DIAGRAMMATIC MONTE CARLO LAB:

In Diagrammatic Quantum MC the number of variables is fluctuating:

$$
Z(\vec{y})=\sum_{n=0}^{\infty} \sum_{\xi} \iiint \underbrace{d \vec{x}_{1} d \vec{x}_{2} \ldots d \vec{x}_{n}} W_{n}\left(\xi ; \vec{x}_{1}, \vec{x}_{2}, \ldots \vec{x}_{n}, \vec{y}\right)
$$

Data structure: linked arrays (common to all Diag.MC schemes)

bead3=prev(bead2)
bead2=next(bead3)
β - periodicity is automatic
beads have the usual attributes:

- spatial coordinates
- time slice
- particle type
etc.

Beads as objects must be assigned a unique ID number.
To ensure this in the simulation where beads are constantly created and deleted introduce two additional arrays.

- each box has an ID number
- IDs in boxes $1,2,3, \ldots$, lastbox are all used for existing beads
- IDs in boxes lastbox+1, lastbox+2, ... are all free to use for new beads

The actual arrays are:

> | box(bead) | storage box number where the bead ID is "kept" |
| :--- | :--- |
| ID(box) | ID kept in the "storage box" |

Now, if a bead is eliminated from the configuration we do the following:


```
n=box(bead)
m=ID(lastbox)
ID(lastbox)=bead
ID(n)=m
lastbox=lastbox-1
```

collect information
exchange IDs places
Done! Eliminated Bead's ID is now available for new beads

If a new bead is created we assign it ID from the lastbox+1
lastbox=lastbox+1 newbead=ID(lastbox)

In the config. space of Feynman diagrams one uses more than one linking array (topology is more complex).

In this example IDs are given to line elements:

What is required is the minimal information to draw the graph. When updates are performed and graph elements are eliminated one has to update links


```
I3=next(11)
I1=prev(13)
I5=next(13)
|3=prev(15)
```

Summation of divergent/asymptotic series.
What do you think of the following series?

$$
A=\sum_{n=0}^{\infty} c_{n}=\sum_{n=0}^{\infty}(-1)^{n}=1-1+1-1+1 \ldots \text { (Grandi series) }
$$

In Diag.MC you can get something of this kind (with C_{n} being the result of the simulation) but may divergent and oscillating more strongly, e.g. $A=1-5+25-125+625$... Does the simulation make sense?

The answer is YES, all of this makes perfect sense, keep reducing error bars!

Define a finction $\quad f_{n, N}$ which has the following shape, i.e.

$$
\begin{aligned}
& f_{n, N} \rightarrow 1 \text { for } n \ll N \\
& f_{n, N} \rightarrow 0 \text { for } n>N
\end{aligned}
$$

Construct sums $A_{N}=\sum_{n=0}^{\infty} c_{n} f_{n, N}$ and extrapolate $\lim _{N \rightarrow \infty} A_{N}$ to get A

Let's try the Grandi series.

Now, write a simple code doing the same job for:

$$
f_{n, N}=\left(\frac{N-n}{N}\right)^{p}
$$

Riesz-function for $p=2,3 \ldots$
Is the limit the same?

For $\mathrm{p}=2$ the data should look like this and when plotted as a function of $1 / \mathrm{N}$ allow a perfect linear extrapolation.

Try $p=3,4, \ldots$

Well, now feel the power by trying
$f_{n, N}=e^{-n^{2} / N}$ for $(n<N)$

	1		
1	1.000000	Generated by:	
2	0.7500000		
3	0.666667		
4	0.6250000		
5	0.6000001		
6	0.5833333		
7	0.5714285		
8	0.5625000		
9	0.5555555		
10	0.5500000		
11	0.5454546		
12	0.5416666		
13	0.5384616		
14	0.5357143		
15	0.5333334		
16	0.5312500		
17	0.5294117		
18	0.5277778		
19	0.5263158		
20	0.5250000		

```
integer, parameter :: M=100, p=2
    s, a(1:M), f(0:M,1:M)
DO n=1,M
    DO k=0,n
        f(k,n)=((n-k)*1./n)**p
        ENDDO
ENDDO
DO n=1,M
a(n)=0
    s=1.
    DO k=0,n-1
        a(n)=a(n)+f(k,n)*s
        s=-s
        ENDDO
ENDDO
DO n=1,M
PRINT*, n, a(n)
ENDDO
```


Main lesson:

When the re-summation method works the final answer is the same and method independent!
Re-summation determines an analytic function behind the series outside the radius of convergence.

In our case it was

$$
A(x)=\frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \text { for } x=1
$$

and the final answer is $1 / 2$ (for $x>1$ the "step-type" function f has to suppress exponentially growing high-order terms; otherwise f is arbitrary).

Thus series divergence is NOT a problem preventing one from using Diag.MC

Solving equations using Diag.MC

$$
f=\frac{a}{1+u}
$$

use Diag.MC

solve it iteratively

$$
f_{0}=a
$$

$$
f_{n+1}=a-u f_{n}
$$

$$
f_{0}=a
$$

$$
\downarrow
$$

$$
f_{1}=a-u f_{0}=a-u a
$$

$$
f_{2}=a-u f_{1}=a-u a+u^{2} a
$$

$f=a-u a+u^{2} a-u^{3} a+u_{4} a-\cdots$
$|u|>1$, divergent series: resummation techniques

Write a simple program which mimicks a Monte Carlo calculation

$$
\begin{aligned}
& a=1 \quad u=2.5 \\
& f_{1}=a \\
& \text { do loop } \\
& f_{n+1}=a-u \sum_{i=1}^{n} \frac{f_{i}}{n} \\
& \text { end do loop }
\end{aligned}
$$

```
double precision:: a=1.0, u=2.5
double precision:: f_result, f_now, f_average
integer :: n=20,i
f_average = a
    f_now = f_average
do I = 1, n
        print*, i, f_now
    f_now = a-u*f_averageli
    f_average = f_average + f_now
enddo
f_result = f_now
print*, f_result
end
```

