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The nuclear Hamiltonian

The nuclear Hamiltonian is not well characterized.

Compare to electronic structure:

• V = qiqj

rij
to a very good approximation.

• Corrections like spin-orbit, hyperfine structure, retardation, etc. usually
can either be ignored or use perturbation theory.

• Interaction cannot flip spins – spins can be assigned to particles.

• Relativistic effects are O[(v/c)2] and v/c � e2

h̄c � 1
137
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In nuclear physics

• There are many proposed Hamiltonians – often fits to experimental
data with theoretical constraints.

• The most important interaction term, the one-pion exchange potential,
looks like the hyperfine interaction

v(rij) [3�σi · r̂�σj · r̂ − �σi · �σj]

• Spin-orbit forces are important.

• Three-body forces are important.

• v/c � 1
10

• The interaction can both flip spins and exchange charge (a proton can
emit a virtual π+ becoming a neutron and a neutron can absorb the π+

becoming a proton.
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Ab initio thoughts

• If we could solve QCD for low energy quarks, gluons and photons, we
would obtain nuclear physics.

• Lattice QCD calculations of single nucleons (3 valence quarks) are
difficult.

• Lattice QCD calculations of two nucleon interactions (6 valence quarks)
has only just begun. It requires large extrapolations and approximations.

• For example, Ishii et al.† use a 324 lattice with a simulation cell of 4.4
Fm on a side.

They looked at just the 1S0 and 3S1 channels.

Quenched approximation (no quark sea!) They used a π mass of 530
MeV (about 4 times the physical mass)

† N. Ishii, S. Aoki, and T.Hatsuda, Nuclear Force from Lattice QCD, Phys. Rev. Lett. 99 022001 (2007).
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Crude Lattice QCD results

A realistic force would require a lattice at least 10 times larger in each
direction to get get a reasonable pion mass and nuclei spacing. This would
mean 104 times more lattice points. The quenched approximation would
need to be removed. This makes the calculations much more expensive
since a this means ratios of determinants with dimension of the lattice size
must be calculated (and introduces a fermion sign problem).
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Fits to data

Since ab initio calculations of the nuclear force are out of reach,
phenomenological approaches are used.

• Effective field theories either from QCD or phenomenological [proton
uud, neutron udd, ∆ uuu etc., mesons π+ ud̄, π0 uū − dd̄, π− dū, ρ,
ω etc.

• Phenomenological potentials

Generally use a combination of theoretical forms from field theory with
parameters chosen to fit experimental scattering data.
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Isospin

We often initially ignore electromagnetism (electromagnetic effects are
small on the nuclear scale) h̄c = 197.3 MeV-Fm, so

e2 = e2

h̄ch̄c � 1.4MeV/Fm. So electromagnetic effects change the particle
masses by a few MeV, change nuclear binding energies somewhat, and
make high mass nuclei have a neutron excess.

If the u and d quark masses are taken equal and electromagnetism is
neglected, QCD is isospin invariant. For our purposes, that means that the
proton and neutron are viewed as a single kind of particle, the nucleon,
with two isospin states. Conventionally,

proton = isospin up.

neutron = isospin down.

Even if the Hamiltonian does not commute with isospin rotations, we can
use the isospin formalism. So we continue to use it when we reintroduce
electromagnetic effects.

Arizona State University



Pauli matrices for nucleons

The nuclear spin is described by an up spin amplitude and a down spin
amplitude. All spin operators can be expressed as linear combinations of
the identity and the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The same Pauli operators are used for the nucleon isospin. Conventionally
the symbols τx, τy, τz are used for the isospin degrees of freedom.

A nucleon spin-isospin state is then expressed as a linear combination of
the four states |p ↑〉, |p ↓〉, |n ↑〉, |n ↓〉. A general Hermitian operator in
this space is a real linear combination of the identity, 1, and σα, τβ, σατβ.
Which gives the 16 independent real numbers that specify a Hermitian
4 × 4 matrix.
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One pion exchange example

The three kinds of pions π+, π0, π− form an isospin one particle if
electromagnetism is ignored. (Here h̄ = c = 1)

QCD dictates that the effective pion coupling to a nucleon labeled i in the
nonrelativistic limit is

V =
∑

i

gπ�σi · �∇i [τxπx(�ri) + τyπy(�ri) + τzπz(�ri)]

where the pion field is

πα =
∑
�k

1√
2ωk

[
a�kαei�k·�r + a+

�kα
e−i�k·�r

]

ω2
k = k2 + m2

π

π± =
πx ± iπy√

2
πz = π0
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In the static limit (large nucleon mass compared to pion energy), second
order perturbation theory then gives for the interaction

∆En =
∑
m�=n

〈n|V |m〉〈m|V |n〉
En − Em

= −g2
πτ1 · τ2

∑
k

〈�r1s1�r2s2|�σ1 · �∇1e
i�k·�r1�σ2 · �∇2e

−i�k·�r2|�r1s1�r2s2〉
ω2

k

The effective potential between the nucleons separated by �r = �r1 − �r2 is

V1−π = −g2
πτ1 · τ2

∑
k

�σ1 · �∇�σ2 · �∇ ei�k·�r

k2 + m2
π

= −g2
π

4π
τ1 · τ2�σ1 · �∇�σ2 · �∇e−mπr

r

= −g2
π

4π
τ1 · τ2

[
t12

(
mπ

r2
+

1
r3

+
m2

π

3r

)
+ �σ1 · �σ2

(
m2

π

3r
− 4πδ3(�r)

)]
e−mπr

r

t12 = 3�σ1 · r̂�σ2 · r̂ − �σ1 · �σ2

Arizona State University



Realistic Potentials

All realistic two-body potentials have a one pion exchange term, other
terms that have the form of other types of physical processes, and purely
phenomenological terms that are used to fit experimental scattering data
and the deuteron properties.

The Nijmegen group has tabulated the world’s published N-N scattering
data below 350 MeV (Below the pion production threshold).†

(4301 data points)

Realistic potentials fit this data at a confidence level of χ2/Ndata ∼ 1.

These potentials to a large extent give equivalent results for several nuclear
and neutron matter properties.

† V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, J. J. de Swart, Partial-wave analysis of all
nucleon-nucleon scattering data below 350 MeV, Phys. Rev C 48, 792-815 (1993).
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Scattering data

• proton-proton scattering – proton beam – hydrogen target – clean.

• proton-neutron scattering – proton beam – deuterium target – must
subtract proton-proton and neutron-proton correlation.

• neutron-neutron scattering – usually not done – deuterium beam
–deuterium target subtract proton-proton, neutron-proton and
correlation effects.

• Extracting three-body and higher potentials is very difficult since it is
hard to control and measure the relative momenta of the constituents.
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Two-body potential choices

Different kinds of calculations are simpler with different forms of the
potential.

Basis set calculations like shell-model (i.e. configuration interaction) and
coupled-cluster converge faster with soft potentials – hard cores require
many basis states. Nonlocality is not a problem.

Monte Carlo needs to sample the nonlocal parts (e.g. the momentum

dependent parts like p2

2m) and works best if these components give a
positive Green’s function. Hard-cores are no problem for Monte Carlo
methods working in position space.

Variational methods based on position space integrals are harder with
nonlocal interactions.
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Argonne v18 family

The Argonne†, and the previous Urbana potentials, were developed for
integral equation methods. They have weak nonlocality and substantially
more local repulsion at short distances than other potentials. This makes
them popular for integral equations and Monte Carlo calculations, but less
popular for shell model and coupled-cluster calculations.

They have the form:

V =
Nop∑
p=1

vp(rij)O
p
ij (1)

The first 14 operators are
(1, �σi · �σj, tij, �Lij · �Sij, L2, L2(�σi · �σj), (�Lij · �Sij)2 and these multiplied
by τi · τj. The final 4 operators break isospin invariance. Defining
Tij ≡ 3τizτjz − �τi · �τj, they are Tij, Tij�σi · �σj, Tijtij, τiz + τjz.

�L · �S is the spin orbit operator �Lij = 1
2�rij × (∇i −∇j), �Sij = 1

2(�σi + �σj).
† R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential with charge-

independence breaking, Phys. Rev C 51, 38-51, (1995).
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Argonne v18 terms

Physics:

• 1 (central) potential

• (�σi · �σj) is 1 in spin triplet | ↑↑〉, | ↓↓〉, | ↑↓〉 + | ↓↑〉 states, -3 in spin
singlet | ↑↓〉 − | ↓↑〉 states.

• tij tensor (spin dipole-dipole) operator as in one pion exchange.

• �L · �S, couples spin and orbital angular momentum – interaction
conserves total �J = �L + �S. This term is momentum dependent.

• (�τi · �τj) acts like (�σi · �σj) except on proton-neutron states.

Other terms are weaker and can often be included with perturbation theory.
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Potential graph
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Electromagnetism

Electromagnetic terms are added which have the same spin operators as
those in the first 14 and have different strengths between neutron-neutron,
neutron-proton and proton-proton pairs corresponding to the different
charge densities of the different nucleons.
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Basic Hamiltonian

The Hamiltonian we will use contains:

• Nonrelativistic kinetic energy

∑
i

p2
i

[
1

4mp
+

1
4mn

+ τiz

(
1

4mp
− 1

4mn

)]

or if the mass difference is ignored (1 part out of 500),

∑
i

p2
i

[
1

4mp
+

1
4mn

]
.

• Sum over pairs of a two-body potential such as Argonne v18

• Sum over triplets of a three-body potential ...
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Light nuclei and two-body potential

The Schrödinger equation for two-particles is readily integrated. All
realistic potentials reproduce the measured deuteron properties within
experimental errors.

There are a variety of methods for 3- and 4-body calculations. Monte
Carlo, Fadeev, Fadeev-Yakubovsky, Hyperspherical variational, no-core
shell model, etc.

All show the inadequacy of using only two-body pair potentials.

For example, 3He and 4He are underbound.
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GFMC light nuclei comparison

GFMC calculations give†
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† S. C. Pieper, V. R. Pandharipande, R. B. Wiringa and J. Carlson, Realistic models of pion-exchange
three-nucleon interactions, Phys. Rev. C 64, 14001 (2001).
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Three-body interactions

• The form of the 3-body interactions in nuclei are principally from the ∆
resonance.

• Largest is Fujita-Miyazawa

�π ∆π

N1 N2 N3

N1 N2 N3

• Integrating out the pions assuming large nucleon and ∆ masses gives a
static transition potential vNN↔N∆ which has the same form as
one-pion exchange except

�τ → �T where 〈12|τ |
1
2〉 becomes 〈12|T |32〉

and similarly for spin.

Can use Wigner-Eckart theorem to calculate the matrix elements.
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• Integrating out the ∆ and assuming a large ∆ mass gives the
Fujita-Miyazawa form in the Urbana and Illinois 3-body potentials

A
∑
cyc

(
{Xij, Xjk}{�τi · �τj, �τi · �τk} +

1
4
[Xij, Xjk][�τi · �τj, �τi · �τk]

)

where

Xij = T (rij)tij + Y (rij)�σi · �σj

is the 1-pion exchange potential with a gaussian cut off at short
distances.

This is the same form and cutoff that is used in the Argonne v18

potential.

• A purely phenomenological central three-body repulsion is added to
keep neutron rich systems from being overbound.
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A nuclear state

• We can specify the nuclear wave function Ψ(R,S) by giving the
positions R = {�r1, �r2, ..., �rA} of the A nucleons, and their spin isospin
state S = {s1, s2, ..., sN} where si = p ↑, p ↓, n ↑, n ↓.

• For given positions of the A nucleons for a nucleus with charge of Ze,
the number of spin states is 2A. The number of charge Z states is the
number of ways of assigning Z protons and A − Z neutrons to A
nucleons, or A!/((A − Z)!Z!).

•

Number of Spin − Isospin states = 2A A!
(A − Z)!Z!

• For light nuclei Variational and Green’s function Monte Carlo
Calculations sample the spatial positions as in central diffusion Monte
Carlo and perform full numerical summations over the spin-isospin
states.
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Time Reversal

Since we ignore weak interactions for nuclear structure, the Hamiltonian is
time-reversal invariant.

The time-reversal operator is

T =

[
N∏

i=1

σxiσzi

]
K

K takes the complex conjugate of the wave function on the right.

Think of coupling the spin to a magnetic field – time reversing the currents
flips the magnetic field, so it must flip the spin too.

The time reversal operator flips all of the spins. For nondegenerate states,
the time reversed state is proportional to the original state.

We only need to calculate the amplitude of half the spin states – the
amplitudes for all spins flipped is given by time reversal.
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Isospin Symmetry

If we solve the isoscalar part of the Hamiltonian and include the
electromagnetic and other isospin breaking terms as perturbations, isospin
becomes a good quantum number.

For example the number of states with T = 0 can be calculated:

• The number of Tz = 1 states is

A!
(A/2 + 1)!(A/2 − 1)!

These must have T > 0, and operating with T− will give the same
number of T > 0, Tz = 0 states.

• The number of Tz = 0 states is

A!
(A/2 + 1)!(A/2 − 1)!
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so the number of T = 0 states is the difference

A!
(A/2)!(A/2)!

2
A + 2

This reduces the number of spin-isospin states by a factor of 2/(A + 2).

Stirling’s approximation says N ! �
√

2πN
(

N
e

)
or A!

(A/2)!(A/2)! �
√

2
πA2A,

so all of these tricks cannot get rid of the exponential behavior.

The number of states for some representative nuclei:
Nucleus Spin Isospin Total Good Isospin/Time Reversal

4He 16 6 96 16
8Be 256 70 17920 1792
12C 4096 924 3784704 270336
16O 65536 12870 8.4 × 108 4.7 × 107
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Monte Carlo Spin Sampling

We sample the spatial degrees of freedom exactly as for central potentials
(i.e. Metropolis for variational or diffusion with drift and branching for
DMC/GFMC.)

We want to sample the spin and isospin.

In the usual p↑, p↓, n↑, n↓ basis.

R ≡ 3A x, y, z coordinates for the nucleons

S ≡ A discrete values selecting one of p↑, p↓, n↑, n↓

ΨT (R,S) = Trial wavefunction - a complex number for given R and S.

HS,S′(R) = the Hamiltonian
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Variational Calculation

Spin-isospin sums

〈H〉 =
∫

dREL(R)P (R) ,

P (R) =
∑

S |ΨT (R,S)|2∫
dR

∑
S |ΨT (R,S)|2 ,

EL(R) =

∑
S,S′ Ψ∗

T (R,S′)HS′,SΨT (R,S)∑
S |ΨT (R,S)|2 ,

or spin-isospin samples

〈H〉 =
∫

dR
∑
S

EL(R,S)P (R,S) ,

P (R,S) =
|ΨT (R,S)|2∫

dR
∑

S |ΨT (R,S)|2 ,

EL(R,S) =
∑

S′ Ψ∗
T (R,S′)HS′,SΨT (R,S)

|ΨT (R,S)|2 .
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Good trial functions

We could sample the spin-isospin states with low variance if we could
calculate ΨT (R,S) efficiently.

All known nontrivial trial functions require order 4A operations to calculate
either 1 or all the spin states. This is why the full spin sums are done for
light nuclei GFMC calculations.

Example of a good but exponentially hard to evaluate trial function
(Jastrow correlation operator)

ΨT (R,S) = 〈RS|S
∏
i<j

⎡
⎣ M∑

p=1

fp(rij)O(p)(i, j)

⎤
⎦ |Φ〉
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Constructing a good trial function

Constructed in the same general way as electronic structure.

The model state 〈RS|Φ〉 is one or a small linear combination of Slater
determinants of single particle orbitals φ(�r, s). These are usually calculated
from a shell-model or mean field calculation [analogous to using
Hartree-Fock or local-density orbitals in electronic structure].

When a pair of particles is close together, their pair potential dominates.
The pair correlations approximately solve a two-body Schrödinger equation.

⎡
⎣−h̄2∇2

ij

m
+

M∑
p=1

vp(rij)O(p)(i, j)

⎤
⎦

⎡
⎣ M∑

p=1

fp(rij)O(p)(i, j)

⎤
⎦

� λ

⎡
⎣ M∑

p=1

fp(rij)O(p)(i, j)

⎤
⎦
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• Expanded in angular momentum eigenstates

• A “healing” constraint where the correlation operator goes to the
identity at some distance d. d is a variational parameter.

• The “eigenvalue” is calculated in each angular momentum channel to
satisfy the constraint.

• As in electronic structure, additional forms and parameters can be
added to include important additional physics. (For example, The
J = 0 excited state of 12C looks more like 3 4He particles than a single
determinant of orbitals).
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Why exponential scaling

• We have the positions and spin-isospin of each particle.

• To evaluate the wave function, we pick a pair, and operate with the pair
correlation operator

∑M
p=1 fp(rij)O(p)(i, j).

• The tensor operator can flip the spins into any of the 4 states ↑↑, ↑↓,
↓↑, and ↓↓.

• The τ operators can exchange the isospins, so if we have a pn pair it
can become an np pair.

• The correlation for a pair can produce 4 or 8 states from the starting
state.

• The next pair operator can produce 4 or 8 states from each of these.

• It takes just A/2 pair operators to produce all of the approximately 4A

states. There are A(A − 1)/2 pair operators.
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Full Spin-Isospin Sum Variational

Evaluating these wave functions for one spin-isospin state takes essentially
the same amount of work as evaluating the wave function for all of the
spin-isospin states.

The variance is lowered if the full spin-isospin sum is done:

〈H〉 =
∫

dREL(R)P (R) ,

P (R) =
∑

S |ΨT (R,S)|2∫
dR

∑
S |ΨT (R,S)|2 ,

EL(R) =

∑
S,S′ Ψ∗

T (R,S′)HS′,SΨT (R,S)∑
S |ΨT (R,S)|2 ,

Notice that the Hamiltonian only couples 4 or 8 spin states per pair
potential term, so its evaluation is not expensive.
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Three-body potential – v′
8

The three-body potential is more expensive, but still polynomial.

Many of the nonlocal terms are small. The GFMC calculations are done
with a simplified potential Argonne v′

8. It contains just the first 8 operators
of the v18 potential and is an isoscalar projection (so isospin is conserved).

Corrections to get the v18 results are done using first order perturbation
theory.
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Spin-Isospin Sum propagator

To implement a GFMC method, we sample

|Ψ(t)〉 = e−(H−ET )t|Ψ(0)〉

• The simplest short time approximation e−Ht � e−Tte−V t can be
implemented by sampling the kinetic energy terms exactly as for
potentials without spin-isospin dependence.

• Potential is usually factored into pair (or triplet) products:

e−
P

ij vijt �
∏
i<j

e−vijt

• Each term can be written as a sparse matrix in spin-isospin space.
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• In fact that first 6 terms of the v8 potential form a group and the
spin-orbit terms are small so

exp(−[vc + vσ�σ1 · �σ2 + vtt12 + vτ�τ1 · �τ2 + vστ�τ1 · �τ2�σ1 · �σ2 + vtτt12�τ1 · �τ2]∆t)

= pc + pσ�σ1 · �σ2 + ptt12 + pτ�τ1 · �τ2 + pστ�τ1 · �τ2�σ1 · �σ2 + ptτt12�τ1 · �τ2

e1 = e−(vc+vσ+2vt+vτ+vστ+2vtτ)∆t

e2 = e−(vc+vσ−4vt+vτ+vστ−4vtτ)∆t

e3 = e−(vc+vσ+2vt−3vτ−3vστ−6vtτ)∆t

e4 = e−(vc+vσ−4vt−3vτ−3vστ+12vtτ)∆t

e5 = e−(vc−3vσ+vτ−3vστ)∆t

e6 = e−(vc−3vσ−3vτ+9vστ)∆t

pc = (6e1 + 3e2 + 2e3 + e4 + 3e5 + e6)/16

pσ = (6e1 + 3e2 + 2e3 + e4 − 9e5 − 3e6)/48
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pt = (3e1 − 3e2 + e3 − e4)/24

pτ = (2e1 + e2 − 2e3 − e4 + e5 − e6)/16

pστ = (2e1 + e2 − 2e3 − e4 − 3e5 + 3e6)/48

ptτ = (e1 − e2 − e3 + e4)/24 .
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Pair product propagator

A pair product propagator can be used by solving the two-body propagator
equation in the J, L, S channels The L = J + 1 and L = J − 1 are
coupled. The true propagator cannot be written in terms of the product of
the pair propagators since the spin-orbit terms do not then take the correct
derivatives of the other terms in the propagator. (See more later.)

However, with appropriate counter terms a pair propagator can be used.
The form of the relative coordinate propagator is the same as the potential
for v′

8 interaction – in each isospin channel:

G(�r ′
12, �r12) = A(�r ′

12, �r12) + �B1(�r
′
12, �r12) · �σ1

�B2(�r
′
12, �r12) · �σ2

+
∑
αβ

Cαβ(�r ′
12, �r12)σ1ασ2β
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Importance sampling and Path Constraint

Importance sampling goes through exactly as for spin-independent
interactions. The importance function is calculated by summing over all
the spin states of the walker with a good trial function. It then is just a
function of R.

Fermion sign problem is usually dealt with by restricting the real part of
the importance function to be positive. (Not an upper bound).

A small number of forward walking steps are used to partially correct the
energy.
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Results for GFMC

Energies:†

������������	
�������
�

† S.C. Pieper, K. Varga, R.B. Wiringa, Quantum Monte Carlo calculations of A = 9, 10 nuclei, Phys.
Rev. C 66, 044310 (2002).
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Other expectation values typically use extrapolations from mixed and
variational estimates. For example proton and neutron densities:†

† B. S. Pudliner, V. R. Pandharipande, J. Carlson, Steven C. Pieper, and R. B. Wiringa, Quantum Monte
Carlo calculations of nuclei with A ≤ 7, Phys.Rev. C 56 1720-1750, (1997).
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8Be two alpha particle structure
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Fig. 15   (W
iringa, et al.)

The left side is in the laboratory frame.

The right side is in a frame defined by the principal axes of the moment of
inertia tensor.
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Spin-Isospin Sampling

• The exponential growth of the spin-isospin states with number of
particles means that full spin-isospin sums are limited by Moore’s law.
About 1 new nucleon every 2 years. (4He 20 years ago, 12C now.)

• The exponential growth of spatial coordinates with number of particles
just meant we needed to use Monte Carlo sampling.

• The solution for the spin-isospin problem is the same.

• Sampling the spin-isospin was hindered by the lack of trial wave
functions that can be evaluated efficiently.
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Auxiliary Field Diffusion Monte Carlo Philosophy

• We abandon (at least to start) the good trial function forms that we do
not know how to evaluate efficiently.

• For a particular sample of the particle positions, the potential problem
corresponds to sampling a spin Hamiltonian on a lattice (the current
particle positions). We can use methods developed for sampling these
problems.

• We use the method developed by Shiwei Zhang and coworkers for the
spin-isospin part introducing complex auxiliary fields and a path
constraint.
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Trial wave function

Since the operator product form requires exponential operations to
evaluate, we take a simple Slater-Jastrow trial function (or a
Pfaffian-Jastrow wave function).

ΨT (R,S) = 〈RS|ΨT 〉

=
∏
i<j

f(rij)det

⎛
⎝ φ1(�r1, s1) φ1(�r2, s2) ... φ1(rA, sa)

... ... . . . ...
φA(�r1, s1) φA(�r2, s2) ... φA(rA, sa)

⎞
⎠ .

A walker consists of a position and a spinor (ap↑, ap↓, an↑, an↓) for each
particle.

The φn are typically good J = L + S orbitals for nuclei, and plane waves
times spinors for matter in a periodic simulation cell.
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Auxiliary Field Propagator

• We look at the short time propagator split into kinetic and potential
parts.

• The particle positions are sampled from the importance sampled kinetic
energy gaussian just as in diffusion Monte Carlo.

• Given a set of spinors for the particles, we want to sample a new set of
spinors according to the potential energy.

• One way to keep this form is to sample the propagator so that it is a
sum of terms like

A∏
i=1

eA+Bασiα+Cβτiβ+Dαβσiατiβ

Each spinor is rotated and multiplied by a weight.
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Sampling with an Auxiliary Field

We use the Hubbard-Stratonovich transformation

e−
1
2λnO2

n∆t =
1√
2π

∫ ∞

−∞
dxe−

1
2x2+x

√−λn∆tOn

We must write the spin-isospin dependent interaction as a sum of squares
of the spin-isospin operators. We sample the x variables and the linear On

then rotate the spinors.
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Auxiliary field sampling Details

We diagonalize the interaction in spinor space.

This requires Order(A3) operations – same complexity as determinant.

For A particles, the v6 interaction can be written as

V =
∑
i<j

[
6∑

p=1

vp(rij)O(p)(i, j)] = Vc + Vnc

= Vc +
1
2

∑
i,α,j,β

σi,αA
(σ)
i,α,j,βσj,β

+
1
2

∑
i,α,j,β

σi,αA
(στ)
i,α,j,βσj,β�τi · �τj

+
1
2

∑
i,j

A
(τ)
i,j �τi · �τj
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• Our A matrices are zero when i = j and symmetric.

• All the A matrices are real and symmetric and have real eigenvalues and
eigenvectors.

• The eigenvectors and eigenvalues are defined by

∑
j,β

A
(σ)
i,α,j,β

�ψσ
n(j) · x̂β = λ(σ)

n
�ψσ

n(i) · x̂α

The matrices can be written in terms of their eigenvectors and eigenvalues
to give the noncentral potential

Vnc =
1
2

∑
i,j,n

�σi · �ψ(σ)
n (i)λ(σ)

n
�ψ(σ)

n (j) · �σj

+
1
2

∑
i,j,n

�σi · �ψ(στ)
n (i)λ(στ)

n
�ψ(στ)

n (j) · �σj�τi · �τj

+
1
2

∑
i,j,n

�τi · �τjψ
(τ)
n (i)λ(τ)

n ψ(τ)
n (j)

Arizona State University



We want the squares of operators so we write

Vnc =
1
2

3A∑
n=1

(O(σ)
n )2λ(σ)

n

+
1
2

3∑
α=1

3A∑
n=1

(O(στ)
nα )2λ(στ)

n

+
1
2

3∑
α=1

A∑
n=1

(O(τ)
nα)2λ(τ)

n

with

O(σ)
n =

∑
i

�σi · �ψ(τ)
n (i)

O(στ)
nα =

∑
i

τiα�σi · �ψ(στ)
n (i)

O(τ)
nα =

∑
i

τiαψ(τ)
n (i)
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• The Hubbard-Stratonovich transformation is

e−
1
2λnO2

n∆t =
1√
2π

∫ ∞

−∞
dxe−

1
2x2+x

√−λn∆tOn

• Our On don’t commute, so we need to keep the time steps small so
that the commutator terms can be ignored. Each of the On is a sum of
1-body operators as required above.

• We require 3A Hubbard-Stratonovich variables for the σ terms, 9A
variables for the στ terms, and 3A variables for the τ terms. Each time
step requires the diagonalization of two 3A by 3A matrices and one A
by A matrix.

• Many other breakups are possible.
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Constrained Path

• We still have the usual fermi sign problem, in this case the overlap of
our walkers with the trial function will be complex.

• We constrain the path so that the walker has the same phase as the
trial function, and deform the path of the auxiliary field integration so
that the auxiliary variables are complex†.

• For spin independent potentials this reduces to the fixed-node or fixed
phase approximation.

• There is a variational principle for the mixed energy but not an upper
bound principle. Expectation values of H have an upper bound principle
but are not implemented here.

† S. Zhang and H. Krakauer, Quantum Monte Carlo method using phase-free random walks with Slater
determinants, Phys. Rev. Lett. 90, 136401 (2003).
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Spin-Orbit Interaction

• The spin-orbit contains the momentum in the �L = �r × �p part. This
makes the propagator for spin-orbit nonlocal.

• We can operate the derivative in the �Ljk · �Sjk operator on the free
propagator G0 (the gaussian).

(�∇j − �∇k)G0(R,R′) = − m

h̄2∆t
(∆�rj − ∆�rk)G0(R,R′) ,

• Our first attempt is spin-orbit part PLS

PLS = exp

⎛
⎝∑

j �=k

mvLS(rjk)
4ıh̄2 [�rjk × (∆�r)jk] · �σj

⎞
⎠

where (∆�r)jk = ∆�rj − ∆�rk.
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Spin-Orbit Problem

• Unfortunately this is not quite right – it includes some spurious
contributions linear in ∆t.

• Look at the Green’s function equation,

Ψ(R) = ∆t

⎡
⎣ 1

2m

∑
j

∇2
j − V + E0

⎤
⎦ Ψ(R)

+
∫

dR′G0(R,R′)PLS[Ψ(R) −
∑

p

∆�rp · �∇pΨ(R)] + . . .

• The ∆r terms in PLS integrated with the ∆r terms in the expansion of
Ψ give the spin-orbit interaction correctly.

• Pairs of ∆r terms in PLS give additional spurious terms which have the
form of additional two- and three-body potentials.

• We must subtract those terms off.
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Three-body interaction for neutrons

The spin-independent part is trivial for Monte Carlo. You know where the
particles are so it just gives an extra spin-independent potential.

The Fujita-Miyazawa part is

A
∑
cyc

(
{Xij, Xjk}{�τi · �τj, �τi · �τk} +

1
4
[Xij, Xjk][�τi · �τj, �τi · �τk]

)

where

Xij = T (rij)tij + Y (rij)�σi · �σj

For neutrons �τi · �τj = 1, so only the anticommutator terms contribute, and
the spin operator that appears twice drops out. The three-body potential
looks like a two-body spin potential whose strength is modified by the
position of the third particle.

Arizona State University



Results for neutron systems

• Neutron Matter Equation of State†.

• Neutron Matter Spin Susceptibility‡.

• Model Neutron Drops (Unambiguous comparison to GFMC)§.

• Even odd energy gaps using Pfaffian trial functions for 1S0 BCS pairing
in low density neutron matter¶.

† S. Gandolfi, et al., Quantum Monte Carlo calculation of the equation of state of neutron matter ,
in preparation. M. Bouadani, et al., Pion condensation in high density neutron matter, in preparation. A.
Sarsa, S. Fantoni, K. E. Schmidt and F. Pederiva, Neutron matter at zero temperature with auxiliary field
diffusion Monte Carlo method, Phys. Rev. C 68, 024308 (2003).

‡ S. Fantoni, A. Sarsa, K.E. Schmidt, Spin Susceptibility of Neutron Matter at Zero Temperature, Phys.
Rev. Lett. 87, 181101 (2001).

§ S. Gandolfi, K.E. Schmidt, F. Pederiva, and S. Fantoni, Three nucleon interaction role in neutron
drops, in preparation. F. Pederiva, A. Sarsa, K. E. Schmidt and S. Fantoni, Auxiliary field diffusion Monte
Carlo calculation of ground state properties of neutron drops, Nucl. Phys. A 742, 255 (2004).

¶A. Fabrocini, S. Fantoni, A. Yu Illarionov, and K.E. Schmidt, 1S0 superfluid phase transition in neutron
matter with realistic nuclear potentials and modern many-body theories, Phys. Rev. Lett. 95, 192501
(2005).
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Results for neutron and proton systems

• Symmetric nuclear matter.†

• Selected nuclei.‡

†S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt Quantum Monte Carlo Calculations of
Symmetric Nuclear Matter Phys. Rev. Lett. 98, 102503 (2007).

‡ S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt, Auxiliary Field Diffusion Monte Carlo
Calculation of Nuclei with A40 with Tensor Interactions, Phys. Rev. Lett. 99, 022507 (2007).
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GFMC Model neutron drop comparison

Table 1: Ground state AFDMC energies of 8n(0+), 7n(1
2

+) and 7n(3
2

+)
droplets for V0 = 20MeV and the AU8’ and AU6’ interactions. The cluster
variational Monte Carlo (CVMC) and GFMC results†for the AU8’ and the
full AU18 (Argonne v18 plus Urbana IX) are also reported for comparison.
The last column reports the spin–orbit splittings (SOS) in MeV of 7n, given

by the energy difference between the 7n(3
2

+) and 7n(1
2

+) states.
8n(0+) 7n(1

2

+) 7n(3
2

+) SOS

GFMC(AU18) -37.8(1) -33.2(1) -31.7(1) 1.5(2)
CVMC(AU18) -35.5(1) -31.2(1) -29.7(1) 1.5(2)
GFMC(AU8’) -38.3(1) -34.0(1) -32.4(1) 1.6(2)
AFDMC(AU8’) -37.55(2) -33.06(3) -31.51(2) 1.55(5)

† S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson, Realistic models of pion-exchange
three-nucleon interactions, Phys. Rev. C 64, 14001 (2001).
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Neutron matter equation of state

0,2 0,4 0,6 0,8

 ρ  [fm-3
]

0

100

200

300

E
 [

M
eV

]
FP-AFDMC, AV8’
Akmal, AV18
FP-AFDMC, AV8’+UIX
Akmal, AV18+UIX

Akmal refers to the FHNC calculation†

† A. Akmal, V.R. Pandharipande, and D.G. Ravenhall, Equation of state of nucleon matter and neutron
star structure, Phys. Rev. C 58 1804 (1998).
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Low density neutron matter with Argonne v18
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E
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M
eV

]
AV8’+UIX
AV18+UIX
FP

FP is the calculation of Friedman and Pandharipande (not v18, but the low
energy channels are not very different).†

† B. Friedman and V.R. Pandharipande, Hot and cold, nuclear and neutron matter, Nucl. Phys. A
361, 502 (1981).
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Spin Susceptibility of neutron matter

The spin susceptibility and corresponding response functions can be related
to the neutrino cross sections in neutron matter. These cross sections have
important implications for the dynamics of supernovae.

The long wave length static response can be calculated from the energy.
Adding a magnetic field, the spin response is described by

H = H0 −
∑

i

�σi ·�b

�b = µ�B

µ = 6.03 × 10−18 MeV/Gauss

The spin susceptibility is

χ = −nµ2 ∂2E0(b)
∂b2

∣∣∣∣
b=0
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where E0(b) is the ground state energy in the field b.

The spin polarization with the field along ẑ is p = 〈σz〉. Using AFDMC we
can calculate E0(Jz, b) within the constrained path approximation. Using
the chain rule, we can write

χ

χPauli
=

h̄2k2
f

(
∂p
∂b

)2

3m ∂E
∂J2

z

and

p(Jz) = − ∂E0(b, Jz)
∂b

∣∣∣∣
b=0
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Noninteracting Energy with magnetic field

The energy of noninteracting neutrons as a function of magnetic field at
ρ = 0.32 fm−3 for various finite sized close shell trial functions with spin
up and down values shown. Also plotted is the correct infinite system
energy and the parabolic Pauli estimate.
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NonInteracting Susceptibility

The susceptibility χ of non–interacting fermions obtained by assuming that
the energies are quadratic in b, and normalized to the exact Fermi free gas
value χF .
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Calculation of Susceptibility

Assuming:

E0(Jz) is quadratic in Jz even at 57↑ + 7↓,

p(Jz) is linear in Jz even at 57↑ + 7↓,

Energy is linear in b even at 50 MeV.
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Compressibility

ρ/ρ0 Reid† Reid6‡ AU18§ AU6-CBF¶ AU6’
0.75 0.91 2.06 1.10 0.85 0.89(3)
1.25 0.70 1.35 0.71 0.45 0.47(3)
2.0 0.49 0.77 0.26 0.23 0.21(3)
2.5 0.42 0.60 0.15 0.17 0.14(3)

Compressibility ratio K/KF of neutron matter. The AFDMC results for
the AU6’ interaction are compared with other calculations. The statistical
error is given in parentheses.

† Brueckner calculations by S. O. Bäckmann and C. G. Källman, Phys. Lett. B 43 (1973) 263.
‡ CBF calculations by A. D. Jackson, E. Krotscheck, D. E. Meltzer and R. A. Smith, Nucl. Phys. A 386

(1992) 125.
§ FHNC calculations of A. Akmal,V. R. Pandharipande and D. G. Ravenhall, Phys. Rev. C 58 (1998)

1804.
¶ CBF calculations of A. Fabricini, private communication.
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Spin Susceptibility

ρ/ρ0 Reid† Reid6‡ AU6’ AU8’ Reid6
0.75 0.45 0.53 0.40(1)
1.25 0.42 0.50 0.37(1) 0.39(1) 0.36(1)
2.0 0.39 0.47 0.33(1) 0.35(1)
2.5 0.38 0.44 0.30(1)

Spin susceptibility ratio χ/χF of neutron matter. The AFDMC results for
the interactions AU6’, AU8’ and Reid6 are compared with those obtained
from the Landau parameters calculated from FHNC and CBF theories.
The statistical error is given in parentheses.

† Brueckner calculations by S. O. Bäckmann and C. G. Källman, Phys. Lett. B 43 (1973) 263.
‡ CBF calculations by A. D. Jackson, E. Krotscheck, D. E. Meltzer and R. A. Smith, Nucl. Phys. A 386

(1992) 125.
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Pion Condensate in neutron matter

• It has been conjectured that a “pion condensate” occurs in neutron stars

• This refers to a spin-density wave in neutron matter at high densities.

• The �σ · �∇π coupling to the pion field indicates that such a wave would
be accompanied by a pion field with a nonzero ground-state expectation
– sort of a condensate.

• Salt, NaCl, has a separation of charge which gives a ground-state
expectation of the electric field – maybe we should call this a photon
condensate.
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Pion Condensate Results

PW = Plane wave
model state

SD = Spin density wave model state
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He Isotopes

4He

AFDMC v′
6 -27.13(10) MeV

Hyperspherical v′
6 -26.93(1) MeV†

GFMC v′
6 -26.93(1) MeV [ -26.23(1) -0.7 MeV Coulomb ]‡

Expt -28.296 MeV

8He

AFDMC v′
6 -23.6(5) MeV (Unstable to breakup into 4He+2n)

GFMC v′
6 -23.55(8) MeV [ -22.85(8) -0.7 MeV Coulomb ]

Expt -31.408 MeV

† G. Orlandini, private communication
‡ R.B. Wiringa and S.C. Pieper, Evolution of Nuclear Spectra with Nuclear Forces, Phys. Rev. Lett. 89,

182501 (2002).
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Oxygen

16O

AFDMC v′
6 -100.7(4) MeV (Unstable to breakup to 4 4He)

Expt -127.619 MeV

AFDMC Urbana v14 truncated to 6 operators -90.8(1) MeV

Cluster Monte Carlo give for the 6 operator part of v14

(optimized for 14 operators), -83.2 MeV†

† S. C. Pieper, R. B. Wiringa, and V. R. Pandharipande, Variational Calculation of the Ground-State of
16O, Phys. Rev. C 46, 1741-1756 (1992).
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Calcium

40C AFDMC v′
6 -272(2) MeV (Equal to 10 4He)

Expt -342.051 MeV
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Nuclear matter Energy, 28 particles

0.5 1 1.5 2 2.5 3
ρ /ρ0
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AFDMC fit
AFDMC
FHNC/SOC
FHNC/SOC + elem.
BHF

Dashed lines correspond to calculations performed with other

methods† (blue line with squares: FHNC/SOC; magenta with

diamonds: BHF). Blue triangles are FHNC/SOC results

corrected with elementary diagrams.
† I. Bombaci, A. Fabrocini, A. Polls, I. Vidaña, Spin-orbit tensor interactions in homogeneous matter of

nucleons: accurancy of modern many-body theories, Phys. Lett. B, 609, 232 (2005).
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The AFDMC equation of state is fit to

E

A
=

E0

A
+ α(x − x̄)2 + β(x − x̄)3,

x = ρ/ρ0 ρ0 = 0.16 fm−3.

E0/A = -14.04(4) MeV

α = 3.09(6) MeV

β = -0.44(8) MeV

x̄ = 1.83(1)

The compressibility

K = 9x̄2
(
∂2 (E/A) /∂x2

)
x̄

at saturation density x̄ is ∼ 190

MeV.

Results with 76 and 108 particles are within 3 percent of those

for 28 particles.
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Conclusions and Future

• The auxiliary field Diffusion Monte Carlo calculations can

give accurate results for nuclei, neutron and nuclear matter.

• They have polynomial scaling with system size

• The three-body and spin-orbit potentials need to be

included for the neutron-proton case.

• Asymmetric matter can be calculated.

• Physics of neutron rich nuclei can be studied – these are

difficult to produce in laboratories, but important for

R-process reactions.

• Temperature > 0 is possible.
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