Some applications of diffusion quantum Monte Carlo

Richard Needs

Theory of Condensed Matter Group Cavendish Laboratory University of Cambridge

Many-Body Wave functions

Slater – Jastrow
$$\Phi_{SJ}(\mathbf{R}) = e^{J(\mathbf{R})} \det \left[\phi_i(\mathbf{r}_i^{\uparrow})\right] \det \left[\phi_i(\mathbf{r}_j^{\downarrow})\right]$$

Multi – Det $\Phi_{MD}(\mathbf{R}) = e^{J(\mathbf{R})} \sum c_n \det \left[\phi_n(\mathbf{r}_i^{\uparrow})\right] \det \left[\phi_n(\mathbf{r}_j^{\downarrow})\right]$
Singlet Pairing $\Phi_{SP}(\mathbf{R}) = e^{J(\mathbf{R})} \det \left[\psi(\mathbf{r}_i^{\uparrow}, \mathbf{r}_j^{\downarrow})\right]$
Backflow $\Phi_{BF}(\mathbf{R}) = e^{J(\mathbf{R})} \det \left[\phi_i(\mathbf{r}_i^{\uparrow} + \xi_i(\mathbf{R}))\right] \det \left[\phi_i(\mathbf{r}_j^{\downarrow} + \xi_j(\mathbf{R}))\right]$

Can make Jastrow-pairing-backflow wave functions etc.

All-electron atoms Li-Ne

Brown, Trail, López Ríos, and RJN, J Chem Phys 126, 224110 (2007)

Dissociation energy of the water dimer

Weak hydrogen bond

Experimental dissociation energy minus calculated vibrational effects: 5.44 ± 0.7 kcal/mol or 5.00 ± 0.7 kcal/mol or 5.14 kcal/mol 0.236 ± 0.03 eV or 0.217 ± 0.03 eV or 0.223 eV

The water monomer

All-electron VMC and DMC calculations using CCSD(T) geometry

Method	Wave function	Error in Energy (eV)	Error in Energy (kcal/mol)
VMC	SJ	1.65(5)	38.1(12)
VMC	SJB	0.94(5)	21.7(12)
DMC	SJ	0.28(14)	6.5(32)
DMC	SJB	0.26(14)	6.0(32)

Errors in total energy for water molecule (total energy is \simeq 2080 eV)

Dissociation energy of the water dimer

Method	Wave function	D_e (eV)	$D_e~({\sf kcal/mol})$
AE-CCSD(T)		0.218(2)	5.02(5)
AE-DMC	SJ	0.224(4)	5.16(10)
AE-DMC	SJB	0.232(4)	5.35(10)
PP-DMC	SJ	0.220(3)	5.07(7)
PP-DMC	SJB	0.233(3)	5.38(8)

Dissociation energy of water dimer

 $AE \equiv AII$ -electron

 $PP \equiv Pseudopotential$

CCSD(T) value from Klopper et al. Phys Chem Chem Phys 2, 2227 (2000)

Gurtubay and RJN, J Chem Phys 127, 124306 (2007)

Van der Waals energies for wires and sheets

Van der Waals interaction energies between separated objects may be evaluated as a sum of $1/R^6$ interactions between atoms or volume elements

This is not correct for metals which are spatially extended in at least one dimension (to allow long-wavelength charge fluctuations) but are small in another dimension (to reduce e-e screening)

Random Phase Approximation (RPA) calculations: Sernelius and Björk, Phys Rev B 57, 6592 (1998) Dobson, White, and Rubio, Phys Rev Lett 96, 073201 (2006)

System	RPA	Standard
Two parallel metallic wires	$-d^{-2}(\ln(Kd))^{-3/2}$	$-d^{-5}$
Two parallel metallic sheets	$-d^{-5/2}$	$-d^{-4}$

Asymptotic behaviour of van der Waals energy

Two parallel electron wires

Two parallel 1D HEG wires, density $r_s = 3$ a.u. PCF at wire separation z = 3 a.u.

$$U_{\rm RPA}(z) \approx -\frac{\sqrt{r_s}/(16\pi)}{z^2 \left[\log(2.39z/b)\right]^{3/2}}$$
$$U_{\rm DMC}(z) = -\frac{0.0225}{z^{1.98} \left[\log(1.95z)\right]^{3/2}}$$

Drummond and RJN, Phys Rev Lett 99, 166401 (2007)

Two parallel electron sheets

Two parallel 2D HEG wires, density $r_s = 10$ a.u. PCF at wire separation z = 3 a.u.

$$U_{\rm RPA}(z) \approx -\frac{0.012562\sqrt{\pi}r_s}{2z^{5/2}}$$
$$U_{\rm DMC}(z) = -\frac{0.0388}{z^{2.64}}$$

Drummond and RJN, Phys Rev Lett 99, 166401 (2007)

Equation of State of Diamond

• Understanding the physical properties of diamond at high pressures is important for the design and operation of diamond anvil cells

• Equilibrium volume and bulk modulus of diamond are well established from experiment, but the pressure derivative of the bulk modulus is not

 $B'_0 = 4.0 \pm 0.5$ McSkimin and Andreatch (1972) $B'_0 = 3.0 \pm 0.1$ Occelli *et al.* (2003)

• Datchi et al. (2007) fitted data of Occelli et al. to new ruby scales Five scales dating from 2003 to present give $B_0 = 432(3) - 444(2)$ GPa $B'_0 = 3.66(7) - 4.05(7)$

• Could use pressure dependence of the Raman frequency and equation of state of diamond to determine pressure in the diamond anvil cell

Equation of State of Diamond from QMC

Hartree-Fock pseudopotentials, 128 atom and 250 atom simulation cells PBE-GGA orbitals, plane waves \Rightarrow "B-splines"

Maezono, Ma, Towler, and RJN, Phys Rev Lett 98, 025701 (2007)

Equation of State of Diamond from QMC

	LDA	PBE	VMC	DMC	Expt. (295 K)
V_0 (a.u.)	37.31	38.61	37.82(6)	38.54(6)	38.284
B_0 (GPa)	454	422	472(4)	437(3)	432(3)-444(2)
B'_0	3.65	3.72	3.8(1)	3.7(1)	3.66(7)-4.05(7)

Conclusions

• DMC is a very general method, one can treat fermions and bosons with any interactions and any form of wave function

• DMC is feasible for large systems

• DMC is the most accurate method known for computing the total energies of large assemblies of interacting quantum particles

• DMC is expensive - but worth it!