C	The Abdus Salam International Centre for Theoretical Physics
	The Abdus Salam International Centre for Theoretical Physics

1929-15

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry

21 January - 1 February, 2008

Worm algorithm

N. Prokofiev
University of Massachusetts, Amherst

WORM ALGORITHM FOR CLASSICAL AND QUANTUM STATISTICAL MODELS

Nikolay Prokofiev, Umass, Amherst

Collaborators on major algorithm developments

Boris Svistunov UMass, Amherst

Igor Tupitsyn PITP, Vancouver

Massimo Boninsegni UAlberta

NASA

Why bother with algorithms?

Efficiency

PhD while still young

PhD while still young
Better accuracy
Large system size
More complex systems
Finite-size scaling
Critical phenomena
Phase diagrams

Reliably!

New quantities, more theoretical tools to address physics

Grand canonical ensemble $N(\mu)$ Off-diagonal correlations $G(r,\tau)$ "Single-particle" and/or condensate wave functions $\phi(r)$ Winding numbers and ρ_{S}

Applications: classical and quantum critical phenomena, lattice spin systems, cold atoms (bosons & fermions), liquid&solid Helium-4 ...

Worm algorithm idea

Standard Monte Carlo setup:

(depends on the model and it's representation)

- configuration space =

arbitrary closed loops (more or less anything you can draw without loose ends)

- each cnf. has a weight factor

$$W_{cnf}$$

$$e^{-E_{cnf}/T}$$

- quantity of interest
$$A_{cnf} \longrightarrow \langle A \rangle = \frac{\displaystyle\sum_{cnf} A_{cnf} W_{cnf}}{\displaystyle\sum_{cnf} W_{cnf}}$$

"conventional" sampling scheme:

local shape change

Add/delete small loops

No sampling of topological classes (non-ergodic)

can not evolve to

Critical slowing down (large loops are related to critical modes)

$$\left(\frac{N_{\text{updates}}}{L^d}\right) \sim L^z$$

dynamical critical exponent $z \approx 2$ in many cases

Worm algorithm idea

draw and erase:

- Topological classes are sampled efficiently (whatever you can draw!)
- No critical slowing down in most cases

or

Disconnected loops relate to important physics (correlation functions) and are not merely an algorithm trick!

High-T expansion for the Ising model

$$-\frac{H}{T} = K \sum_{\langle ij \rangle} \sigma_i \sigma_j \quad (\sigma = \pm 1)$$

$$Z = \sum_{\{\sigma_i\}} e^{\sum_{\langle ij \rangle} K \sigma_i \sigma_j} = \sum_{\{\sigma_i\}} \left(\prod_{b = \langle ij \rangle} e^{K \sigma_i \sigma_j} \right) \equiv \sum_{\{\sigma_i\}} \left(\prod_{b = \langle ij \rangle} \sum_{N_b = 0}^{\infty} \frac{K^{N_b}}{N_b!} (\sigma_i \sigma_j)^{N_b} \right)$$

$$\equiv \sum_{\{N_b\}} \left(\prod_{b=\langle ij \rangle} \frac{K^{N_b}}{N_b!} \right) \prod_i \left(\sum_{\sigma_i = \pm 1} \sigma_i^{M_i} \right)$$

$$\equiv 2^{N} \sum_{\{N_b\}=loops} \left(\prod_{b=\langle ij \rangle} \frac{K^{N_b}}{N_b!} \right)$$

$$N_b = \text{number of lines};$$
 enter/exit rule $\rightarrow M_i = even$

where
$$M_i = \sum_{\langle ij \rangle} N_{b=\langle ij \rangle} = even$$

Spin-spin correlation function:
$$g_{IM} = \frac{G_{IM}}{Z}$$
, $G = \sum_{\{\sigma_i\}} e^{-H/T} \sigma_I \sigma_M$

$$G \equiv \sum_{\{N_b\}} \left(\prod_{b = \langle ij \rangle} \frac{K^{N_b}}{N_b!} \right) \prod_i \left(\sum_{\sigma_i = \pm 1} \sigma_i^{M_i + \delta_{il} + \delta_{il}} \right) \\ \equiv 2^N \sum_{\substack{\{N_b\} = loops + \\ Ira-Masha \ worm}} \left(\prod_{b = \langle ij \rangle} \frac{K^{N_b}}{N_b!} \right)$$
same as before

Worm algorithm cnf. space = $Z \cup G$

Same as for generalized partition

$$Z_{W} = Z + \kappa G$$

Getting more practical: since
$$e^{K\sigma_1\sigma_2} = \cosh^N(K) [1 + \tanh(K)\sigma_1\sigma_2]$$

$$Z = \cosh^{dN}(K) \sum_{\{N_b=0,1\}}^{loops} \left(\prod_b \tanh^{N_b}(K) \right)$$

Complete algorithm:

- If I = M, select a new site for them at random
- select direction to move M, let it be bond b

$$- \text{ If } N_b = \begin{cases} 0 & \text{accept } N_b \to \begin{cases} 1 & \text{with prob. } R = \begin{cases} \min(1, \tanh(K)) \\ \min(1, \tanh^{-1}(K)) \end{cases} \end{cases}$$

Solving the critical slowing down problem:

Question: What are the signatures of the phase transition (critical modes)?

$$G(I-M) = G(I-M) + 1$$

$$Z = Z + \delta_{I,M}$$

$$N_{links} = N_{links} + \left(\sum_{b} N_{b}\right)$$

Correlation function:

$$g(i) = G(i)/Z$$

Magnetization fluctuations:

$$\langle M^2 \rangle = \langle \left(\sum \sigma_i \right)^2 \rangle = \sum_{ij} \langle \sigma_i \sigma_j \rangle = N \sum g(i)$$

Energy: either

$$E = -JNd \left\langle \sigma_1 \sigma_2 \right\rangle = -JNdg(1)$$

or

$$E = -J \tanh(K) \left[dN + \left\langle N_{links} \right\rangle \sinh^2(K) \right]$$

Ising $\rightarrow |\psi_i|^4$ lattice-field theory

$$-\frac{H}{T} = t \sum_{i \text{ $\nu = \pm (x,y,z)$}} \psi_{i+\nu}^* \text{ $\psi_i + \mu \sum_i \left| \psi_i \right|^2 - U \sum_i \left| \psi_i \right|^4} \qquad \text{(XY-model in the } \mu = 2U \rightarrow \infty \text{ limit)}$$

 $\Psi_{i+\nu}^* \Psi_i$

Start as before

$$Z = \prod_{i} \int d\psi_{i} \ e^{-H/T}$$

$$\underset{\text{expand on each } e}{\text{expand on each }} e^{t\psi_{i+v}^{*}\psi_{i}} = \sum_{N=0}^{\infty} \frac{t^{N_{iv}} (\psi_{i+v}^{*}\psi_{i})^{N_{iv}}}{N_{iv}!}$$

$$\psi_{i}^{*}$$

Integrate over phases

$$\begin{aligned} \psi_i &= x e^{i \varphi} \\ Z &= \sum_{N_{iv}} \left(\prod_{iv} \frac{t^{N_{iv}}}{N_{iv}!} \right) \underbrace{\prod_{i} \left(\int d\psi_i \ \psi_i^{M_{1i}} \left(\psi^*_i \right)^{M_{2i}} e^{\mu |\psi_i|^2 - U|\psi_i|^4} \right)}_{e^{\inf_i Q(M_i)} \to M_{1i} = M_{2i} = M_i} \\ \text{where} \quad Q(M) &= \begin{cases} 0 & \text{if } M_1 \neq M_2 & \longrightarrow \text{ closed oriented loops} \\ \pi \int_0^\infty dx \ x^M e^{\mu x - U x^2} & = \text{ tabulated numbers} \end{cases}$$

$$\psi_{i}^{\sum_{v} N_{iv}} \left(\psi_{i}^{*}\right)^{\sum_{v} N_{i+v,-v}}$$

Flux in = Flux out ⇒ closed oriented loops of integer N-currents

$$g(I-M) = \frac{G(I-M)}{Z} = \left\langle \psi_I \psi^*_M \right\rangle$$

(one open loop)

Z-configurations have I = M

Same algorithm:

•
$$Z \leftrightarrow G$$
 sectors, prob. to accept $R_{z \to G} = \min \left[1, \frac{Q(M_I + 1)}{Q(M_I)} \right]$

•
$$N_{M_{\nu}} \rightarrow N_{M_{\nu}} + 1$$
 draw

$$R = \min \left[1, \frac{t \, Q(M_{M'} + 1)}{(N_{M_N} + 1)Q(M_{M'})} \right]$$

Keep drawing/erasing ...

Multi-component gauge field-theory:

$$-\frac{H}{T} = t \sum_{a;iv} \psi^*_{a,i+v} \psi_{a,i} \ e^{iA_v(i)} + \mu \sum_{a;i} \left| \psi_{a,i} \right|^2 - \sum_{ab;i} U_{ab} \left| \psi_{a,i} \right|^2 \left| \psi_{b,i} \right|^2 - \kappa \sum_{\Box} \left[\nabla \times A_v(i) \right]^2$$
 plaquette sum

$$\begin{array}{c|c}
-A_3 \\
-A_4 \\
+A_1
\end{array} + A_2$$

solid-liquid transitions, deconfined criticality, XY-VBS and Neel-VBS quantum phase transitions, etc.

... and finite-T quantum models

Interacting particles on a lattice:

$$H = H_0 + H_1 = \sum_{ij} U_{ij} n_i n_j - \sum_i \mu_i n_i - \sum_{\langle ij \rangle} t(n_i, n_j) \, b_j^+ b_i$$
 diagonal off-diagonal

$$Z = \operatorname{Tr} e^{-\beta H} \equiv \operatorname{Tr} e^{-\beta H_0} e^{-\beta H_1(\tau) d\tau}$$

$$= \operatorname{Tr} e^{-\beta H_0} \left\{ 1 - \int_0^\beta H_1(\tau) d\tau + \int_{\tau' 0}^\beta \int_0^\beta H_1(\tau) H_1(\tau') d\tau d\tau' + \ldots \right\}$$

In the diagonal basis set (occupation number representation): $\langle \{n_i\} | = \langle \{n_1, n_2, n_3, ...\} |$

$$Z = \sum_{\{n_i\}} \left\langle \{n_i\} \middle| e^{-\beta H_0} - \int_0^\beta e^{-(\beta - \tau) H_0} H_1 e^{-\tau H_0} d\tau + \int_{\tau'}^\beta \int_0^\beta e^{-(\beta - \tau) H_0} H_1 e^{-(\tau - \tau') H_0} H_1 e^{-\tau' H_0} d\tau d\tau' + \dots \middle| \{n_i\} \right\rangle$$

Each term describes a particular evolution of $\{n_i\}$ as imaginary "time" increases

0-order term

potential

energy contribution

one of the 2-order terms

$$Z = \sum_{\{n_i(\tau)\}} e^{-\int_0^\beta U(\{n_i(\tau)\})d\tau} \prod_{k=1}^K \langle \{n_i(\tau_k + 0)\} | (-H_1 d\tau_k) | \{n_i(\tau_k - 0)\} \rangle$$

off-diagonal matrix elements for the trajectory with K kinks at times $\beta > \tau_{\rm K} > ... > \tau_2 > \tau_1 > 0$ (ordered sequence on the β -cylinder)

all possible trajectories for N particles with K hopping transitions in this example, for K=2, it equals $t\sqrt{2} \times t\sqrt{2}$ for bosons

high-order term for $Z = Tr e^{-\beta H}$

Similar expansion in hopping terms for

$$G_{IM} = \operatorname{Tr} b_{M}^{\dagger} (i_{M}, \tau_{M}) b_{I} (i_{I}, \tau_{I}) e^{-\beta H}$$

+ two special points for Ira and Masha

The rest is worm algorithm in this $Z \cup G_{I\!M}$ configuration space: draw and erase lines using exclusively Ira and Masha

ergodic set of local updates

time shift:

space shift
("particle" type):

space shift
("hole" type):

Insert/delete Ira and Masha:

connects ${\bf Z}$ and ${\bf G}$ configuration spaces

Path-integrals in continuous space

$$Z = \iiint dR_1 \dots dR_P \exp \left\{ -\sum_{i=1}^{P=\beta/\tau} \left(\frac{m(R_{i+1} - R_i)^2}{2\tau} + U(R)\tau \right) \right\}$$

(insert/remove update)

(advance/recede update)

(swap update)

Not necessarily for closed loops!

Feynman (space-time) diagrams for fermions with contact interaction (attractive) $\bullet = -U$ (n=1 positive Hubbard model too)

Pair correlation function

$$\left\langle a_{\uparrow}^{+}(r_1,\tau_1)a_{\downarrow}^{+}(r_1,\tau_1) \ a_{\downarrow}(r_2,\tau_2)a_{\uparrow}(r_2,\tau_2) \right\rangle$$

The rest is worm algorithm in this $Z \cup G_{IM}$ configuration space: draw and erase interaction vertexes using exclusively Ira and Masha

More: winding numbers and superfluid density

$$W_{\mu} = \int_{0}^{\beta} \left[\text{particle number flux} \right]_{\mu} d\tau$$

(cross-section independent in Z-sector)

$$\rho_{S} = (m/\beta dL^{d-2}) \langle W^{2} \rangle$$

Grand canonical ensemble (a "must" for disorder problems!)

Some examples:

Weakly interacting Bose gas:

$$T_C(n^{1/3}a)/T_C^{(0)}$$

$$na^3 = 5 \times 10^{-3}$$

Imperfect crossing due to corrections to scaling

Mott insulator – superfluid T=0 phase diagram: $(\mu/U,\,t/U) \ \, \text{plane} \,,\, \text{3D case}$

 $(\mu/U)_{\scriptscriptstyle \pm}$ determine gaps for adding/removing particles from the MI state with $\langle n\rangle\!=\!1$

gaps control the exponential decay of the Green's function $G(p=0,\tau)$ in time

Otherwise, good luck in calculating energy differences

 $E(N\pm 1) - E(N)$ for $N = L^3$ with L = 40

all experimental parameters "as is", including particle number" $N \sim 10^6$

Quantum spin chains

Quantum spin chains gaps, spin wave spectra, magnetization curves ...
$$\mathbf{H} = -\sum_{\langle ij \rangle} [J_x \, (S_{jx} S_{ix} + S_{jy} S_{iy}) + J_z \, S_{jz} S_{iz}] - H \sum_i S_{iz}$$

Energy gap: One dimensional S=1 chain with $J_z/J_x=0.43$

Spin waves spectrum:

One dimensional S=1 Heisenberg chain

magnetization curves

magnetization curves

More tools:

- 1.Density matrix $n(r',r) = \langle \psi^{\dagger}(r',\tau)\psi(r,\tau) \rangle$ (and the condensate fraction) is as cheap as energy
- 2. μ is an input parameter, and $\langle N \rangle_{\mu}$ is a simple diagonal property
- 3. But also compressibility $\kappa VT = \left\langle \left(N \left\langle N \right\rangle \right)^2 \right\rangle_{\mu}$ $P_{\mu'}(N) = P_{\mu}(N) \, e^{(\mu' \mu)N/T}$
- 4. Added particle wavefunction:

$$G(\beta/2 \to \infty, r, r') = \left\langle G_N \left| \psi^{\dagger}(r) \right| G_{N-1} \right\rangle \left\langle G_{N-1} \left| \psi(r') \right| G_N \right\rangle = \varphi(r) \varphi(r')$$

mobility thresholds, participation ratio, etc.

Why bother with algorithms?

Efficiency

PhD while still young

PhD while still young
Better accuracy
Large system size
More complex systems
Finite-size scaling
Critical phenomena
Phase diagrams

Reliably!

New quantities, more theoretical tools to address physics

Grand canonical ensemble $N(\mu)$ Off-diagonal correlations $G(r,\tau)$ "Single-particle" and/or condensate wave functions $\phi(r)$ Winding numbers and ρ_S

"Wave function" of the added particle

$$\phi_N(\mathbf{r}) = \langle \Psi_G(N) | b_{\mathbf{r}}^{\dagger} | \Psi_G(N-1) \rangle$$

Complete phase diagram

It is a theorem that for $\Delta > E_{\it GAP}$ the compressibility is finite