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Why bother with algorithms?

~ N

Efficiency New quantities, more theoretical
tools to address physics

PhD while still young

Grand canonical ensemble N ()

Off-diagonal correlations G(r, 1)

“Single-particle” and/or

More complex systems condensate wave functions o(r)
. . Winding numbers and Pg

Finite-size scaling

PhD while still young
Better accuracy
Large system size

Critical phenomena @ g
\C

Phase diagrams Q‘MS

Reliably!

Applications: classical and quantum critical phenomena,
latttice spin systems, cold atoms (bosons & fermions),

liquid&solid Helium-4 ...



Worm algorithm idea

Standard Monte Carlo setup: $} Tt 1
t I t 3l
(depends on the model
and it’s representation) LI I
. . _ I T 31
- configuration space =
arbitrary closed loops
( more or less anything you
can draw without loose ends )
- each cnf. has a weight factor cnf
e—Ecnf /T
Z Acnf W cnf

f

Z chf

cnf

- quantity of interest A . ; —— <A> _ cn



“conventional”
sampling scheme:

No sampling of

topological classes
(non-ergodic)

Critical slowing down
(large loops are related to
critical modes)

local shape change Add/delete small loops

can not

evolve to
updates | | dynamical critical exponent
| Z ~ 2 in many cases



Worm algorithm idea

draw and erase:

Masha
Ira -
Ira
+
Masha
keep
_______________________________ or drawing

© Topological classes are sampled efficiently (whatever you can draw!)

© No critical slowing down in most cases

.

Disconnected loops relate to important
physics (correlation functions) and are
not merely an algorithm trick!



High-T expansion for the Ising model —— = KZGiGj (oc=11)

z=Ye" =Z[H 6]52[2 E' (G‘G")Nb]

{ci} {ci} \ b=<ij>

= [H E:Zjﬂ[z GiM'j where M, =Y N, . =even

{N,}\ b=<ij> i c;=%1 <ij>
KN
= 2N Z | I | —;4
{N }=loops \ b=<ij> Nb . 2|
1 4
4 2

N, =number of lines;
enter/exit rule — M. = even



Spin-spin correlation function: g,y = - , G = Ze G|GM
{o:}

K™ " M; +06; +0im N K .
N, [l 2o 2 2 N

i c;=11 {N,}= loops + b=<ij> Nb -
J Ira—Masha worm

G=2 Il 4

{Nb} b=<ij>

Y
same as before

Worm algorithm cnf. space = / U G

1 Same as for generalized partition

L L4 L, =Z+xG




Getting more practical: since e“*°2 = cosh" (K)[1+tanh(K)6162]

Z =cosh™ (K) Iips (Htanh“b(K)j

{N,=0,13\_ b

tanh(K)

! I / no-overlaps

Complete algorithm : v

-1If | = M, select a new site for them at random

- select direction to move M, let it be bond b

L with prob. R =

0

min(l, tanh(K))
min(l, tanh ™ (K))

-1f N, :l 0 accept N, —
1




Solving the critical slowing down problem:

Question: What are the signatures of the phase transition (critical modes)?

spin representation

2 I N |

large domains of single-spin flips
rsy mmm) Similarly oriented spins mmmp  are not efficient
1 1 1t 1 of linear size ~ L in updating them!
$} £ 3 1

loop representation

large loops of linear
o mm) size ~L (long-range correlations mmmp draw large
between spins = large distance loops!
between | and M)



G(1-M)=G(I1-M)+1

I4M
L Z=2+5,,
_.M
J@Y i Niinks = Njings "(Zb: ij
Correlation function: g()=G(1)/Z

Magnetization fluctuations: (M 2>:<(Zsi )2>:Z<Gi6j>= N> (i)

]
Energy: either E =-JNd (c,0,)=-JINdg (1)

or E =—J tanh(K)| dN +(N,;,, )sinh?(K) |



Ising — |\|1i|4 lattice-field theory

H .
T =1 Z Vi Vi T Z|\|fi |2 -U Z|\|/i |4 (XY-model inthe W =2U —> 00 Iimit)
Iv=%(X,y,2) [ [

Start as before \Vi+v v,
Z:de\lfi e—H/T i . =
i *
eXpand 0 t \lji \l/i_l_
on each € ‘lf|+ Vi Z (\lj|+v\|j ) \%
bond

IV
Integrate over phases

y; = xe”

£ = Z(H ] (J Ww,Ml'(W* )Mﬁeuwifuwir‘)

\ 7
ﬁ My M =Mz =M

0 if |V|1 * M2 — closed oriented loops

(

where Q(M)=

7Z'J.dX XMe“X_UX2 = tabulated numbers
\



Flux in = Flux out => closed oriented loops
of integer N-currents

a(1-m) == ()

(one open loop)

Z-configurations have | = M

®
Ni+v',—v'
e e .
l NiV 1+V
®




Same algorithm:

Q(M,)

® / <> (G sectors, prob.to accept R __ = min{l, Q(M, +1)

|

® NMV_)NMV+1 draw R:min{l tQ(MM""l)

’(NMV +1)Q(M|\/|):|

L d NM+V,—V M+v,—v -1

erase R = min{ ,

tQMy,)

Keep drawing/erasing ...

L Ny ) QM, —1)}

T
°z



Multi-component gauge field-theory:

H

_? = tz W*a,i+v\|ja,i e+ H Z‘Wa,i

: o Zuab Wai
ab;i

2 ‘\Vb,i ‘2 - KZ [VxA, (i)]2
: plaquette sum
—A
_A4 "‘Az
+A

solid-liquid transitions, deconfined criticality,
XY-VBS and Neel-VBS quantum phase transitions, etc.

... and finite-T quantum models



Interacting particles on a lattice:

H=H,+H, =>Unn -> wn —> t(n,n)bb,
ij I <ij>

diagonal off-diagonal
p

—jHl(r)dr

— _BH —_ _BHO 0 \
Z —Tl'e —Tre e Hl(T):eBHOHl e—BHo

p BB
=Tre®™ 1-[H,(r)dt+ [ [H, (1) H,(r) drdr'+..
0 ' 0

In the diagonal basis set (occupation number representation): <{n,}‘ = <{n1, n,, n,, }‘

{ﬂi}>

B BB
e —[ e P H e drt [[e P H, e I H, e drdt 4
{ni} 0 ' 0

Z:ZGM

Each term describes a particular evolution of {n.} as imaginary “time” increases



O-order term one of the 2-order terms

ﬁ A 1 | 1 1
c I I : t(12) :
I I , '

g I 1 I T 1

> | 1

E : : + | | +

o | I I T

S 1 ’ |

E : : I I

0° ' | ' I in this example

i i {n}=012,0

i
Ui ()hdr K

Z=Se- [T @, + O} (=H, dz) [{n, (7, ~O)})

{m(7)} k=1
potential off-diagonal matrix elements for the trajectory with K kinks at times
energy IB >Ty >..>T,>17 > (O (ordered sequence on theIB -cylinder)

contribution

in this example, for K=2, it equals

all possible trajectories t bOSONS
for N particles with tv/2 xt4/2

K hopping transitions



high-order term for Z:Tre'ﬁH

p : \ : :
_|— 5 Similar expansion in hopping terms for
:, I i ! _ T - - 'ﬂH
' Gy =Trby (y,7y)b (1,7,)e

+ two special points for Ira and Masha

P

The rest is worm algorithm in this ZUGWI configuration space:
draw and erase lines using exclusively Ira and Masha



ergodic set of local updates

time shift;

space shift

(“particle” type):

Insert/delete
Ira and Masha;:

G

oy
Z- \\\\\\
"~ Ira or Masha
° |
T
j
o i o
space shift
(“hole” type):
—0 J o
i
,,,,,,,,,,,, o T ——

connects Z and G configuration spaces
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Path-integrals in continuous space

Z=|[[dR,...dR, exp{ Z




(open/close update)



(insert/remove update)



(advance/recede update)



(swap update)



Not necessarily for closed loops!

Feynman (space-time) diagrams N
. . @) N
for fermions with contact I /O\ O/'
interaction (attractive) @ = — U e ~
(n=1 positive Hubbard model too) 7\
o
Pair correlation function \O/ /.O /O\
X . W
(" (. 7)a, (h,7,) a, (1, 7,)a. (1, 7,))

The rest is worm algorithm in this ZUG,M configuration space:
draw and erase interaction vertexes using exclusively Ira and Masha



More: winding numbers and superfluid density

s
W, = _Hparticle number flux]u dr
0

(cross-section independent in Z-sector)

W = fractional

ps =(m/ pdL* ) (W?)




Grand canonical ensemble (a “must” for disorder problems!)

V(X) ’

R R>

R4 R _szdx ‘_.*"' %
P é exponentially rare event € - : ;=—>_

Fig.1

Fig.2




Some examples: Weakly interacting Bose gas:

I.h a1

na®=5x10"°

Nho, Landau ‘04

16
P T./T, =1.078(1) ?
14 ! @ © Worm algorithm: Pilati, Giorgini, NP

4N T

_ 4 ® 113
- ' 2 f i3 Ns N1 21952
12| * ;??.‘,_ 1 8l 4096
= PHRR | 1024

e Neor L SO e 4

/5 - - A N=64 LN ) 1 6+ 100,000

T o-oN=125 P T '
® ON-216 Y A g
. 14 T
L r“'“““-np_
08 L ‘;_:.ih‘ﬁ
1,05 1,07 1.09 1.11 e
I TIT 121 1hhttqfﬁw
correct value I Py
- % _____
L 1 | L L L L | L L L L I 1 L L L I 1 L L L I 1 1 L L I L 1 1 L
1.055 106 1065 107 1075 T.ITO

Imperfect crossing due to corrections to scaling



Mott insulator — superfluid T=0 phase diagram:

(ulU, t/U) plane, 3D case

wu

0.8
0.6

0.4

(«/U), determine gaps for addin
particles from the Ml state with

0

1

B\ b -~ -
F ‘ 045+ R
e
e L ]
- Ca, 040F i
\0 b= -
- L 0.35F .
9\ ™ 9
- 6. 0.30 8. L
e~ 0.032 0.036
L e .
-
MI 3 .
| Y
e-° i ; :
» o 2° Freericks & Monien
o~ o
- | 1 | 1 | 1 | 1 1 1
0.01 0.02 0.03 0.04 0.05 [/U

/removing

(n}=

=0,7))

In(G(p

gaps control the exponential decay of the

Green'’s function G(p=0,7) intime
0k 50.6
LA
504F
2
502l
0 0.05 1L 0.10
-
-6F
xdn 1 1 1 1 1 1 1 1
26 28 30 32 34 36 38 40
(1)

Otherwise, good luck in

calcu

E(N +1)—

lating energy differences
E(N) for N = L° with L =40




Current standard for simulations of bosons in optical lattices and in traps:

all experimental parameters “as is”, including particle number” N ~10°



Quantum spin chains
gaps, Spin wave SpeCtra’ H — _Z[‘]x (ijSix + Sijiy) + ‘]z szSiz]_ H Z Siz

magnetization curves ... <ij>

Energy gap: One dimensional S=1 chain with J /J =0.43

J/'T =400
L =600 Spin gap A =0.02486(5)

Z factor Z =0.980(5)

In(G(p=0.,T)

—At -A(B-7)
G(p,t>1)=Z © +eA
_4_ 1+e b

! ! I ! | !
0 50 100 150 200 T



Spin waves spectrum: One dimensional S=1 Heisenberg chain

E(p)
I A=0.4105
c=2.48
07 |- E(p)=(A%+c*p?)"/* ;,-‘: .
- E(p)=A+c*p®/2A
0.6 [ .
05 -
04 [ L | | | | ]

-0.2 -0.1 0 01 02 P



magnetization curves

S=1/2 Heisenberg chain

<ms>——F————

* B=80/J ‘_’_f o _-/

L=100

MC data

N ’s.-é |
06 | i
Y _ i G \

- ﬁ Bethe ansatz
02 |- __

00 I B i N S



magnetization curves

<m_>

0.8

06

04

0.2

f=100/17

L=100




More tools:

1.Density matrix Nn(r',r) = <z//T(r LT (r, Z')> (and the condensate
fraction) is as cheap as energy

2. /L 1s an input parameter, and <N># IS a simple diagonal property
3. But also compressibility /T = <(N —<N>)2>
g P.(N)=P, (N)eW=NT

4. Added particle wavefunction:

G(B12—>0,1,1)=(Gy |y (N|Gy1)(Gy 1l (r)|Gy ) = p(N)(r )

mobility thresholds, participation ratio, etc.



Why bother with algorithms?

~

Efficiency

PhD while still young

PhD while still young
Better accuracy

Large system size
More complex systems
Finite-size scaling

Critical phenomena
Phase diagrams

Reliably!

N

New quantities, more theoretical

tools to address physics

Grand canonical ensemble N (L1)
Off-diagonal correlations G(r, 1)
“Single-particle” and/or
condensate wave functions @(I)
Winding numbers and Pg




“Wave function” of the added particle Complete phase diagram
dn(r) = (T (N)|bHTe(N — 1))

L =160 AIUT "
0.4-
03" \
- . SF
0.2; MI
7 Gap in the /
0. lg Ideal system
0E ......... | R R I B R MHH....I..IHHH
0 0.1 0.2 0.3 t/U

It is a theorem that for A > E
the compressibility is finite

GAP



