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Outline

Why auxiliary-field QMC?
> A new approach: stochastic mean-field theory
> Motivation: reduce QMC error & increase predictive power;

more "black-box" like LDA or HF?

Random walks in Slater determinant space
> Understanding the sign (phase!) problem in this framework

> How to control it? (approximate)

What applications are possible?
> Molecules and solids: T=0K

plane-wave++Psps or Gaussians
> Models for strongly correlated systems: T = 0 and T>0K



Introduction: why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state:

In real-space QMC, we need + and — walkers to cancel



Why auxiliary-field methods?

Recall sign problem:

1 particle, first excited state:

/ f/ A/ /

Solid state or quantum chemistry?
basis

-TH

Explicit — matrix x vec

No sign problem



Why auxiliary-field methods?

Many particles?

A toy problem — trapped fermion atoms:
• 3 fermions in a box, two with f spin and one with | spin;

contact interaction V(R) = asS{ra — rc) + cigSfrb — rc) (no s-wave bt. a & b)

introduce lattice

e
I 2 3 4 "*— i l t e

Use a crude lattice basis with i = 1.2. 3. 4 sites (circles). In second quantized form:

H = K + v = -t ^ (cLcJ<r + c^da) + U
{i3)<T

\ near-neighbor

Parameters: t\ U oc as



Toy problem - trapped fermions

What is the ground state when U=0 ?

- Diagonalize H directly:

Single-particle Hamiltonian

H:=

I) -1 0 0

-1 0 -1 0

0 -1 0 -1

0 0 -1 0

Diagonalize H to find single-particle energies and w.f s
Plot wf in order of 1 . 2. 3, 4

-.30

-particle label

A. •e-
iire label

Put fermions in lowest levels:

many-body wf:

,3717480339 -.6015009557

6015009541 -.3717480349

6015009553 .3717480339

.3717480350 .6015009543

.3717480339

.6015009541

.6015009553

.3717480350



Toy problem - trapped fermions

What is the ground state when U=0 ?

- Diagonalize H directly

- Alternatively, power method: b ,—

©
iire label

4 x 4 ) # ( 4 x 4 ) = BK o p e r a t e o n a n y l ^ ' 0 ^} r e p e a t e d l y ^> | \ t 0 )

Theorem: For any v = ^ \ . vijC']iCj..

ev\(p) = \(pr} where <3>; = ev§> in matrix form



Toy problem - trapped fermions
[ Define projection operator exp(-tau*H):
[> P := tau -> convert(evalf(exponential((H+l.6),-tau)),Matrix);

For example exp(-0.1*H) looks like: (lau=O. 1)
> P (0 .1) ;

.8564116151 .08549878210 .004271380206 .0001422371517"

.08549878209 .8606829955 .08564101925 .004271380206

.004271380206 .08564101925 .8606829955 .08549878210

0001422371517 .004271380206 .08549878210 .8564116153

Pick an arbitrary initial w f to project from:
> note we're only writing out the up component

1. -1 ~

PsiT :=

1. 1.
[
[ Project for a beta of 10. i.e. exp(-n*tau*H)IPsi_T>, with n:!;tau= 10:

= MLillip]y(P(10.l. PsiT)
.866609121199999999 -.0OOO636598OOO000043740"

1.40220301329999986 -.0000393430999999777598

1.40220301359999988 .0000393434000000025819

.866609121099999991 .0000636596999999961 OQj/_
> GramSchmidt ({vO, v l } , normal ized.) ;
{[-.6015041283, -.3717422466, .3717450812, .6015031834],

[.3717488488,.6015014581,.6015004522, .3717472200]}

J99611W]

Same as from direct diag.:

g r o u n d - s t a t e wf:
.3717480339 -.6015009557

.6(115009541 -.3717480349

.hi 115009553 .3717480339

.3717480351) .6015009543

.3717480339

.6015009541

.6015009553

.3717480350



Toy problem - trapped fermions

What is the ground state when U=0 ?

- Diagonalize H directly

Alternatively, power method:
site label

e
-TH 4x4 j o f 4x4 ) = operate on any repeatedly

Applies to any non-interacting system

Re-orthogonalizing the orbitals prevents fermions from

collapsing to the bosonic state

-> Eliminates 'sign problem' in non-interacting systems



Toy problem - trapped fermions

Properties of Slater determinants:

0.37

0.60

0.60

0.37

-0.60

-0.37

0.37

0.60 /

0.37 \

0.60

0.60
matrix rep.

•e-

-particle label

- I
site label

• What is the probability to find the electron configuration shown in the picture?

That is, how to calculate (R o) ?

• How to calculate EQ = (o H o) from the wave function?

• How to calculate the density matrix? The spin-spin correlation function?

A: Simple matrix manipulations (See Lab exercises)



Toy problem - trapped fermions

What is the ground state when U=0 ?

- Diagonalize H directly

- Alternatively, power method:

e~T : 4 x 4 S; 4 x 4 = BK operate on any |\Ir }̂ repeatedly

What is the ground state, if we turn on U ?

- Lanczos (scaling !)
TT

- Can we still write e in one-body form?

Yes, with Hubbard-Stratonivich transformation



Introduction - why auxiliary-field methods?

Hubbard-stratonivich transformation

• Interacting two-body problem can be turned into a linear combination of
non-interact ing probems living in fluctuating external fields ('completion of square'):

T-̂ ,2 Hubbard—Strotonivich transformation> je J llea^TVda

Illustration of HS transformation - - Hubbard-like interaction:

a: auxiliary field

v — y^VacJci : one-body operator

-rUnirnn

Or trick by Hirsch:

_ , , COSll 7 =



Back to toy problem

What is the ground state, if we turn on U ?

factor x ' ^

= Mxp(x)
- / •

0

0

\ °
/e-

0

0

0

cosh 7 = erU/2

(I

0

0

0

0

0

0 \

0

0

•

0

0

0

0

0

0

0

1-particle propagator

x =

-particle label

3 4 -**— site label

With U, same as U=0, except for integral over x -> Monte Carlo



Introduction to AF QMC
Standard ground-state AF QMC Sugiyama & Koonin '86

~-TH Qe-rH ...e-rH

,-TR ,-TH

6

Choose as a Slater determinant S(x) 0} = 0!)

J OGr(X)p(X)det[X]dX
Many-dim integral can be done by Monte Carlo:

& " Jp{X)det[X]dX

Applications mostly to ';simple models":

• Hubbard model, impurity models in condensed matter

• nuclear shell model
lattice QCD



Introduction to AF QMC
Sign problem in standard AF QMC:

*det[]

As system size grows, average sign of det

=> exponential scaling

0 exponentially.

Sign problem is often most severe where the physics is most interesting, for example,

in 2-D Hubbard model when number of electrons — 85% number of lattice sites,

where it is thought to model the CuO planes of high-Tc cuprates

In fact, a phase (not just sign) problem appears for general 2-body interactions.



Some "lingo" from mean field

Electronic Hamiltonian: (Born-Oppenheimer)
fi2 M M M

H = //l_body + i^-body - " — J2 ?
i—1 i—1

can choose any single-particle basis
JV JV

{ \x%) }

An orbital:
N

\<Pm) =

A Slater determinant:

\

N : basis

M : electrons

l
r l "" r2

MnO



Summary: basic formalism of AF methods

To obtain ground state, use projection in imaginary-time:
)J> _ e-rH

T: cnst, small

l * o >
: arbitrary initial state

Electronic Hamiltonian: (2nd quantization, given any 1-particle basis)
M M

Vmc\c\

w w i th t) = 1-body

Hubbard-Strotonivich transf.

,-rH

M : basis size

\y\
• . . . . - •

interacting system -^ ] J (non-interacting system in auxiliary fields)
next



AF methods: some background
Applied in models in condensed matter, nuclear physics,
(lattice QCD), ....

Scalapino, Sugar, Hirsch, White etal.; Koonin; Sorella, ....

interacting —• ̂  (non-interacting in fields)

basic idea: Monte Carlo to do sum (path integral)

However,
^ sign problem for "simple" interactions (Hubbard)

^ phase problem for realistic interaction
Fahy & Hamann; Baroni & Car; Wilson & Gyorffy; Baer et al.;....

Reformulate —



Slater determinant random walk (preliminary I)

• In general, we can choose any single-particle basis { Xi}}- with % = 1,2, • • • ,7V

• A single-particle orbital (labeled by m) is given by <£mT|0) = X^=i ¥\m Xi)

• If we have M identical fermions (M < N). a Slater determinant (p) is given by

• \<p) is represented by an N x M matrix:

\

• E.g.,
any 2-body correlation *



Slater determinant random walk (preliminary II)

HS transformation:
For example in electronic systems:

H = K + I;_i + Ve-e +

In plane-wave one-particle basis k) = —^=elGk r :

6 " e ~

L
'density' decomposition Q °̂



New AF QMC approach
Random walks in Slater determinant space:

Recall >-OO

H-S transformation

SZ, Carlson, Gubernatis

SZ, Krakauer

1-body:

Schematically:
,-TH

sample a from e 2 ;
apply 1-body propag.

| * o > =

Exact so far next ->



Connection with DMC
Many-dim, electronic configuration space: R = {r i , r2 , ....,rx

n 2

= I e

e = a: 3M-dim vector

translation op.

Random walk realization of | • • • ~|: basic idea (importance sampling can also be derived)

multiply weight by e r

sample a from Gaussian;
translate R^ by (-7a)

\R( )) diffusion + branching



Random walks in Slater determinant space
Standard DMC Slater determinant RW

Y,kCk,i\Xk) basis

4 4
'n\ — V
0/ — 2-JMC

The formalism is appealing - - each random walker is a full Slater determinant

Close formal relation to mean-field approaches. The QMC thus shares the same
machinery as DFT or Hartree-Fock, using any one-particle basis

— Second-quantization, antisymmetry automatically imposed

— The single-particle problem (H i ) is solved exactly, with no statistical error

— Correlation effects are obtained by building stochastic ensembles of
independent-particle solutions

Core-electron problem: non-local pseudopotential can be implemented
straightforwardly - - locality approximation eliminated



But... sign problem

E.g., in Hubbard:

•e" rH -> paths in Slater
determinant space

• Suppose ) is known;
consider "hyper-node" line

• If path reaches hyper-node

= 0

then its descendent paths collectively contribute 0

• MC signal is exponentially small compared to noise

In special cases (1/2 filling, or U<0), symmetry keeps paths to one side
-> no sign problem

next ->



How to control the sign problem?

Constrained path appr.

keep only paths that never reach the node

require ( ^T I^ ) > 0

i
Trial wave function Zhang, Carlson, Gubernatis, '97

Zhang, '00

next ->



Introduction to T>0 method
Standard finite-T method Blankenbecler, Scalapino, and Sugar, '81

Partition function for Hamiltonian H is: (/? = 1/kT)

Tr(e-3H)=Tr{e-rHe-TH • • • e~rH )

Need:

Tr(Oe-3H

=

{ } Tr{eW) ZM

Analytically evaluate trace: T r ( e " ^ ) = ^ { x } det[/ + B(x ) B(xL-i) • • -B(x{)]

Sample fields {x/} by Metropolis Monte Carlo to compute sum.

Sign Problem in standard finite-T AF QMC:

• As T lowers, average sign of det[ ] —» 0 exponentially.

• We need to control the sign problem - - focus on real auxiliary fields, i.e.. real v



The sign problem at finite-T
Imagine introducing path integrals one time slice at a time:

-TH -TH
) Po

-TH -TH -TM

Zhang, '99

integrand

det[7

Suppose we know e Consider

PL({XI ?X2 ;

If P/ = 0; all future paths {x/-|_i,Xi-|_2f
 v " , X i } collectively contribute 0 in Z.

A complete path {x;} contributes to Z iff P; > 0 for all /.



Constrained path method at finite-T
Constraint to control the sign problem

Require: /\({xi}) > 0; P2({xi,x2}) > 0; ....; />
L({x l ix2, •• • ,xL}) > 0.

• Constraint eliminates all noise paths ('dashed lines').

• In practice, we use trial Bj for c~rH - approximate.
(HF propagator)

Monte Carlo sampling algorithm to incorporate constraint

If D-j is ^2(mean-field); then Tr —> det[] in P\.

Sampling - - random walk of L steps:
step

N o t e : Pi/Po s z t i s z i Z i Z i * i

P ^ ^ i « « P2/Pl ^ ^ R / 2

ft/A-.



Recovery from wrong trial w.f.

More predictive QMC: requires
reducing reliance on trial wf

2-D Hubbard model: finite-7
• U>0; 12% doping, 4x4

• Sign problem severe <s>~10A-5

Compare with:
• high T: exact calculation with sigr

problem

• T=0K: exact diag.

AFM order

wrong trial

-0.76

-0.86

-0.96

-1.06

<s> in BSS

BSS w/A 1=0.1

x BSS
current
exact

0.0 0.2 0.4 0.6 0.8

D.24

• 18

x- x BSS
current

CPMCT=OK J

0.0 0.2 0.4 0.6 0.8 1.0



New AF QMC approach
Random walks in Slater determinant space:

Recall \&" ')> = e~rA |¥< )) _ ^ Z ^

H-S transformation

1-body:

Fr r* <̂ k

Bulk Si, 2-atom fee primitive cell
nwlk=10,000, T=0.05

-14.4

-14.6

E(Ry)-i4.s

O-O Phase problem (free projection)

Exponential noise

problem!

-0.5 0 0.5

1 2 3
projection time, nx

next -



Controlling the phase problem
Sketch of approximate solution:

• Modify propagator by "importance sampling":

phase -> degeneracy (use trial wf)
\<t>)

• Project to one overall phase:
break symmetry (+/- -> rotation)

Before: After:
-14.4

(

-14.6

E(Ry)-i4.s

-15

Bulk Si, 2-atom fee primitive
nwlk=10,000, x=0.05

cell

1 I I I 1 I I I 1

I <p
\ o-O Phase problem (free projection)

\ }

i 1 i 1 i 1 i

Bulk Si, 2-atom fee primitive cell
nwlk=10,000, T=0.05

~ new method
O-O Phase problem (free projection)

E-14.8 -

2 3 4

projection time, nt
1 2 3 4

projection time, n/t

<p)



Controlling the phase problem
— more details

(a) Phase less formalism $Z & Krakauer

• Seek MC representation of ^0} m the form: Î'o) = Yld> ••;J L)

i.e., the contribution of each <j>) is independent of its phase (if ip-x) is exact)

• This is accomplished by an "importance-sampling" transformation to modify the

propagator:

f'
J

"*^"B{o)da —^— = e~^ (e~a^2 e(^~^ ^* do e

<*T^> J

• Force bias: a = — ''••"' T.L , .^ ^ <— complex!

• Local energy: £ L ( ^ ) = ( ^ ^ ^ }

(b) Projection to break "rotational invariance"

• With (a), we can confine the RW to one overall phase (e.g., 0)

• This is accomplished by projecting the RW onto ID: reducing the weight of a walker

according to its phase change, e.g., by cos(A6>)



Controlling the phase problem: some comments

Subtleties:

Constraint before importance sampling:
ReOFT|<|>) > 0,
then use Re(^T|(|)) as importance function

— natural (!?), but does not work well
Instead, project after "importance sampling":

use complex importance function

It helps to subtract "mean-field background" in HS:
v2 -> (v - (v))2 + 2v{v) - (v)2

-0.5 0 0.5

Re<>PT|(|»

I f v is real, method reduces to constrained path MC

Two-dimensionality unique
connection and difference(l) with fixed-phase



Discussion - new AF QMC

Pluses
• Sign problem is often found to be reduced

<- more robust and predictive methods

• Can do down-folded Hamiltonians (realistic models)

• Uses a basis — walkers are Slater determinants

formal connection to DFT — k-pts, non-loc psp's, PAW's, ....

Minuses
• Uses a basis — finite basis-size error

• Mixed-estimator of total energy is not variational

• Not straightforward to include a Jastrow factor in trial w.f. (....)



Application: Hubbard model

Simplest model combining band structure and interaction:

H = K + V = -t J2 ( 4 ^ + c]<jCiv) + U

electrons on a 2-D lattice Size N = L x L

- near-neighbor hopping Filling (n) = Nf+Nl

- on-site repulsion

Ffeneved interest due to manyexperimental opportunities:
- optical lattices
- trapped Fermi gas (unitarity: QMC key)

Long-standing: connection to cuprates? phase separation?
We look at ground-state energy vs. filling



0.0

-0.5-

-1.0

-1.5-

-2.00

Hubbard model: equation of state

0.2 0.4 0.6 0.8

Exact diagonalization: Dagotto et.al. 1 992

CPMC: Zhang et.al., 1997

1 '

4x4, U=4t

i

i i |

• - • Exact Diagonalization
O CPMC -

Furukawa and Imada, 1992 (25,25)

• Constrained-path auxiliary field QMC (CPMC) is accurate.
• There are kinks at closed-shell fillings => large shell effects.



Hubbard model: equation of state
Ground-state energy per site at U = 4 (in units of i)

-0 75

-0.85

-1 25

16x16

0.50 0.60 0.70

-1.0515(97)

-1.0655(3)

-0.9331(6)

0.9338

- - - CPMC

QMC

exact (4x4)

0.30 0.90

Furukawa and Imada, 1 992 (25,25)

1.00
MC data



Hubbard model: persistent shell effects

0.15 -

0.1 -

0.05 -

h

thermodynamic limit:

estimated byTABC 16x16

I ' I ' I

—

-

— #

• . . . . - • • •

I I I I I

I

4

- 12
16
20

- 24
28
32
36

- 40

. . "
• *

1 , | ,, | , |

/

/
/
/
/
/
/

/ ' ^ ^

1 , 1 , 1 , 1 ,
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

One signal for phase separation: does e(h) turn ?

Shell effect persists to >40x40, leads to bias



Twist averaged boundary conditions (TABCs)

TABCs have been widely used in band structure methods;
in QMC (Foulkeset.al.,Lin,Zhong&Ceperley...), and exact

(Jullien & Martin, Poilblanc, Gross...).

E.g. in one dimension:
- The particle picks up a phase when it goes around the lattice:

V(x + L) = e**V(x)

- In the 1D Hubbard Hamltonian:

Efree(K 6X) = ~2t COS ( k + -j- \

Breaks degeneracyin free-particle spectrum.
But introduces phase problem

-> use the ne wmethod



Application: molecular binding energies

12

10

> 8

U 6

4

2

0

- O3, H2O2, C2, F2, Be
- Si P S C1

- As2, Br2, Sb2

- TiO, MnO

1 1

0 4 6 8
expt/exact (eV)

10

3 types of calc's:

- PW +psp: [
- Gaussian/AE: i
- Gaussian/sc-ECP: *

up to ~ 60
12

All with single mean-field determinant as trial w.f.

"automated" post-HF or post-DFT



Molecular binding energies

12

10

>^ 8

- O3, H2O2, C2, F2, Be2,
_ c; p c pi

- As2, Br2, Sb2

- TiO, MnO

?&•

4 6 8
expt/exact (eV)

10 12

3 types of calc's

- PW +psp:
- Gaussian/AE:
- Gaussian/sc-ECP:

Nval up tO ~ 60

• ~ 100 systems (also IP, EA, aB, co): eq. geom., moderate correlation
• Error < a few mHa (0.1 eV)
• Accuracy ~ CCSD(T) (gold standard in chemistry, but N7)
• A QMC algorithm that complements DMC/GFMC
• reduced dependence on trial wf

• Larger systems? strong correlation?



Large extended systems

Cohesive energies: (eV/atom)

LDA
DMC

present
expt.

diamond Si
5.086
4.63(2)

4.59(3)
4.62(8)

bcc Na
1.21
0.991(1) w,
1.022(1) W/

1.143(7)
1.13

/oCPP
I CPP

• Na {preliminary)'.
• metal
• new finite-size correction scheme

• plane-wave + pseudopotential calculations

• DMC -- Needs etal (Cambridge group)



Benchmark: H2O bond breaking

Mimics increasing correlation effects:
(Quantum-chemistry-like calculation with Gaussian basis)

-75.92

-75.96

-76

^ -76.04

^ -76.08

53 -76.12
W -76.16

-76.2

-76.24

-76.28

• CCSD(T) methods
(excellent at eq.)
have problems

exact/FCI
CCSD(T)
UCCSD(T)

X-X present

0

• The new method gives
more uniform accuracy E q u j , i b r i u m

"bonding"

R/R

(error < 4 mHa)

7 8

Dissoc. limit
"insulating"



F2 bond breaking

Mimics increasing correlation effects:

• UHF unbound.
Nonetheless, large
dependence on trial wf??

• No. Spin-contamination:

- I ^ H F ) : not eigenstate of S2 ^

- low-lying triplet in F2

• Simple fix - -199-

- Let IVF/(°A=IVF/ )
LCI | I / | I DLJC/ 100 1 1

J

QMC/UHF:

20mH error!

- HS preserves spin symmetry
- each walker determinant:

free of contamination

l

RCCSDTQ
UCCSD(T)
CCSD(T)
QMC/UHF

£ QMC/UHF-sp

, .

1.5
R/R

Equilibrium

"bonding"

3

Dissoc. limit

"insulating""



F2 bond breaking — larger basis

How well does DFT do?

• LDA and GGA/PBE
well-depths too deep

• B3LYP well-depth excellent

-199.26

-199.28

-199.30

• "Shoulder" too steep in all 3 3-199.32

-199.34

-199.36

-199.38

-199.40

cc-pVTZ

CM) QMC/UHF-sp
•-•LDA
~ GGA/PBE

1.5 2.0

R/R
2.5 3.0



C2 potential energy curve
JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 19 15 NOVEMBER 2004

ARTICLES

Full configuration interaction potential energy curves for the X 1 X^ ,
B^Ag, and B' 1X^ states of C2: A challenge for approximate methods

Micah L. Abrams and C. David Sherrilla) "
Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,
Georgia Institute of Technology, Atlanta, Geoi'gia 30332-0400

(Received 7 July 2004: accepted 17 August 2004)

The Ci molecule exhibits unusual bonding and several low-lying excited electronic states, making
the prediction of its potential energy curves a challenging test for quantum chemical methods, We

benchmark results. Unfortunately, even couplei
unrestricted Hartree-Fock reference exhibits 1
around state. The excited states are not accurat

•75,70

0.8 1.0 1.2 1.4 1.6 1.8 20 2.2 2,4 ,10



C2 potential energy curve

QMC with multi-determinant MCSCF trial wf (preliminary)

-75.50

-75.55

-75.60

-75.65

-75.70

-75.75

C2 total energy vs. bond length

-75.80,
0.8

FCI + frozen core correction
- QMC/CASSCF(8,8)
- QMC/2-UHF

Absolute error
xact

-30 det's in trial wf

1.2 1.4 1.6
C-C bond length (Angstrom)

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000

-0.002

-0.1

FCI + frozen core correction
QMC/CASSCF(S,8)
QMC/2-UHF

1kcal/m

1.2 1.4 1.6
C-C bond length (Angstrom)

1.8



Metal-insulator transition in H-chain

Stretching bonds in H50:

Symmetric: stretch each t

Asymmetric: stretch red
bonds only

• Near-exact DMRG
(solid lines)

Chan el aL, '06

• QMC agrees with DMRG
to 0.002 eV/electron

-20

-25

-30

0.006

0.003

u

-0.003

•li-

dimerized insul. ->
B-

2 3
R (a.u.)
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Lecture Notes: (missing recent developments - see
papers below)

• Shiwei Zhang, "Constrained Path Monte Carlo For Fermions,'' in
"Quantum Monte Carlo Methods in Physics and Chemistry,'' Ed.M.
P. Nightingale and C. J. Umrigar, NATO ASI Series (Kluwer
Academic Publishers, 1998).
(cond-mat/9909090: http://xxx.lanl.gov/abs/cond-mat/9909090v1 )

• Shiwei Zhang, "Quantum Monte Carlo Methods for Strongly
Correlated Electron Systems,'' \n" Theoretical Methods for Strongly
Correlated Electrons,'' Ed. by D. Senechal, A.-M. Tremblay, and C.
Bourbonnais, Springer-Verlag (2003).
(available at my website:
http://www.physics.wm.edu/~shiwei/Preprint/Springer03.pdf )



Some references: (incomplete!)

In addition to the general QMC references from previous lectures:

1. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D 24, 2278
(1981)

2. G. Sugiyama and S. E. Koonin, Ann. Phys. 168, 1 (1986)
3. S. R. White et. al., Phys. Rev. B 40, 506 (1989)
4. D. R. Hamann and S. B. Fahy, Phys. Rev. B 41, 11352 (1990)
5. P. L. Silvestrelli and S. Baroni and R. Car, Phys. Rev. Lett. 71, 1148 (1993)
6. N. Rom, D.M. Charutz, and D. Neuhauser, Chem. Phys. Lett. 270, 382

(1997).
7. S. Zhang and J. Carlson and J. E. Gubernatis, Phys. Rev. B 55, 7464

(1997)
8. S. Zhang, Phys. Rev. Lett. 83, 2777 (1999)
9. S. Zhang and H. Krakauer, Phys. Rev. Lett. 90, 136401 (2003)
10. W. Purwanto and S. Zhang, Phys. Rev. E 70, 056702 (2004)
11. W. A. Al-Saidi, S. Zhang, and H. Krakauer, J. Chem. Phys. 124, 224101

(2006)



What we have not covered (see references)

Ground state method for boson systems (Ref 10))

Back-propagation to calculate observables other than
the energy (refs 7, 10)

Finite-size correction for solids
• Twist-averaging in solids

• New 2-body finite-size correction scheme

Kweeetal, arXiv:0711.0921

Appl ica t ions (Al-Saidi, Chang, Kwee, Purwanto, ...)
• Van der waals, post-d atoms & molecules, TM molecules, electron

affinities, more bond-breaking, trapped atoms, ....
(my website)



Summary

New AF QMC approach: random walks in Slater det. space
• Potentially a method to systematically go beyond independent-particle

methods while using much of its machinery

superposition of independent-particle calculations

• Phaseless approximation (-> constrained path if sign problem)

• Hybrid of real-space QMC and 'mean-field' methods

Towards making QMC more robust, capable, black-box:
• Electronic structure:

Benchmarks in ~ 100 systems (w/ increased correlation effects)

• Lattice models

• Simple trial wfs

QMC 'recovery' ability important for strong correlation

• accuracy seems systematic

Many opportunities for further development

and for applications




