DIAGRAMMATIC MONTE CARLO LAB:

In Diagrammatic Quantum MC the number of variables is fluctuating:

(%) szdxmxz A% W, (£, X, X0, Y)

n=0 ¢&

Integration varlables

term order _ _
For example, in Worm Algorithm PIMC

one has to change the number of beads

Ira

M asha M asha

(advancel/recede update)

Data structure: linked arrays (common to all Diag.MC schemes)

bead, =57

bead3=prev(bead?2)

bead, =12 bead2=next(bead3)

[- periodicity is automatic

bead, =319

beads have the usual

attributes: R(bead) - spatial coordinates
tau(bead) - time slice
type(bead) - particle type

etc.

Beads as objects must be assighed a unique ID number.

To ensure this in the simulation where beads are constantly created and deleted
introduce two additional arrays.

Storage boxes lastbox

L]

1 2 3 4

- each box has an ID number

- IDs in boxes 1,2,3, ..., lastbox are all used for existing beads

- IDs in boxes lastbox+1, lastbox+2, ... are all free to use for new beads

The actual arrays are:
box(bead) storage box number where the bead ID is “kept”

ID(box) ID kept in the “storage box”

Now, if a bead is eliminated from the
configuration we do the following:

n lastbox
b m]
n lastbox

m I b

n=box(bead) collect information
m=ID(lastbox)

ID(lastbox)=bead exchange IDs places
ID(n)=m

lastbox=lastbox-1 Done! Eliminated Bead’s ID is now available for new beads

If a new bead is created we assign it ID from the lastbox+1

lastbox=lastbox+1

newbead=ID(lastbox)

Done!

In the config. space of Feynman diagrams one uses more
than one linking array (topology is more complex).

In this example IDs are given to line elements:

|3=prev(l4)

|4=next(I3)
etc.

L1, l, 1,

But also: 12=link(14)
14=link(12) “left end” convention:

What is required is the minimal
information to draw the graph.
When updates are performed and
graph elements are eliminated one |1 |3 |5
has to update links

|3=next(I1)

|1=prev(l3 . : L
prev(13) + update line attrributes (mometum, duration in time, etc.)

|5=next(I3)
|3=prev(l5)

Summation of divergent/asymptotic series.

What do you think of the following series?

A=Y c,=> (-1)"=1-1+1-1+1 ... (Grandi series)
n=0

n=0

In Diag.MC you can get something of this kind (with C_ being the result of the simulation)
but may divergent and oscillating more strongly, e.g. A=1-5+25-125+625 ...
Does the simulation make sense?

The answer is YES, all of this makes perfect sense, keep reducing error bars!

Define a finction fn’N which has fn’N
the following shape, i.e. 1

f,y =1 for n<<N

f,n =0 for n>N

Construct sums A = E c,f , andextrapolate [!]illl Ay toget A
, —>00
n=0

Let’'s try the Grandi series.

Introduce Cesaro function:

Calculate:

To get:

With the limit: lim A, =1/2

N —o0

Now, write a simple code doing the same job for:

Riesz-function for p=2,3...

Is the limit the same?

should look like this 0.7500000 s, a(1:M), f(0:M,1:M)
and when plotted as 0.6666667
. P 4 0.6250000 DO n=1,M
a function of 1/N DO k=0 n
. 0.6000001 On
allow a perfect linear 05833333 f(k,n)=((n-k)*1./n)**p
extrapolation : ENDDO
P : 0.5714285 ENDDO
0.5625000
0.5555555 DO n=1,M
T 34 0.5500000 a(n)=10
r =o,4,... s=1.
. oo
-5 a(n)=a(n)+f(k,n)*s
0.5384616 s
0.5357143 ENDDO
Well, now fegl the 0.5333334 ENDDO
power by trying 0.5312500
DO n=1,M
fo—eNfor (n<N 0.5294117 L
N () e PRINT*, n, a(n)

ENDDO
0.5263158

0.5250000

Main lesson:

When the re-summation method works the final answer is the same
and method independent !

Re-summation determines an analytic function behind the series
outside the radius of convergence.

In our case it was

1 o0
A(X)=——= ~D"x" for x=1
(x) T Z(;()

and the final answer is 1/2 (for x>1 the “step-type” function f has to
suppress exponentially growing high-order terms; otherwise f is arbitrary).

Thus series divergence is NOT a problem preventing one from using Diag.MC

Solving equations using Diag.MC

use Diag.MC solve it iteratively
fo=a
MC scheme f..,=a-uf,
each diagram - f B
fo=a
=a- U< f >Mc,n f,=a-uf,=a-ua
— — 2
< > &, f,=a-uf,=a-ua+u-a
MC ,n n

= f=a-ua+ua-uda+u,a- -

n -I:
f.,=a-u) — lu|>1, divergent series:
i-1 N resummation techniques

Write a simple program which mimicks a Monte Carlo calculation

1.

-1.5
1.625
0.0625
0.2578125
0.27734375
0.282226562
0.283970424
0.284733364

L
f —a—u Z H 0.285114833

a=1 u=25

f,=a

do loop

O©oO~NOOTLHS, WN B

0.285324642
0.285448619
0.285526105
0.285576769
0.285611148
0.285635214
0.285652511
0.285665229
0.285674768
0.285682048

end do loop

—

f=0.285714286

double precision:: a=1.0, u=2.5
double precision:: f result, f now, f_average
Integer :: n=20,i

f average = a
f now =f _average

dol=1,n
, I, f_now
f now=a—-u*f averagel/i
f average =f average +f now
enddo

f result=f now
, T result
end

