	The Abdus Salam International Centre for Theoretical Physics
--	---

1929-5

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry

21 January - 1 February, 2008

VMC and trial wave functions.

C. Filippi
Leiden University

Introduction to quantum Monte Carlo methods: VMC and trial wave functions

Claudia Filippi

Instituut-Lorentz, Universiteit Leiden, The Netherlands

Advanced School on QMC Methods in Physics and Chemistry Jan 21-Feb 2, 2008, ICTP, Trieste

A quick reminder: What is electronic structure theory?

A quantum mechanical and first-principle approach

 \longrightarrow Collection of ions + electrons

Only input: Z_{α} , N_{α}

Work in the Born-Oppenheimer approximation

Solve the Schrödinger equation for the electrons in the ionic field

$$\mathcal{H} = -\frac{1}{2} \sum_{i} \nabla_{i}^{2} + \sum_{i} v_{\text{ext}}(\mathbf{r}_{i}) + \frac{1}{2} \sum_{i \neq j} \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

Solving the many-electron Schrödinger equation

$$\mathcal{H} = -rac{1}{2}\sum_{i} \nabla_{i}^{2} + \sum_{i} v_{\mathrm{ext}}(\mathbf{r}_{i}) + rac{1}{2}\sum_{i \neq j} rac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$

What do we want to compute?

Fermionic ground state and low-lying excited states

Evaluate expectation values $\frac{\langle \Psi_n | \mathcal{O} | \Psi_n \rangle}{\langle \Psi_n | \Psi_n \rangle}$

Where is the difficulty?

Electron-electron interaction → Non-separable

Is there an optimal theoretical approach?

- Density functional theory methods
 Large systems but approximate exchange/correlation
- Quantum chemistry post-Hartree-Fock methods

Very accurate on small systems

• Quantum Monte Carlo techniques

Fully-correlated calculations

Stochastic solution of Schrödinger equation

Most accurate benchmarks for medium-large systems

If you can, use density functional theory!

All is relative . . .

We think of density functional theory as cheap and painless!

... but density functional theory does not always work

A "classical" example: Adsorption/desorption of H₂ on Si(001)

For a small model cluster

	$E_{\pmb{a}}^{\mathrm{ads}}$	$E^{\mathrm{des}}_{\pmb{a}}$	E_{rxn}
DFT	0.69	2.86	2.17
QMC	1.01(6)	3.65(6)	2.64(6)

eV

DFT error persists for larger models!

Favorable scaling of QMC with system size

QMC possible for realistic clusters with 2, 3, 4 ... surface dimers

Accurate QMC calculations doable from small to large scales

Error of DFT is large \rightarrow 0.8 eV on desorption barrier !

Healy, Filippi et al. PRL (2001); Filippi et al. PRL (2002)

What about DFT and excited states?

- Restricted open-shell Kohn-Sham method (DFT-ROKS)
- Time-dependent density functional theory (TDDFT)

Comparison with QMC → Neither approach is reliable

When DFT has problems → Wave function based methods

Wave function $\Psi(\mathbf{x}_1, \dots, \mathbf{x}_N)$ where $\mathbf{x} = (\mathbf{r}, \sigma)$ and $\sigma = \pm 1$ How do we compute expectation values?

Many-body wave functions in traditional quantum chemistry

Interacting $\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) \leftrightarrow \text{Non-interacting one-particle basis}$ Ψ expanded in determinants of single-particle orbitals $\psi(\mathbf{x})$ Single-particle orbitals expanded on Gaussian basis

 \Rightarrow All integrals can be computed analytically

Many-body wave functions in traditional quantum chemistry

(1)

Starting point → Non-interacting Hartree-Fock wave function

$$D_{\mathrm{HF}}(\mathbf{x}_1,\ldots,\mathbf{x}_N) = egin{bmatrix} \psi_1(\mathbf{x}_1) & \ldots & \psi_1(\mathbf{x}_N) \ dots & dots \ \psi_N(\mathbf{x}_1) & \ldots & \psi_N(\mathbf{x}_N) \ \end{pmatrix}$$

Optimal spin-orbitals $\psi_i(\mathbf{x}) = \phi_i(\mathbf{r})\chi_{s_i}(\sigma)$ satisfy HF equations

$$\left[-\frac{1}{2} \nabla^2 + v_{\text{ext}}(\mathbf{r}) + \sum_{j=1}^N \int d\mathbf{r}' \, \frac{|\phi_j(\mathbf{r}')|^2}{|\mathbf{r} - \mathbf{r}'|} \right] \phi_i(\mathbf{r}) + [\hat{v}_{\text{HF}} \phi_i](\mathbf{r}) = \epsilon_i \phi_i(\mathbf{r})$$

 \Rightarrow occupied orbitals $(\psi_1 \dots \psi_N) + \text{virtual}$ orbitals $(\psi_{N+1} \dots)$

Many-body wave functions in traditional quantum chemistry

(2)

A jungle of acronyms: CI, CASSCF, MRCI, CASPT2 . . .

Expansion in linear combination of determinants

$$\Psi(\mathbf{x}_{1},\ldots,\mathbf{x}_{N}) \longrightarrow D_{\mathrm{HF}} = \begin{vmatrix} \psi_{1}(\mathbf{x}_{1}) & \ldots & \psi_{1}(\mathbf{x}_{N}) \\ \vdots & & \vdots \\ \psi_{N}(\mathbf{x}_{1}) & \ldots & \psi_{N}(\mathbf{x}_{N}) \end{vmatrix}$$

$$\downarrow c_{0}D_{\mathrm{HF}} + c_{1}D_{1} + c_{2}D_{2} + \ldots \text{ millions of determinants}$$

$$\downarrow \psi_{1}(\mathbf{x}_{1}) & \ldots & \psi_{1}(\mathbf{x}_{N}) \\ \vdots & & \vdots \\ \psi_{N+1}(\mathbf{x}_{1}) & \ldots & \psi_{N+1}(\mathbf{x}_{N}) \end{vmatrix}$$

by constructing single, double, ... up to N-body excitations

Pros and cons of CI expansion in Slater determinants

$$\Psi_{\text{CI}} = c_0 D_{\text{HF}} + \sum_{ab} c_{a \rightarrow b} D^{a \rightarrow b} + \sum_{abcd} c_{ab \rightarrow cd} D^{ab \rightarrow cd} + \dots$$

Optimal CI coefficients by solving generalized eigenvalue equation

$$\Psi_{\mathrm{CI}} = \sum_{i=1}^{K} c_i C_i \; \Rightarrow \; \left| \sum_{j=1}^{K} \langle C_i | \mathcal{H} | C_j \rangle c_j^{(k)} = E_{\mathrm{CI}}^{(k)} \sum_{j=1}^{K} \langle C_i | C_j \rangle c_j^{(k)} \right|$$

Orbitals on a Gaussian basis \rightarrow Integrals computed analytically

... but | slowly converging expansion

Can we use a more compact Ψ ?

We want to construct an accurate and more compact Ψ

Explicit dependence on the inter-electronic distances r_{ij}

How do we compute expectation values if no single-electron basis?

A different way of writing the expectation values

Consider the expectation value of the Hamiltonian on Ψ

$$E_{V} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle} = \frac{\int d\mathbf{R} \, \Psi^{*}(\mathbf{R}) \mathcal{H} \Psi(\mathbf{R})}{\int d\mathbf{R} \, \Psi^{*}(\mathbf{R}) \Psi(\mathbf{R})} \ge E_{0}$$

$$= \int d\mathbf{R} \, \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \left[\frac{|\Psi(\mathbf{R})|^{2}}{\int d\mathbf{R} |\Psi(\mathbf{R})|^{2}} \right]$$

$$= \int d\mathbf{R} \, E_{L}(\mathbf{R}) \, \rho(\mathbf{R}) = \langle E_{L}(\mathbf{R}) \rangle_{\rho}$$

ho is a distribution function and $E_{
m L}({f R})=rac{{\cal H}\Psi({f R})}{\Psi({f R})}$ the local energy

Variational Monte Carlo: a random walk of the electrons

Use Monte Carlo integration to compute expectation values

- \triangleright Sample **R** from $\rho(\mathbf{R})$ using Metropolis algorithm
- ho Average local energy $E_{
 m L}({f R})=rac{{\cal H}\Psi({f R})}{\Psi({f R})}$ to obtain E_V as

$$oxed{E_V = \langle E_{
m L}(\mathbf{R})
angle_
ho pprox rac{1}{M} \sum_{i=1}^M E_{
m L}(\mathbf{R}_i)}$$

Random walk in 3N dimensions, $\mathbf{R} = (\mathbf{r}_1, \dots, \mathbf{r}_N)$

Just a trick to evaluate integrals in many dimensions

Is it really "just" a trick?

 $\mathsf{Si}_{21}\mathsf{H}_{22}$

Number of electrons $4 \times 21 + 22 = 106$

Number of dimensions $3 \times 106 = \boxed{318}$

Integral on a grid with 10 points/dimension $\rightarrow 10^{318}$ points!

MC is a powerful trick \Rightarrow Freedom in form of the wave function Ψ

Are there any conditions on many-body Ψ to be used in VMC?

Within VMC, we can use any "computable" wave function if

- Continuous, normalizable, proper symmetry
- Finite variance

$$\sigma^2 = rac{\langle \Psi | (\mathcal{H} - E_V)^2 | \Psi
angle}{\langle \Psi | \Psi
angle} = \langle (E_{
m L}(\mathbf{R}) - E_V)^2
angle_{
ho}$$

since the Monte Carlo error goes as $\left| \operatorname{err}(E_V) \sim \frac{o}{\sqrt{M}} \right|$

$$\mathrm{err}(E_V) \sim \frac{\sigma}{\sqrt{M}}$$

Zero variance principle: if $\Psi \to \Psi_0$, $E_L(\mathbf{R})$ does not fluctuate

Variational Monte Carlo and the generalized Metropolis algorithm

How do we sample distribution function $\rho(\mathbf{R}) = \frac{|\Psi(\mathbf{R})|^2}{\int d\mathbf{R} |\Psi(\mathbf{R})|^2}$?

 $\overline{\mathsf{Aim}} \to \mathsf{Obtain}$ a set of $\{\mathsf{R}_1, \mathsf{R}_2, \dots, \mathsf{R}_M\}$ distributed as $\rho(\mathsf{R})$

Generate a Markov chain

- \triangleright Start from arbitrary initial state \mathbf{R}_i
- \triangleright Use stochastic transition matrix $P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})$

$$P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \geq 0 \qquad \sum_{\mathbf{R}_{\mathrm{f}}} P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = 1.$$

as probability of making transition $\mathbf{R}_i \to \mathbf{R}_f$

 \triangleright Evolve the system by repeated application of P

Stationarity condition

To sample ρ , use P which satisfies stationarity condition:

$$\sum_{i} P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ \rho(\mathbf{R}_{\mathrm{i}}) = \rho(\mathbf{R}_{\mathrm{f}}) \quad \forall \ \mathbf{R}_{\mathrm{f}}$$

Stationarity condition + stochastic property of P + ergodicity

 \Rightarrow Any initial distribution will evolve to ρ

More stringent (sufficient but not necessary) condition

In practice, we impose detailed balance condition

$$P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ \rho(\mathbf{R}_{\mathrm{i}}) = P(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \ \rho(\mathbf{R}_{\mathrm{f}})$$

How do we construct the transition matrix P in practice?

Write transition matrix P as proposal $T \times$ acceptance A

$$P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})$$

P and T are stochastic matrices but A is not

Rewriting detailed balance condition

$$egin{array}{lll} P(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \;
ho(\mathbf{R}_{\mathrm{i}}) &=& P(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \;
ho(\mathbf{R}_{\mathrm{f}}) \\ A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \; T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \;
ho(\mathbf{R}_{\mathrm{i}}) &=& A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \; T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \;
ho(\mathbf{R}_{\mathrm{f}}) \\ & ext{or} \; \; rac{A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})}{A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})} \; = \; rac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \;
ho(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \;
ho(\mathbf{R}_{\mathrm{i}})} \end{array}$$

Choice of acceptance matrix A

(1)

Detailed balance condition is

$$\frac{A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})}{A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})} = \frac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \ \rho(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \ \rho(\mathbf{R}_{\mathrm{i}})}$$

For a given choice of T, infinite choices of A satisfy this equation

Any function
$$A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) = F\left(\frac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})\;\rho(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})\;\rho(\mathbf{R}_{\mathrm{i}})}\right)$$
 with
$$\frac{F(x)}{F(1/x)} = x$$

will do the job!

Original choice by Metropolis et al. maximizes the acceptance

$$egin{aligned} A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) &= \min \left\{1, rac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}}) \;
ho(\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}}) \;
ho(\mathbf{R}_{\mathrm{i}})}
ight\} \end{aligned}$$

Note: $\rho(\mathbf{R})$ does not have to be normalized

Original Metropolis method

Choice of proposal matrix T

(1)

Is the original choice of T by Metropolis the best possible choice?

The configurations M of the walk are sequentially correlated

 \Rightarrow Smaller number $M_{ ext{eff}} < M$ of independent observations

$$M_{
m eff} = rac{M}{T_{
m corr}}$$

with $T_{\rm corr}$ is the autocorrelation time of desired observable

Choice of proposal matrix T

(2)

Aim is to achieve fast evolution of the system and reduce $T_{
m corr}$

Use freedom in choice of T to have high acceptance

$$rac{\mathcal{T}(\mathsf{R}_{\mathrm{i}}|\mathsf{R}_{\mathrm{f}})\;
ho(\mathsf{R}_{\mathrm{f}})}{\mathcal{T}(\mathsf{R}_{\mathrm{f}}|\mathsf{R}_{\mathrm{i}})\;
ho(\mathsf{R}_{\mathrm{i}})}pprox 1\;\Rightarrow\; \mathit{A}(\mathsf{R}_{\mathrm{f}}|\mathsf{R}_{\mathrm{i}})pprox 1$$

and small $T_{\rm corr}$ of desired observable

<u>Limitation</u>: we need to be able to sample *T* directly!

If Δ is the linear dimension of domain around \mathbf{R}_i

$$rac{A(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})}{A(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})} = rac{T(\mathbf{R}_{\mathrm{i}}|\mathbf{R}_{\mathrm{f}})}{T(\mathbf{R}_{\mathrm{f}}|\mathbf{R}_{\mathrm{i}})} rac{
ho(\mathbf{R}_{\mathrm{f}})}{
ho(\mathbf{R}_{\mathrm{i}})} pprox 1 - \mathcal{O}(\Delta^m)$$

- riangleright T symmetric as in original Metropolis algorithm gives m=1
- \triangleright A choice motivated by diffusion Monte Carlo with m=2 is

$$\mathcal{T}(\textbf{R}_f|\textbf{R}_i) = \mathcal{N} \exp \left[-\frac{(\textbf{R}_f - \textbf{R}_i - \textbf{V}(\textbf{R}_i)\tau)^2}{2\tau} \right] \ \, \text{with} \ \, \textbf{V}(\textbf{R}_i) = \frac{\nabla \Psi(\textbf{R}_i)}{\Psi(\textbf{R}_i)}$$

○ Other (better) choices of T are possible

Acceptance and $T_{\rm corr}$ for the total energy E_V

Example: All-electron Be atom with simple wave function

Simple Metropolis

Δ	$T_{ m corr}$	Ā
1.00	41	0.17
0.75	21	0.28
0.50	17	0.46
0.20	45	0.75

Drift-diffusion transition

au	$T_{ m corr}$	Ā
0.100	13	0.42
0.050	7	0.66
0.020	8	0.87
0.010	14	0.94

Generalized Metropolis algorithm

- 1. Choose distribution $\rho(\mathbf{R})$ and proposal matrix $T(\mathbf{R}_f|\mathbf{R}_i)$
- 2. Initialize the configuration \mathbf{R}_i
- 3. Advance the configuration from \mathbf{R}_i to \mathbf{R}'
 - a) Sample \mathbf{R}' from $T(\mathbf{R}'|\mathbf{R}_i)$.
 - b) Calculate the ratio $p = \frac{T(\mathbf{R}_i|\mathbf{R}')}{T(\mathbf{R}'|\mathbf{R}_i)} \frac{\rho(\mathbf{R}')}{\rho(\mathbf{R}_i)}$
 - c) Accept or reject with probability p

Pick a uniformly distributed random number $\chi \in [0,1]$

if
$$\chi < p$$
, move accepted \to set $\mathbf{R}_{\mathrm{f}} = \mathbf{R}'$

if
$$\chi > p$$
, move rejected \rightarrow set $\mathbf{R}_{\mathrm{f}} = \mathbf{R}$

- 4. Throw away first κ configurations of equilibration time
- 5. Collect the averages and block them to obtain the error bars

Improvements on simple and drift-diffusion algorithms

Move one electron at the time → Decorrelate faster

Does total matrix $P = \prod_{i=1}^{N} P_i$ satisfy stationarity condition?

Yes if matrices P_1, P_2, \ldots, P_n satisfy stationarity condition

- - Core electrons set the length scales
 - \rightarrow T must distinguish between core and valance electrons
 - Do not use cartesian coordinates
 - ightarrow Derivative discontinuity of Ψ at nuclei

Better algorithms can achieve $T_{\rm corr}=1-2$

Expectation values in variational Monte Carlo

(1)

We compute the expectation value of the Hamiltonian ${\cal H}$ as

$$E_{V} = \frac{\langle \Psi | \mathcal{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$

$$= \int d\mathbf{R} \frac{\mathcal{H} \Psi(\mathbf{R})}{\Psi(\mathbf{R})} \frac{|\Psi(\mathbf{R})|^{2}}{\int d\mathbf{R} |\Psi(\mathbf{R})|^{2}}$$

$$= \int d\mathbf{R} E_{L}(\mathbf{R}) \rho(\mathbf{R})$$

$$= \langle E_{L}(\mathbf{R}) \rangle_{\rho} \approx \frac{1}{M} \sum_{i=1}^{M} E_{L}(\mathbf{R}_{i})$$

Note: a) Metropolis method: ρ does not have to be normalized \rightarrow For complex Ψ we do not know the normalization!

b) If $\Psi \rightarrow$ eigenfunction, $E_L(\mathbf{R})$ does not fluctuate

The energy is computed by averaging the local energy

$$E_V = rac{\langle \Psi | \mathcal{H} | \Psi
angle}{\langle \Psi | \Psi
angle} = \langle E_{
m L}({f R})
angle_
ho$$

The variance of the local energy is given by

$$\sigma^2 = rac{\langle \Psi | (\mathcal{H} - E_V)^2 | \Psi
angle}{\langle \Psi | \Psi
angle} = \langle (E_{
m L}(\mathbf{R}) - E_V)^2
angle_{
ho}$$

The statistical Monte Carlo error goes as $\operatorname{err}(E_V) \sim \frac{\sigma}{\sqrt{M}}$

Note: For other operators, substitute ${\mathcal H}$ with ${\mathcal X}$

Typical VMC run

Example: Local energy and average energy of acetone (C_3H_6O)

$$E_{
m VMC} = \langle E_{
m L}({f R})
angle_
ho = -36.542 \pm 0.001$$
 Hartree (40 $imes$ 20000 steps)

$$\sigma_{
m VMC} = \langle (E_{
m L}({\sf R}) - E_{
m VMC})^2
angle_
ho = 0.90$$
 Hartree

Variational Monte Carlo \rightarrow Freedom in choice of Ψ

Monte Carlo integration allows the use of complex and accurate Ψ

- \Rightarrow More compact representation of Ψ than in quantum chemistry
- \Rightarrow Beyond $c_0D_{\mathrm{HF}} + c_1D_1 + c_2D_2 + \dots$ millions of determinants

Jastrow-Slater wave function

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

 $|\mathcal{J}|$ \longrightarrow Jastrow correlation factor

- Positive function of inter-particle distances
- Explicit dependence on electron-electron distances $r_{
 m ij}$
- Takes care of divergences in potential

Jastrow-Slater wave function

(2)

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

$$\left|\sum d_k D_k^{\uparrow} D_k^{\downarrow} \right|$$
 — Determinants of single-particle orbitals

- Few and not millions of determinants as in quantum chemistry
- Slater basis to expand orbitals in all-electron calculations

$$\phi(\mathbf{r}) = \sum_{\alpha}^{\text{Nuclei}} \sum_{k_{\alpha}} c_{k_{\alpha}} r_{\alpha}^{n_{k_{\alpha}} - 1} \exp(-\zeta_{k_{\alpha}} r_{\alpha}) Y_{l_{k_{\alpha}} m_{k_{\alpha}}}(\widehat{\mathbf{r}}_{\alpha})$$

Gaussian atomic basis used in pseudopotential calculations

- Slater component determines the nodal surface

What is strange with the Jastrow-Slater wave function?

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

 \triangleright Why is Ψ not depending on the spin variables σ ?

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \Psi(\mathbf{r}_1,\sigma_1,\ldots,\mathbf{r}_N,\sigma_N) \text{ with } \sigma_i = \pm 1$$

 \triangleright Why is Ψ not totally antisymmetric?

Why can we factorize $D_k^{\uparrow} D_k^{\downarrow}$?

Consider N electrons with $N=N_\uparrow+N_\downarrow$ and $S_z=(N_\uparrow-N_\downarrow)/2$

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \Psi(\mathbf{r}_1,\sigma_1,\ldots,\mathbf{r}_N,\sigma_N)$$
 with $\sigma_i = \pm 1$

Define a spin function ζ_1

$$\zeta_1(\sigma_1,\ldots,\sigma_N)=\chi_{\uparrow}(\sigma_1)\ldots\chi_{\uparrow}(\sigma_{N_{\uparrow}})\chi_{\downarrow}(\sigma_{N_{\uparrow}+1})\ldots\chi_{\downarrow}(\sigma_N)$$

Generate $K = N!/N_{\uparrow}!N_{\downarrow}!$ functions ζ_i by permuting indices in ζ_1

The functions ζ_i form a complete, orthonormal set in spin space

$$\sum_{\sigma_1...\sigma_N} \zeta_i(\sigma_1,\ldots,\sigma_N) \zeta_j(\sigma_1,\ldots,\sigma_N) = \delta_{ij}$$

Wave function with space and spin variables

Expand the wave function Ψ in terms of its spin components

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N)=\sum_{i=1}^K F_i(\mathbf{r}_1,\ldots,\mathbf{r}_N)\,\zeta_i(\sigma_1,\ldots,\sigma_N)$$

 Ψ is totally antisymmetric \Rightarrow

- \triangleright $F_i = -F_i$ for interchange of like-spin
- \triangleright $F_i = \pm$ permutation of F_1

$$\Psi(\mathbf{x}_1,\ldots,\mathbf{x}_N) = \mathcal{A}\left\{F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N)\,\zeta_1(\sigma_1,\ldots,\sigma_N)\right\}$$

Can we get rid of spin variables? Spin-assigned wave functions

Note that if \mathcal{O} is a spin-independent operator

$$\langle \Psi | \mathcal{O} | \Psi
angle = \langle F_1 | \mathcal{O} | F_1
angle$$

since the functions ζ_i form an orthonormal set

More convenient to use F_1 instead of full wave function Ψ

To obtain F_1 , assign the spin-variables of particles:

Particle 1 2 ...
$$N_{\uparrow}$$
 $N_{\uparrow+1}$... N σ 1 1 ... 1 -1 ... -1

$$F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\Psi(\mathbf{r}_1,1,\ldots,\mathbf{r}_{N_\uparrow},1,\mathbf{r}_{N_\uparrow+1},-1,\ldots,\mathbf{r}_N,-1)$$

Spin assignment: a simple wave function for the Be atom

(1)

Be atom, $1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$, $S_z = 0$

Determinant of spin-orbitals $\phi_{1s} \chi_{\uparrow}$, $\phi_{2s} \chi_{\uparrow}$, $\phi_{1s} \chi_{\downarrow}$, $\phi_{2s} \chi_{\downarrow}$

$$D = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r_1})\chi_{\uparrow}(\sigma_1) & \dots & \phi_{1s}(\mathbf{r_4})\chi_{\uparrow}(\sigma_4) \\ \phi_{2s}(\mathbf{r_1})\chi_{\uparrow}(\sigma_1) & \dots & \phi_{2s}(\mathbf{r_4})\chi_{\uparrow}(\sigma_4) \\ \phi_{1s}(\mathbf{r_1})\chi_{\downarrow}(\sigma_1) & \dots & \phi_{1s}(\mathbf{r_4})\chi_{\downarrow}(\sigma_4) \\ \phi_{2s}(\mathbf{r_1})\chi_{\downarrow}(\sigma_1) & \dots & \phi_{2s}(\mathbf{r_4})\chi_{\downarrow}(\sigma_4) \end{vmatrix}$$

Spin-assigned $F_1(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \mathbf{r}_4) = D(\mathbf{r}_1, +1, \mathbf{r}_2, +1, \mathbf{r}_3, -1, \mathbf{r}_4, -1)$

$$F_{1} = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r_{1}}) & \phi_{1s}(\mathbf{r_{2}}) & 0 & 0 \\ \phi_{2s}(\mathbf{r_{1}}) & \phi_{2s}(\mathbf{r_{2}}) & 0 & 0 \\ 0 & 0 & \phi_{1s}(\mathbf{r_{3}}) & \phi_{1s}(\mathbf{r_{4}}) \\ 0 & 0 & \phi_{2s}(\mathbf{r_{3}}) & \phi_{2s}(\mathbf{r_{4}}) \end{vmatrix}$$

Spin assignment: a simple wave function for the Be atom

(2)

Be atom,
$$1s^2 2s^2 \Rightarrow N_\uparrow = N_\downarrow = 2$$
, $S_z = 0$

$$F_{1} = \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r_{1}}) & \phi_{1s}(\mathbf{r_{2}}) & 0 & 0 \\ \phi_{2s}(\mathbf{r_{1}}) & \phi_{2s}(\mathbf{r_{2}}) & 0 & 0 \\ 0 & 0 & \phi_{1s}(\mathbf{r_{3}}) & \phi_{1s}(\mathbf{r_{4}}) \\ 0 & 0 & \phi_{2s}(\mathbf{r_{3}}) & \phi_{2s}(\mathbf{r_{4}}) \end{vmatrix}$$

$$= \frac{1}{\sqrt{4!}} \begin{vmatrix} \phi_{1s}(\mathbf{r_1}) & \phi_{1s}(\mathbf{r_2}) \\ \phi_{2s}(\mathbf{r_1}) & \phi_{2s}(\mathbf{r_2}) \end{vmatrix} \times \begin{vmatrix} \phi_{1s}(\mathbf{r_3}) & \phi_{1s}(\mathbf{r_4}) \\ \phi_{2s}(\mathbf{r_3}) & \phi_{2s}(\mathbf{r_4}) \end{vmatrix}$$

$$D(\mathsf{x}_1,\mathsf{x}_2,\mathsf{x}_3,\mathsf{x}_4) o D^{\uparrow}(\mathsf{r_1},\mathsf{r_2}) imes D^{\downarrow}(\mathsf{r_3},\mathsf{r_4})$$

Spin assignment:
$$\Psi = \sum_{k} d_k D_k$$
 (1)

Care with order of spin-orbitals in determinants

 \Rightarrow First all \uparrow spin-orbitals and then all \downarrow spin-orbitals

Example: He atom, two-determinant singlet excited state $1s^12s^1$

$$(1s^\uparrow,2s^\downarrow)-(1s^\downarrow,2s^\uparrow)$$
 with orbitals $\phi_{1s}\chi_\uparrow$, $\phi_{1s}\chi_\downarrow$, $\phi_{2s}\chi_\uparrow$, $\phi_{2s}\chi_\downarrow$

$$\Psi = \begin{vmatrix} \phi_{1s}(\mathbf{r_1})\chi_{\uparrow}(\sigma_1) & \phi_{1s}(\mathbf{r_2})\chi_{\uparrow}(\sigma_2) \\ \phi_{2s}(\mathbf{r_1})\chi_{\downarrow}(\sigma_1) & \phi_{2s}(\mathbf{r_2})\chi_{\downarrow}(\sigma_2) \end{vmatrix}$$
$$- \begin{vmatrix} \phi_{1s}(\mathbf{r_1})\chi_{\downarrow}(\sigma_1) & \phi_{1s}(\mathbf{r_2})\chi_{\downarrow}(\sigma_2) \\ \phi_{2s}(\mathbf{r_1})\chi_{\uparrow}(\sigma_1) & \phi_{2s}(\mathbf{r_2})\chi_{\uparrow}(\sigma_2) \end{vmatrix}$$

Spin assignment:
$$\Psi = \sum_{k} d_k D_k$$
 (2)

First all ↑ spin-orbitals and then all ↓ spin-orbitals

$$\Psi = \begin{vmatrix} \phi_{1s}(\mathbf{r}_1)\chi_{\uparrow}(\sigma_1) & \phi_{1s}(\mathbf{r}_2)\chi_{\uparrow}(\sigma_2) \\ \phi_{2s}(\mathbf{r}_1)\chi_{\downarrow}(\sigma_1) & \phi_{2s}(\mathbf{r}_2)\chi_{\downarrow}(\sigma_2) \end{vmatrix}$$

$$+ \begin{vmatrix} \phi_{2s}(\mathbf{r}_1)\chi_{\uparrow}(\sigma_1) & \phi_{2s}(\mathbf{r}_2)\chi_{\uparrow}(\sigma_2) \\ \phi_{1s}(\mathbf{r}_1)\chi_{\downarrow}(\sigma_1) & \phi_{1s}(\mathbf{r}_2)\chi_{\downarrow}(\sigma_2) \end{vmatrix}$$

Assign spins: Particle 1 2 σ 1 -1

$$F_1(\mathbf{r_1}, \mathbf{r_2}) = \phi_{1s}(\mathbf{r_1})\phi_{2s}(\mathbf{r_2}) + \phi_{2s}(\mathbf{r_1})\phi_{1s}(\mathbf{r_2})$$

See example of excited state of CH₂NH tomorrow afternoon

Jastrow-Slater spin-assigned wave function

To obtain spin-assigned Jastrow-Slater wave functions, impose

Particle 1 2 ...
$$N_{\uparrow}$$
 $N_{\uparrow+1}$... N σ 1 1 ... 1 -1 ... -1

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = F_1(\mathbf{r}_1,\ldots,\mathbf{r}_N)$$

$$= \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_N) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

How do we impose space and spin symmetry on Jastrow-Slater Ψ ?

 $\sum_{k} d_{k} D_{k}$ is constructed to have the proper space/spin symmetry

Often, $\mathcal{J} = \mathcal{J}(\{r_{ij}\}, \{r_{i\alpha}\})$ with i, j electrons and α nuclei

- $\Rightarrow \mathcal{J}$ invariant under rotations, no effect on spacial symmetry of Ψ
- ⊳ Spin symmetry

If $\mathcal J$ is symmetric

- \rightarrow for interchange of like-spin electrons $\Rightarrow \Psi$ eigenstate of S_z
- \rightarrow for interchange of spacial variables $\Rightarrow \Psi$ eigenstate of S^2

Jastrow factor and divergences in the potential

At interparticle coalescence points, the potential diverges as

$$-\frac{Z}{r_{io}}$$
 for the electron-nucleus potential

 $\frac{1}{r_{ii}}$ for the electron-electron potential

Local energy
$$\frac{\mathcal{H}\Psi}{\Psi} = -\frac{1}{2}\sum_{i}\frac{\nabla_{i}^{2}\Psi}{\Psi} + \mathcal{V}$$
 must be finite

 \Rightarrow Kinetic energy must have opposite divergence to the potential ${\mathcal V}$

Divergence in potential and behavior of the local energy

Consider two particles of masses m_i , m_j and charges q_i , q_j Assume $r_{ij} \rightarrow 0$ while all other particles are well separated

Keep only diverging terms in $\frac{\mathcal{H}\Psi}{\Psi}$ and go to relative coordinates close to $\mathbf{r}=\mathbf{r}_{ij}=0$

$$egin{split} -rac{1}{2\mu_{ij}}rac{
abla^2\Psi}{\Psi} + \mathcal{V}(r) &\sim -rac{1}{2\mu_{ij}}rac{\Psi''}{\Psi} - rac{1}{\mu_{ij}}rac{1}{r}rac{\Psi'}{\Psi} + \mathcal{V}(r) \ &\sim \left[-rac{1}{\mu_{ij}}rac{1}{r}rac{\Psi'}{\Psi} + \mathcal{V}(r)
ight] \end{split}$$

where $\mu_{ij} = m_i m_j/(m_i + m_j)$

Divergence in potential and cusp conditions

Diverging terms in the local energy

$$-\frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + \mathcal{V}(r) = -\frac{1}{\mu_{ij}}\frac{1}{r}\frac{\Psi'}{\Psi} + \frac{q_iq_j}{r} = \text{ finite}$$

 $\Rightarrow \Psi$ must satisfy Kato's cusp conditions:

$$\left. \frac{\partial \hat{\Psi}}{\partial r_{ij}} \right|_{r_{ij}=0} = \mu_{ij} q_i \ q_j \Psi(r_{ij}=0)$$

where $\hat{\Psi}$ is a spherical average

Note: We assumed $\Psi(r_{ij}=0)\neq 0$

Cusp conditions: example

The condition for the local energy to be finite at r = 0 is

$$\frac{\Psi'}{\Psi} = \mu_{ij} q_i q_j$$

$$ullet$$
 Electron-nucleus: $\mu=1,\ q_i=1,\ q_j=-Z \ \Rightarrow \ \left|\left.rac{\Psi'}{\Psi}
ight|_{r=0}=-Z$

• Electron-electron:
$$\mu = \frac{1}{2}, \ q_i = 1, \ q_j = 1$$
 $\Rightarrow \left| \frac{\Psi'}{\Psi} \right|_{r=0} = 1/2$

Generalized cusp conditions

What about two electrons in a triplet state?

Or more generally two like-spin electrons $(D^{\uparrow} \text{ or } D^{\downarrow} \rightarrow 0)$?

$$\boxed{\Psi(r=r_{ij}=0)=0} ?!?$$

Near
$$\mathbf{r} = \mathbf{r}_{ij} = 0$$
, $\Psi = \sum_{l=l_0}^{\infty} \sum_{m=-l}^{l} f_{lm}(r) r^{l} Y_{lm}(\theta, \phi)$

Local energy is finite if

$$f_{lm}(r) = f_{lm}^{(0)} \left[1 + \frac{\gamma}{(l+1)} r + O(r^2) \right]$$

where $\gamma = q_i q_j \mu_{ij}$

R. T. Pack and W. Byers Brown, JCP 45, 556 (1966)

Generalized cusp conditions: like-spin electrons

• Electron-electron singlet:
$$l_0 = 0 \Rightarrow \left| \Psi \sim \left(1 + \frac{1}{2} r \right) \right| \Rightarrow \frac{\Psi'}{\Psi} = \frac{1}{2}$$

• Electron-electron triplet:
$$I_0 = 1 \Rightarrow \left| \Psi \sim \left(1 + \frac{1}{4} \, r \right) \, r \right|$$

Cusp conditions and QMC wave functions

(1)

 $\sigma = +1$ for first N_{\uparrow} electrons, $\sigma = -1$ for the others

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

 $hd Anti-parallel spins: r_{ij} o 0 ext{ for } i \leq N_{\uparrow}, j \geq N_{\uparrow} + 1$

Usually, determinantal part $\neq 0$

$$I_0=0 \;\;\Rightarrow\;\; \left|\Psi\sim\left(1+rac{1}{2}\,r_{ij}
ight)
ight|$$

$$\Rightarrow \;\; \mathcal{J}(\mathit{r}_{ij}) \sim \left(1 + rac{1}{2} \, \mathit{r}_{ij}
ight) \;\; \Leftrightarrow \; \left|\left.rac{\mathcal{J}'}{\mathcal{J}}
ight|_{\mathit{r}_{ij}=0} = rac{1}{2} \,
ight|$$

Cusp conditions and QMC wave functions

(2)

 $\sigma = +1$ for first \mathcal{N}_{\uparrow} electrons, $\sigma = -1$ for the others

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \mathcal{J}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) \sum_k d_k D_k^{\uparrow}(\mathbf{r}_1,\ldots,\mathbf{r}_{N_{\uparrow}}) D_k^{\downarrow}(\mathbf{r}_{N_{\uparrow}+1},\ldots,\mathbf{r}_N)$$

ho Parallel spins: $r_{ij} \to 0$ for $i, j \le N_{\uparrow}$ or $i, j \ge N_{\uparrow} + 1$

Determinantal part $\rightarrow 0$

$$I_0=1 \;\;\Rightarrow\;\; \left|\Psi\sim\left(1+rac{1}{4}\,r_{ij}
ight)r_{ij}
ight|$$

$$\Rightarrow \;\; \mathcal{J}(r_{ij}) \sim \left(1 + rac{1}{4} \, r_{ij}
ight) \;\; \Leftrightarrow \; \left|\left.rac{\mathcal{J}'}{\mathcal{J}}
ight|_{r_{ij}=0} = rac{1}{4} \,
ight|$$

Cusp conditions and QMC wave functions

(3)

▷ Electron-electron cusps imposed through the Jastrow factor

Example: Simple Jastrow factor

$$\mathcal{J}(r_{ij}) = \prod_{i < j} \exp \left\{ b_0 \, \frac{r_{ij}}{1 + b \, r_{ij}} \right\}$$

with
$$b_0^{\uparrow\downarrow}=rac{1}{2}$$
 or $b_0^{\uparrow\uparrow}=b_0^{\downarrow\downarrow}=rac{1}{4}$

Imposes cusp conditions

keeps electrons apart

The effect of the Jastrow factor

Pair correlation function for $\uparrow\downarrow$ electrons in the (110) plane of Si $g_{\uparrow\downarrow}(\mathbf{r},\mathbf{r}')$ with one electron is at the bond center

Hood et al. Phys. Rev. Lett. 78, 3350 (1997)

(4)

▷ Electron-nucleus cusps imposed through the determinantal part

Assume that the nucleus is at the origin and $\Psi(r_i=0)\neq 0$

If each orbital satisfies the cusp conditions

$$\frac{\partial \hat{\phi}_{j}}{\partial r} \bigg|_{r=0} = -Z \hat{\phi}_{j}(r=0)$$

$$\Rightarrow \frac{\partial \sum_{k} d_{k} \hat{D}_{k}}{\partial r} \bigg|_{r=0} = -Z \sum_{k} d_{k} \hat{D}_{k}(r=0)$$

Note: Slater basis best suited for all-electron systems

No electron-nucleus cusp with pseudopotential

Core/valence electrons and pseudopotentials

Example: Carbon atom $\to Z = N_{\rm elec} = 6$ with $[1s^2]2s^22p_x^{\uparrow}2p_y^{\uparrow}$

QMC computational cost scales as N^4 but as $Z^{5.5-6.5}$

Remove the $1s^2$ core electrons with pseudopotential with $Z_{\rm eff}=4$

Simple wave function for the Be atom

Be atom,
$$1s^2 2s^2 \Rightarrow N_{\uparrow} = N_{\downarrow} = 2$$
, $S_z = 0$

Spin-assigned
$$\Psi(\mathbf{r}_{1},+1,\mathbf{r}_{2},+1,\mathbf{r}_{3},-1,\mathbf{r}_{4},-1)=\mathcal{J}\,D$$

Factorized determinant

$$D = D^{\uparrow} \times D^{\downarrow} = \left| egin{array}{ccc} \phi_{1s}(\mathbf{r_1}) & \phi_{1s}(\mathbf{r_2}) \ \phi_{2s}(\mathbf{r_1}) & \phi_{2s}(\mathbf{r_2}) \end{array}
ight| imes \left| egin{array}{ccc} \phi_{1s}(\mathbf{r_3}) & \phi_{1s}(\mathbf{r_4}) \ \phi_{2s}(\mathbf{r_3}) & \phi_{2s}(\mathbf{r_4}) \end{array}
ight|$$

Simple Jastrow factor

$$\mathcal{J} = \prod_{ij=13,14,23,24} \exp\left\{\frac{1}{2} \frac{r_{ij}}{1+b r_{ij}}\right\} \times \prod_{ij=12,34} \exp\left\{\frac{1}{4} \frac{r_{ij}}{1+b r_{ij}}\right\}$$

Jastrow factor for atoms and molecules: Beyond the simple form

Boys and Handy's form

$$\mathcal{J}(r_i, r_j, r_{ij}) = \prod_{\alpha, i < j} \exp \left\{ \sum c_{mnk}^{\alpha} \left(\overline{r}_{i\alpha}^{\ m} \, \overline{r}_{j\alpha}^{\ n} + \overline{r}_{i\alpha}^{\ n} \, \overline{r}_{j\alpha}^{\ m} \right) \, \overline{r}_{ij}^{\ k} \right\}$$

with
$$\overline{r}_{i\alpha}=rac{a\,r_{i\alpha}}{1+a\,r_{i\alpha}}$$
 and $\overline{r}_{ij}=rac{d\,r_{ij}}{1+d\,r_{ij}}$

Cusp conditions imposed by requiring:

For electron cusps: m = n = 0 if k = 1

For electron-nucleus cusps: No n = 1 or m = 1, D satisfies cusps

More general form: Lift constraints and allow all values of n, m, k Impose the cusp conditions via linear dependencies among c_{mnk}^{α} Other scaling functions are possible, e.g. $(1 - e^{-ar})/a$

(1)

More general Jastrow form with e-n, e-e and e-e-n terms

$$\prod_{\alpha,i} \exp \{A(r_{i\alpha})\} \prod_{i< j} \exp \{B(r_{ij})\} \prod_{\alpha,i< j} \exp \{C(r_{i\alpha}, r_{j\alpha}, r_{ij})\}$$

- \triangleright Polynomials of scaled variables, e.g. $\overline{r} = r/(1+ar)$
- $\triangleright \mathcal{J} > 0$ and becomes constant for large r_i , r_i and r_{ij}
- ▷ Electron-electron terms B
 - Imposes the cusp conditions and keeps electrons apart
 - More general than simple $\mathcal{J}(r_{ij})$ gives small improvements
- ▷ Electron-nucleus terms A

Should be included if determinantal part (DFT or HF) is not reoptimized: e-e terms alter the single-particle density

Role of the electron-nucleus terms

Example: Density of all-electron Carbon atom

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)

(2)

▷ Electron-electron-nucleus terms C

If the order of the polynomial in the e-e-n terms is infinite, Ψ can exactly describe a two-electron atom or ion in an S state For these systems, a 5th-order polynomial recovers more than 99.99% of the correlation energy, $E_{\rm corr} = E_{\rm exact} - E_{\rm HF}$

Is this Jastrow factor adequate for multi-electron systems?

The e-e-n terms are the most important: due to the exclusion principle, it is rare for 3 or more electrons to be close, since at least 2 electrons must necessarily have the same spin

Jastrow factor with e-e, e-e-n and e-e-e-n terms

		${\cal J}$	$ extstyle \mathcal{E}_{ ext{VMC}}$	$E_{ m VMC}^{ m corr}$ (%)	$\sigma_{ m VMC}$
Li	$ extcolor{E}_{ m HF}$		-7.43273	0	
		e-e	-7.47427(4)	91.6	0.240
		+ e-e-n	-7.47788(1)	99.6	0.037
		+ e-e-e-n	-7.47797(1)	99.8	0.028
	$E_{ m exact}$		-7.47806	100	0
Ne	$\mathcal{E}_{ ext{HF}}$		-128.5471	0	
		e-e	-128.713(2)	42.5	1.90
		+ e-e-n	-128.9008(1)	90.6	0.90
		+ e-e-e-n	-128.9029(3)	91.1	0.88
	$E_{ m exact}$		-128.9376	100	0

Huang, Umrigar, Nightingale, J. Chem. Phys. 107, 3007 (1997)

Dynamic and static correlation

 $\Psi = \mathsf{Jastrow} \times \mathsf{Determinants} \to \mathsf{Two}$ types of correlation

▷ Dynamic correlation

Described by Jastrow factor

Due to inter-electron repulsion

Always present

Described by a linear combination of determinants

Due to near-degeneracy of occupied and unoccupied orbitals

Not always present

Static correlation (1)

Example: Be atom and 2s-2p near-degeneracy

HF ground state configuration $1s^22s^2$

Additional important configuration $|1s^22p^2|$

Ground state has 1S symmetry \Rightarrow 4 determinants

$$egin{aligned} D &= (1s^\uparrow, 2s^\uparrow, 1s^\downarrow, 2s^\downarrow) + c \, \left[\, (1s^\uparrow, 2p_x^\uparrow, 1s^\downarrow, 2p_x^\downarrow)
ight. \ &\qquad + (1s^\uparrow, 2p_y^\uparrow, 1s^\downarrow, 2p_y^\downarrow) \ &\qquad + (1s^\uparrow, 2p_z^\uparrow, 1s^\downarrow, 2p_z^\downarrow)
ight] \end{aligned}$$

$$1s^22s^2 \hspace{1cm} imes \mathcal{J}(r_{ij}) \hspace{1cm} o E_{\mathrm{VMC}}^{\mathrm{corr}} = 61\%$$
 $1s^22s^2 \oplus 1s^22p^2 \hspace{1cm} imes \mathcal{J}(r_{ij}) \hspace{1cm} o E_{\mathrm{VMC}}^{\mathrm{corr}} = 93\%$

Example: $E_{
m VMC}^{
m corr}$ and $E_{
m DMC}^{
m corr}$ for $1^{
m st}$ -row dimers

MO orbitals with atomic s-p Slater basis (all-electron) Active MO orbitals are $2\sigma_g, 2\sigma_u, 3\sigma_g, 3\sigma_u, 1\pi_u, 1\pi_g$ 5th-order polynomial $\mathcal J$ (e-n, e-e, e-e-n)

Filippi and Umrigar, J. Chem. Phys. 105, 213 (1996)

Determinant versus Jastrow factor

Determinantal part yields the nodes (zeros) of wave function

⇒ Quality of the fixed-node DMC solution

Why bother with the Jastrow factor?

Implications of using a good Jastrow factor for DMC:

- \triangleright Efficiency: Smaller σ and time-step error \Rightarrow Gain in CPU time
- ▷ Expectation values other than energy ⇒ Mixed estimator
- ▶ Non-local pseudopotentials and localization error
 - ⇒ Jastrow factor does affect fixed-node energy

Why should $\Psi_{\mathrm{QMC}} = \mathcal{J}D$ work?

$$\begin{array}{ccccc} \text{Full wave-function} & \longrightarrow & \text{Factorized wave-function} \\ & & \mathcal{J} \varphi \\ \downarrow & & \downarrow \\ \text{Full Hamiltonian} & \longrightarrow & \text{Effective Hamiltonian} \\ & \mathcal{H} & & \mathcal{H}_{eff} \\ \hline & \mathcal{H} \Psi = E \Psi & \longrightarrow & \mathcal{H} \mathcal{J} \varphi = E \mathcal{J} \varphi & \longrightarrow & \frac{\mathcal{H} \mathcal{J}}{\mathcal{J}} \varphi = E \varphi \\ \hline & & \mathcal{H}_{eff} \varphi = E \varphi \\ \hline \end{array}$$

$\mathcal{H}_{\mathrm{eff}}$ weaker Hamiltonian than \mathcal{H}

- \Rightarrow $\Phi \approx$ non-interacting wave function D
- \Rightarrow Quantum Monte Carlo wave function $\Psi = \mathcal{J}D$

Construction of the wave function

How do we obtain the parameters in the wave function?

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\mathcal{J}\sum_k d_k D_k^{\uparrow} D_k^{\downarrow}$$

70 electrons and 21 atoms

VTZ s-p basis + 1 polarization

3 s + 3 p + 1 d functions for C, N, O

2s + 1p for H

- riangleright Parameters in the Jastrow factor $\mathcal{J}~(pprox 100)$
- \triangleright CI coefficients d_k (< 10)
- □ Linear coefficients in expansion of the orbitals (5540!)

Customary practice for optimizing wave function

Jastrow-Slater wave function

$$\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N)=\mathcal{J}\sum_k d_k D_k^{\uparrow}D_k^{\downarrow}$$

- \triangleright Orbitals and d_k coefficients in determinantal part are from
 - Hartree-Fock or DFT (LDA, GGA, B3LYP . . .)
 - Cl or multi-configuration self-consistent-field calculation
 - \circ Optimized in energy minimization (very simple for d_k)

See lecture by Umrigar tomorrow

Beyond VMC?

Removing or reducing wave function bias?

⇒ Projection Monte Carlo methods

See lecture on DMC by Filippi/Foulkes tomorrow