Jastrow wavefunction to finite 
temperatures.

• At finite T, it is the off-diagonal terms that are important. 
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Exact pair action from “SQUARER”

How to determine the exact density matrix for a pair of atoms.

1. Use relative coordinates.
2. Go into spherical coordinates. Angles become trivial
3. Result is a 1-d problem for each angular momentum
4. Solve 1-d problem by matrix squaring. Iterate:

5. Complete density matrix is:

6. Fit to a form easy-to-compute during the PIMC run.

0
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PIMC representation 
of pair density matrix

• In bare form it is 3d+time.
• But as normally used 

– Time is discrete (fixed)
– 2 other variables are 

small (expand in them)

• k is the “order”. Typically 
we use k=1 or k=2.

• This will take only 2-3 times 
longer to compute action 
than the pair potential (bare 
Trotter formula).

• But with fewer time slices.
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Compare pair action 
for 3 He atoms

• Compute exact action for 
each pair using FKPIMC

• How good is it for the 
triangle?

• Pair action will have 1/6 the 
number of time slices.

Error in 
action 

3A

Needed time steps



38

Convergence on an (H2)22 cluster

Potential energy Kinetic energy

Potential converges much faster than the kinetic energy
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Speed of calculation for
22 H2  molecules

Efficiency (CPU time for a given error) versus time 
step.
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Beyond Pair product
Residual energy for pair product

• Will vanish for 2 particles.
• Since u is of order τ then 

the residual energy has to 
be order τ2 and by the GFK 
the corrections must be τ3.

• Since u ~ r-5 for LJ potential 
at small r, then the residual 
energy goes as r-6

• But errors will depend on 
density, since 3 particles 
must be involved.
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This is the analytic form 
to use for an action 
beyond the pair form.

Called the “polarization 
action” or 3-body term 
in ground state 
calculations because it 
can be written:
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Special Potentials
Coulomb Hard Sphere

• Coulomb: eigenfunctions
are hydrogen atom 
wavefunctions and 
hypergeometric function

• lots of analytic formulas, 
asymptotic formulas. 

• Can use super-symmetry to 
get rid of one variable: 
simplifies making tables.

• Gets rid of the infinity in the 
attractive Coulomb 
singularity.  

• Describes hydrogen atom 
exactly.

• Expansion in partial waves 
simple: spherical bessel
functions+phase shifts

• Various analytic approximations 

Harmonic Oscillator

• First rotate to diagonal 
representation to get a product 
of 1D density matrices 

• Can do analytically
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How do we treat an arbitrary 
potential?

• Can do harmonic, cumulant or WK but not guaranteed 
to be good if strong forces are present. 

• Harmonic approximation just fixes the “easy” part.  
• Basic idea is to remove a reference potential that we 

can treat exactly and the rest is treated with primitive 
approximation

• Errors are due to the commutator:

• Put the fast varying parts into Ho.  We  want the “left-
over” part to be smooth so commutator is small.
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• We need to perform integrals over the distribution:

• Where the exact link action is kinetic and potential 
energy:

• Similar to a classical collection of ring “polymers”.
• 3NM degrees of freedom. 64 He atoms*40 slices=2560 

classical particles 
• Available classical methods are Monte Carlo or Molecular 

Dynamics.  (in fact many different MC methods)
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Path Integral Sampling Methods
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Multi-level sampling

We need to sample several links at once.  Why?
• Polymers move slowly as number of links increase.
• Maximum moving distance is order:  
• Calculate how much CPU time it takes the centroid of a 

single particle’s path to move a given distance
• Scales as M3 . Hence doubling the number of time slices 

will slow down code by a factor of 8!  Eventually you get 
into trouble.

• (also shows why good actions help) 
• Permutations/windings will not get accepted easily 

because pair permutations need to have the path move 
as well.

λτ
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Metropolis algorithm

Three key concepts:
1. Sample by using an ergodic random walk.
2. Determine equilibrium state by using detailed 

balance
3. Achieve detailed balance by using rejections.

Detailed balance: π (s) P(s → s’) = π (s’)P (s’ → s ).
Rate balance from s to s’.

Put π (s) into the master equation.

• Hence π(s) is an eigenfunction.

• If P(s ⇒s’) is ergodic then π (s)  is the unique steady 
state solution.

( ) ( ) ( ) ( ) ( ) ( )' ' ' ' ' ( ')
s s s

s P s s s P s s s P s s sπ π π π→ = → = → =∑ ∑ ∑
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General Metropolis MC

( ) ( ' ) ( ')' min 1,
( ') ( )

T s s sA s s
T s s s

π
π

⎡ ⎤→
→ = ⎢ ⎥→⎣ ⎦

Metropolis achieves detailed balance by rejecting moves.
Break up transition probability into sampling and 
acceptance:

The optimal acceptance probability that gives detailed 
balance is:

Note that normalization of π(s) is not needed or used!

( ) ( ) ( )
( )
( )

' ' '

' sampling probability

' acceptance probability

P s s T s s A s s

T s s

A s s

→ = → →

→ =

→ =
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PIMC Sampling considerations
• Metropolis Monte Carlo that moves a 

single variable is too slow and will not 
generate permutations.

• We need to move many time slices 
together 

• Key concept of sampling is how to 
sample a “bridge”: construct a path 
starting at R0 and ending at Rt.  

• How do we sample Rt/2?  GUIDING GUIDING 
RULE.RULE. Probability is:

• Do an entire path by recursion from 
this formula.

• Related method: fourier path 
sampling.

/ 2 / 2
0 / 2 / 2

/ 2
0

( )
tH tH

t t t
t tH

t

R e R R e R
P R

R e R

− −

−
=
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How to sample a single slice.
• pdf of the midpoint of the 

bridge:(a pdf because it is 
positive, and integrates to 1)

• For free particles this is easy-
a Gaussian distribution

PROVE: product of 2 Gaussians 
is a Gaussian.

• Interaction reduces P(R) in 
regions where spectator 
atoms are.

• Better is correlated sampling: 
we add a bias given by 
derivatives of the potential 
(for justification see RMP pg 
326)

• Sampling potential Us is a 
smoothed version of the pair 
action.

( )

( )

/ 2 / 2
0 / 2 / 2

/ 2
0

/ 2 0

2 2

0
/ 2 0 / 2

2
2 0

/ 2

1

2

1

2

sampling potential

( )

/ 2

( )

/ 2 ( ) ( )
( )

tH tH
t t t

t tH
t

t t

t t s t

s t

s

R e R R e R
P R

R e R

R R R

t

R R R t U R

t I t U R
U R

η

σ λ η

λ η

σ λ λ ηη

− −

−
=

= + +

= =

= + + ∇ +

= + ∇∇ =

=
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How to sample a Normal distribution
• Trick: generate 2 ndrn at a time: r=(x,y)

• Or sample angle using rejection technique:
– Sample (x,y) in square
– Accept if x2+y2 <1
– Normalize to get the correct r.

2
1

/ 2 2

1 2

1 2

( , ) (2 ) exp( ) ( )
2

1( )  with 
2

2ln( ) cos(2 )

2ln( ) sin(2 )

v

rp x y dxdy p r rdrd

p v dv e v r

x u u

y u u

π θ

π

π

−

−

= − =

= =

= −

= −
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Example of code to sample normal 
distribution

Normal distribution <x>=x0 and <(x-x0)2>=σ2

1 x=sprng()-0.5
y=sprng()-0.5
r2=x*x+y*y
if (r2>0.25) go to 1
radius= sigma*sqrt (-2*ln(sprng())/r2)
xnormal=x0+x*radius
ynormal=y0+y*radius

•No trig functions
•Mixes up regularity of random numbers
•Efficiency of angle generation is 4/π.
•Can get 2 ndrn’s each time.
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Multivariate normal distributions

How to sample a correlated Gaussian? (say with D 
components)

• Assume  we want <xixj> =Tij

• Make Choleski decomposition of T, its square root.  
(see Numerical Recipes)

SSt = T                                          0
by assuming S is a triangular  matrix

• Generate D normally distributed numbers y.
• Transform to correlated random distribution

X=Sy
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Lévy construction

• How to generate a random 
walk by starting in the 
middle.  

• So you don’t fall into Zeno’s 
paradox.

• Construct a whole path by 
recursively sampling 
bridges
– Midpoint
– Midpoint of midpoints
– Etc.
– Stop when you are at 

the desired level of 
precision.

( )

/ 2 / 2
0 / 2 / 2

/ 2
0

/ 2 0

2 2
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/ 2
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σ λ η
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=
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= =



53

Bisection method
1. Select time slices

0

ß

3. Sample midpoints

4. Bisect again, until 
lowest level

5. Accept or reject entire 
move

2. Select permutation 
from possible pairs, 
triplets, from:

( , ';4 )R PRρ τ

R’

R
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Multilevel Metropolis/ Bisection

Sample some variables

Continue?

Sample more variables

Continue?

Finally accept entire move.

•Introduce an approximate 
level action and sampling. 

•Satisfy detailed balance at 
each level with rejections 
(PROVE)

•Only accept if move is 
accepted at all levels.

•Allows one not to waste time 
on moves that fail from the 
start (first bisection).

( ) 1

1

( ' ) ( ') ( )' min 1,
( ') ( ) ( ')

k k k
k

k k k

T s s s sA s s
T s s s s

π π
π π

−

−

⎡ ⎤→
→ = ⎢ ⎥→⎣ ⎦
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Efficiency for number of links moved

Total acceptance ratio

Best sampling is of 4-8 
slices at once.

Center of mass diffusion

Sampling interval
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MC versus MD sampling
• MD can be used BUT basic algorithm is not ergodic

because spring terms do not exchange “pseudoenergy”
with the other degrees of freedom.

(in Fermi-Ulam-Pasta experiment, slightly anharmonic
chains never come into equilibrium.)

• Coupled themostats are introduced to solve this 
problem--but requires some detailed tinkering to make 
it work in many cases.

• Basic problem with MD-cannot do discrete moves 
needed for bose/fermi statistics

• An advantage of MD is that multiparticle moves are 
natural-allows fast computation of energy and forces 
within LDA. 

• Little systematic comparison for a realistic systems.
• Development of “worm algorithms” for lattice systems.




