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Reptation quantum Monte Carlo

Variational projection approach: 

Various algorithms:

Path Integral Ground State
Reptation QMC
Pure Diffusion Monte Carlo
................

Comparison with Diffusion Monte Carlo:

population control, mixed estimators
correlated sampling, derivatives, imaginary-time correlations

Variational Path Integral

Metropolis vs. branching





Variational projection approach

We want to calculate quantities such as

,   where

because is better than the trial function 

projection because of 

obviously variational:

convergence is monotonic:

,  

.  
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time stepTrotter breakup:

is the path

gives an explicit expression for 
a short time approximation for

PIMC has no trial functions
PIMC has closed paths,



Multilevel Metropolis with bisection

“Path Integral Ground State” (K. Schmidt, 2000)
“Variational Path Integral” (D. Ceperley, 1995)

sample the pair action
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Multilevel Metropolis with bisection



large local moves without stretching links

Multilevel Metropolis with bisection

does not use/need importance sampling

(in the DMC sense)



we can introduce importance sampling:

define
and its importance-sampled version

the “pseudo partition function” we use in the simulations is

the commonly used short time approximation for      is

for fermions the importance-sampled      enforces the fixed-node constraint



Reptation

sample

“Reptation quantum Monte Carlo” (S. Baroni and SM, 1999)



X

accept with probability 

move with probability

Reptation

randomly, or {

*

*

“bounce algorithm”, Pierleoni and Ceperley 2005 

choose an end of the path, either changing upon rejection 



Reptation

high acceptance rate even for global moves
if the local energy is smooth (uses importance sampling)



Reptation

“ accept with probability ”

more precisely:

a priori transition probability

for the reverse move

this factor is nonzero because of the time step error



Langevin + weights

“Pure Diffusion Monte Carlo” (Caffarel and Claverie, 1988)

move with probability (Langevin)

never change direction

weight averages with  

X

useful for small systems



Calculating properties

What is the distribution of individual time slices along the path?
integrate over all the other time slices:

the end(s) of the path sample the “mixed distribution”

For an inner slice (say ):

the inner slices sample the “pure distribution”

The mixed estimate
only if 

is unbiased 
. This is a problem in Diffusion Monte Carlo



Calculating properties
Sarsa, Schmidt, Magro 2000

With DMC one usually combines the mixed estimate

and the variational estimate

to get “extrapolated estimates”
or

whose error is quadratic in the error of the trial function.
In this example Oext is worse than both Omix and Ovar .

potential energy as a function of 
the link in the PIGS calculationThis PIGS calculation uses a simple Jastrow for both

the liquid and the solid. DMC would need a Nosanow
term for the solid, so it is more trial-function dependent.



Calculating properties

For the energy, use the mixed estimator to exploit
the zero-variance property of the local energy:

For other quantities, use the middle slice(s):

Imaginary-time correlation functions:

Correlated sampling and derivatives are just 
as simple as in Variational Monte Carlo, e.g.:



Convergence tests(4He3 - CO2  cluster, RQMC)

time-step extrapolationprojection time extrapolation

path diffusion

this variance goes to zero for 

extrapolation of the energy to 
zero variance is easier than to

(make sure the path
doesn’t get stuck)

Monte Carlo time



calculating derivatives of the fixed-node energy:

Susceptibilities are calculated as
second derivatives at zero external
field using RQMC.

static linear susceptibility of the 2D electron gas



This is the primitive+nodal action. 
The nodal action enforces the fixed-node approximation. 
It is obtained solving a 1D particle near an infinite barrier by the method of images.

near the nodes the nodal action is better behaved 
than the importance-sampled drift-diffusion term

estimate the nodal distance by linearizing the trial function:

short-time approximation to                      :

choice of       : nodes from the ground state of non-interacting particles 
in a cosine potential.         is a variational parameter.

(Mathieu functions)



This is the primitive+nodal action. 
The nodal action enforces the fixed-node approximation. 
It is obtained solving a 1D particle near an infinite barrier by the method of images.

near the nodes the nodal action is better behaved 
than the importance-sampled drift-diffusion term

estimate the nodal distance by linearizing the trial function:

short-time approximation to                      :

choice of       : nodes from the ground state of non-interacting particles 
in a cosine potential.         is a variational parameter.

(Mathieu functions)

potential

drift velocity



static linear susceptibility of the 2D electron gas

A parameter in the trial function that controls
the nodal displacement induced by the external 
potential. A zero value means no displacement, 
the optimal value is the location of the minimum 
of the curve.

spin charge

The nodal displacement increases the 
statistical noise, in a way which 
strongly depends on the fixed-node 
constraint imposed by the Green’s 
function. The “nodal action” by far
outperforms the “drift diffusion”.

Susceptibilities are calculated as
second derivatives at zero external
field using RQMC.



static linear susceptibility of the 2D electron gas



application to electronic structure: forces
cumulant approximation to pair action (Ceperley, 

1983)

one two-dimensional 
table
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examples of  calculations of forces

Assaraf, Caffarel 
2003

Lee, Mella, Rappe 
2005

improved estimators on the mixed 
distribution



neglect  contribution from drift-diffusion

Filippi, Umrigar 2000



neglect nodal displacement

Zong, Ceperley, 1998



includes everything
problems with time step extrapolation



Lithium dimer,
nodes from HF with STO3G basis
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Dynamics: Free rotation in “superfluid” He clusters

(S. Grebenev, P. Toennies, A. Vilesov, 1998)

The microscopic Andronikashvili experiment

as few as ~60 4He atoms 
yield rotational peaks:

“molecular superfluidity”



size-selective measuremets in small clusters: OCS@HeN
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number of He atoms

nanodroplet limit

free-rotor-like IR and MW spectra 
assigned for N up to 8.

the rotational constant undershoots
the asymptotic value for N=6, 7 and 8
thus implying a subsequent turnaround
which will be taken as evidence for the
onset of “superfluidity”

McKellar, Xu, Jaeger 2002



Calculating the optical spectrum

The measured absorption spectrum is 

We can calculate correlation functions in imaginary time

The dopant molecule is modeled as a rigid linear rotor 
interacting with He atoms with a pair potential. 
The dipole d is proportional to the unit vector along 
the molecular axis.

Correlation functions of higher multipoles give higher-J states

Rotational excitation energies are obtained by inverse 
Laplace transform



OCS@HeN: structure vs. rotational dynamics

He-OCS 
potential

He density 
profile

He-OCS 
angular

correlation

peak value 
of angular
correlation

He density

He-OCS angular correlation



HCCCN@HeN: MW spectra & QMC simulation 

microwave transitions
(W. Topic and W. Jaeger, 2006)

nanodroplet limit
(Callegari et al.,2000)



RQMC simulations

He-HCCCN potential

HCCCN@HeN: MW spectra & QMC simulation 



...more RQMC simulations

HCCCN@HeN: MW spectra & QMC simulation 



...more microwave transitions
found and assigned with

the help of computed
rotational excitations

simulation facilitates the search and assignment of MW transitions

HCCCN@HeN: MW spectra & QMC simulation 
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HCCCN@HeN: why local minima at 6 and 9 ?

N=7 and 10 contribute to full solvation



HCCCN@HeN: why a local minimum at 22 ?

second shell opens new channel for exchange cycles

fraction of He atoms in 
long exchange cycles

I shell only

I & II shell

density profile



Introducing size scaling of efficiency:



Projection Monte Carlo:
Branching vs. Metropolis

Cost of calculating energies per particle vs. system size:
(VMC), DMC, ground-state Path Integral

4He at equilibrium density



“cost of the move” extended to “cost of the calculation”



liquid 4He at equilibrium density

same potential 
and wavefunction

Rc

unit cell for 
N = 64, 128, 256, 512

Aziz 79

McMillan



size effect:
energy

per particle
potential energy

per particle

Variational Monte Carlo



variance of EL

per particle
histogram of

EL times DMC tstep 

electron gas
N=54 rS=10

4He
N=64

Variational Monte Carlo



variance of EL

per particle
test function

for linear scaling

statistical error
number of steps
number of particles

tot. energy

pot. energy

Variational Monte Carlo

MN=T is the cost of the simulation 
assuming linear scaling in the cost of the move. The efficiency is 



ground-state Path Integral Monte Carlo
details of the simulation:

primitive action: 

typical time step: 

multilevel Metropolis, bisection algorithm, level 6 
(attempt to move 63 slices, acc. rate about 50%, not necessarily optimal)

total projection time: up to (2000 slices)



results:

N=64

N=512

E vs. time step E vs. projection time

ground-state Path Integral Monte Carlo



test function
for linear scaling

statistical error
number of steps
number of particles

total energy
potential energy

ground-state Path Integral Monte Carlo



total energy
potential energy

ground-state Path Integral Monte Carlo

test function
for linear scaling



Diffusion Monte Carlo

branchingdrift-diffusion



details of the simulation:

branching is done (with constant number of walkers)
after moving once all particles

number of walkers: up to 8000

Diffusion Monte Carlo

typical time step: 



results:

time step error population control bias

N=64
200 walkers

N=64
time step 0.001

Diffusion Monte Carlo



time step error population control bias

N=64
200 walkers

N=64
time step 0.001

path integral

Diffusion Monte Carlo

results:



test function
for linear scaling

correlation between walkers increases 
with system size

...and with number of walkers

NW=200
NW

2000
1000
500
200

Diffusion Monte Carlo



population control bias

N
512
256
128
64

Diffusion Monte Carlo



population control bias

N
512
256
128
64

define a common level of systematic accuracy

Diffusion Monte Carlo



population control bias
test function

for linear scaling

NW

1000
200
100
50

N
512
256
128
64

estimate efficiency at similar level of systematic error
(worsens for higher accuracy)

Diffusion Monte Carlo



Eliminating the population control bias:

energy vs. correction time T

reweight the contributions of walkers at time t  by the product of
all renormalization factors of the total weight occurred since  t-T 

harder to get strong corrections for larger systems

Diffusion Monte Carlo



Eliminating the mixed estimate bias: Forward walking
a walker drawn from the mixed distribution at time t  

contributes to the pure estimate the value of V of his ancestor at time t-T

N=64

N=512

E vs. projection time
recall path integral result:

T should be about 0.15

Diffusion Monte Carlo



Fw(T) fraction of walkers with descendants after time T

T
N = 512

1000 walkers

data
fit

F w
(T

)

~ 1/T3FwFw(T=T0) vs. N

1/N

F w

1000 walkers
T0 = 0.15

N-3/2

Eliminating the mixed estimate bias: Forward walking

Diffusion Monte Carlo



1000 walkers
N=64

1000 walkers
N=256

V V

TT

forward walking alone
forward walking + eliminate population control bias

Eliminating the mixed estimate bias: Forward walking

Diffusion Monte Carlo



test function
for linear scaling

unbiased
forward walking

mixed estimate

Eliminating the mixed estimate bias: Forward walking

Diffusion Monte Carlo



for large systems and/or poor trial 
functions branching becomes problematic

PIMC scales in a controlled way;
for condensed helium the DMC/PIMC

efficiency crossover is at sizes of practical interest

PIMC does not (necessarily) heavily rely 
on the quality of the trial function (except for FN approx.)

as a Metropolis algorithm it can 
be improved introducing better moves

it is more straightforward for derivatives, 
imaginary-time correlations, correlated sampling... 


