
DIAGRAMMATIC MONTE CARLO LAB:

In Diagrammatic Quantum MC the number of variables is fluctuating:

() ()11 2 2
0

 ; , , ,nn
n

nd x d x dZ y W x x xx y
ξ

ξ
∞

=

= ∑∑∫∫∫ … …

term order

Integration variables

For example, in Worm Algorithm PIMC
one has to change the number of beads

(advance/recede update)

Data structure: linked arrays (common to all Diag.MC schemes)

1bead 57=

2bead 12=

3bead 319=

bead3=prev(bead2)
bead2=next(bead3)

- periodicity is automatic β

beads have the usual
attributes: R(bead)

tau(bead)
type(bead)

- spatial coordinates
- time slice
- particle type

etc.

Beads as objects must be assigned a unique ID number.

To ensure this in the simulation where beads are constantly created and deleted
introduce two additional arrays.

Storage boxes lastbox

- each box has an ID number

1 2 3 4

- IDs in boxes 1,2,3, …, lastbox are all used for existing beads

- IDs in boxes lastbox+1, lastbox+2, … are all free to use for new beads

The actual arrays are:
box(bead)
ID(box)

storage box number where the bead ID is “kept”
ID kept in the “storage box”

Now, if a bead is eliminated from the
configuration we do the following:

n=box(bead)
m=ID(lastbox)

ID(lastbox)=bead
ID(n)=m

lastbox=lastbox-1

collect information

exchange IDs places

Done! Eliminated Bead’s ID is now available for new beads

If a new bead is created we assign it ID from the lastbox+1

lastbox=lastbox+1
newbead=ID(lastbox)

Done!

In the config. space of Feynman diagrams one uses more
than one linking array (topology is more complex).

In this example IDs are given to line elements:

1l 2l 3l 4l 5l

l3=prev(l4)
l4=next(l3)
etc.

But also: l2=link(l4)
l4=link(l2) “left end” convention:

What is required is the minimal
information to draw the graph.
When updates are performed and
graph elements are eliminated one
has to update links

1l 3l 5l

l3=next(l1)
l1=prev(l3)
l5=next(l3)
l3=prev(l5)

+ update line attrributes (mometum, duration in time, etc.)

Summation of divergent/asymptotic series.

What do you think of the following series?

0 0
(1) 1 1 1 1 1 ... (Grandi series)n

n
n n

A c
∞ ∞

= =

= = − = − + − +∑ ∑

In Diag.MC you can get something of this kind (with being the result of the simulation)
but may divergent and oscillating more strongly, e.g.
Does the simulation make sense?

nc
1 5 25 125 625 ... A = − + − +

The answer is YES, all of this makes perfect sense, keep reducing error bars!

Define a finction which has
the following shape, i.e.

, n Nf , n Nf

N

1
, 1 for n Nf n N→ <<

, 0 for n Nf n N→ >

Construct sums and extrapolate to get ,
0

N n n N
n

A c f
∞

=

= ∑ lim NN
A

→∞
A

Let’s try the Grandi series.

Introduce Cesaro function:

Calculate:

,n N
N nf

N
−

=

1

,
0

N

N n n N
n

A c f
−

=

= ∑
1, 2, 3, ...N =

To get:
01

1/ 22N

N even
A

N N odd
=⎛ ⎞

= + ⎜ ⎟= ⎝ ⎠

With the limit: lim 1/ 2NN
A

→∞
=

Now, write a simple code doing the same job for:

,

p

n N
N nf

N
−⎛ ⎞= ⎜ ⎟

⎝ ⎠
Riesz-function for p=2,3…

Is the limit the same?

1 1.000000
2 0.7500000
3 0.6666667
4 0.6250000
5 0.6000001
6 0.5833333
7 0.5714285
8 0.5625000
9 0.5555555
10 0.5500000
11 0.5454546
12 0.5416666
13 0.5384616
14 0.5357143
15 0.5333334
16 0.5312500
17 0.5294117
18 0.5277778
19 0.5263158
20 0.5250000

For p=2 the data
should look like this
and when plotted as
a function of 1/N
allow a perfect linear
extrapolation.

integer, parameter :: M=100, p=2
real :: s, a(1:M), f(0:M,1:M)

DO n=1,M
DO k=0,n

f(k,n)=((n-k)*1./n)**p
ENDDO

ENDDO

DO n=1,M
a(n)=0

s=1.
DO k=0,n-1

a(n)=a(n)+f(k,n)*s
s=-s
ENDDO

ENDDO

DO n=1,M
PRINT*, n, a(n)
ENDDO

END

Generated by:

2 /
, for ()n N

n Nf e n N−= <

Well, now feel the
power by trying

Try p=3,4,…

Main lesson:

When the re-summation method works the final answer is the same
and method independent !
Re-summation determines an analytic function behind the series
outside the radius of convergence.

In our case it was

and the final answer is 1/2 (for x>1 the “step-type” function f has to
suppress exponentially growing high-order terms; otherwise f is arbitrary).

Thus series divergence is NOT a problem preventing one from using Diag.MC

0

1() (1) for 1
1

n n

n
A x x x

x

∞

=

= = − =
+ ∑

Solving equations using Diag.MC

ufaf −=
u

af
+

=
1

solve it iterativelyuse Diag.MC

f0=a
fn+1=a-ufn

f0=a
f1=a-uf0=a-ua
f2=a-uf1=a-ua+u2a

…….

f=a-ua+u2a-u3a+u4a- …

|u|>1, divergent series:
resummation techniques

MC scheme
each diagram f

∑
=

+

=

−=
n

i

i
nMC

nMCn

n
ff

fuaf

1
,

,1

∑
=

+ −=
n

i

i
n n

fuaf
1

1

Write a simple program which mimicks a Monte Carlo calculation

1 1.
2 -1.5
3 1.625
4 0.0625
5 0.2578125
6 0.27734375
7 0.282226562
8 0.283970424
9 0.284733364
10 0.285114833
11 0.285324642
12 0.285448619
13 0.285526105
14 0.285576769
15 0.285611148
16 0.285635214
17 0.285652511
18 0.285665229
19 0.285674768
20 0.285682048

do loop

f n+ 1 = a u
i= 1

n f i

n
end do loop

1f a=

1 2.5a u= =

f=0.285714286

double precision:: a=1.0, u=2.5
double precision:: f_result, f_now, f_average
integer :: n=20,i

f_average = a
f_now = f_average

do I = 1, n
print*, i, f_now

f_now = a – u * f_average/i
f_average = f_average + f_now

enddo

f_result = f_now
print*, f_result
end

