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motivations: beyond DFT

Modern AB-INITIO simulation methods are largely based on Density Functional Theory
(DFT), in principle exact but in practice it invokes the Local Density Approximation (LDA
and various improvements GGA).

DFT+LDA(GGA) is in general a good compromise between accuracy and efficiency to
perform dynamical studies of several hundreds atoms for times of the order of 100 psec
(Car-Parrinello and BO Molecular Dynamics).

There are cases in which DFT is not accurate enough (Van-der-Waals bonding
systems, sp-bonded materials, calculation of excitation energies and energy gaps)

Can we do better than DFT? Quantum Monte Carlo (QMC) provides in general better
electronic energies for given ionic positions.
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beyond DFT

Can we devise an efficient method to exploit the accuracy of QMC in AB-INITIO

"dynamical" simulation of condensed systems?
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beyond DFT

Can we devise an efficient method to exploit the accuracy of QMC in AB-INITIO

"dynamical" simulation of condensed systems?

Previous attempts

Diffusion Monte Carlo for electrons and nuclei (DMC)
(Ceperley-Alder 1987)
- temperature effects are absent
- time scale separation problem (even for hydrogen!)

Restricted Path Integral Monte Carlo (RPIMC)
(Pierleoni, Ceperley et al, 1994, Militzer & Ceperley 1999)
- electrons and nuclei are at finite temperature
- sampling problem at low temperature (T < 1/20TF )
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beyond DFT

Can we devise an efficient method to exploit the accuracy of QMC in AB-INITIO

"dynamical" simulation of condensed systems?

Previous attempts

Diffusion Monte Carlo for electrons and nuclei (DMC)
(Ceperley-Alder 1987)
- temperature effects are absent
- time scale separation problem (even for hydrogen!)

Restricted Path Integral Monte Carlo (RPIMC)
(Pierleoni, Ceperley et al, 1994, Militzer & Ceperley 1999)
- electrons and nuclei are at finite temperature
- sampling problem at low temperature (T < 1/20TF )

Coupled Electron-Ion Monte Carlo (CEIMC)
- Born-Oppenheimer separation of time scales:
ground state electrons, finite T nuclei
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High pressure hydrogen

The most abundant element in the universe : giant planets (>90%)

The simplest element in the periodic table: good theoretical playground

Still so much unknown!! The high pressure phases are still largely out of the
experimental reach.
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Hydrogen: phase diagram
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Continuous transition lines (in black): experimental results
dashed lines: theoretical prediction from various methods
red lines: model adiabats for the interior of the giant planets of the solar system
diamonds: shock-waves experimens through liquid metalization (Weir et al. PRB ’96)
squares: CPMD predictions of molecular melting (Bonev et al, Nature ’04)
right-triangle: CPMD predictions for molecular dissociation in the liquid phase (Scandolo, PNAS ’03).
in green: CEIMC predictions
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Hydrogen: know facts

Solid hydrogen is insulating up to 3.5Mbars (DAC experiments, Loubeyre Nature ’02)

at T=0K molecular dissociation occurs at rs=1.31 (DMC, Ceperley Alder PRB ’87).
At the molecular dissociation a diamond structure of protons is predicted. At higher
pressure a diamond–bcc transition is expected (DMC, Natoli et al PRL ’93).

crystal structures of different symmetry can have very close energies: needs of very
accurate total energy methods.

Size effects are crucial to obtain accurate energies (Brillouin zone sampling in CPMD).

ZPM is large and favors isotropic structures (Kitamura et al, Nature 2000).

Predicting metalization requires going beyond DFT-LDA-GGA (Johnson Ashcroft,
Nature 2000)

Most recent prediction (T=0K): Pc '4Mbars within the molecular phase
(DFT-Exact-Exchange functional) (Stadele and Martin, PRL 2000).

Molecular-atomic (insulating-metallic) transition in the liquid at higher temperature
(T=1500K) has been recently predicted by CPMD (Scandolo, PNAS 2003) but not yet
confirmed by experiments. At higher T ('5000K) PIMC exhibits a continuous
molecular-atomic transition.
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CEIMC

CEIMC: Metropolis Monte Carlo for the finite T ions. The BO energy in the Boltzmann
distribution is obtained by a QMC calculation for the gound state electrons.

Finite temperature Ions: Noisy Monte Carlo The Penalty Method

Ground state electrons:

VMC & RQMC

Energy difference methods

Finite size effects: Twist Average Boundary Conditions (TABC) within CEIMC

Moving the electrons: the bounce algorithm

Trial wave functions for hydrogen

Pre-rejecting protonic moves: multilevel Metropolis

Strategy for Protonic PIMC within CEIMC
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Moving the ions

- In Metropolis MC we generate a Markov chain of ionic states S distributed according to
Boltzmann

P (S) ∝ exp(−βEBO(S))

EBO(S) = Born-Oppenheimer energy for the configuration S.
- Given an initial state S we propose a trial state S ′ with probability

T (S → S′) = T (S′ → S)

and we accept the move with probability

A(S → S′) = min
ˆ

1, exp
˘

−β[EBO(S′)−EBO(S)]
¯˜

- After a finite number of moves the Markov chain is distributed with Boltzmann (if ergodicity
holds).
- But EBO(S) from QMC is noisy ⇒ use the penalty method (Ceperley Dewing ’99)
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The Penalty Method

Assume mean value and variance of the energy difference over the noise distribution
P (δ|S, S′) exist

β[EBO(S′)− EBO(S)] = < δ(S, S′) >= ∆(S, S′)

< (δ −∆)2 > = σ2(S, S′)

We want to find the new acceptance probability a(S → S ′) such that we satisfy detailed
balance on average:

T (S → S′) < a(S → S′) >= T (S′ → S) < a(S′ → S) > exp[−β∆(S, S′)]

< a(S → S′) >=

Z ∞

−∞

dδP (δ|S, S′)a(δ|S,S′)

Under general assumption one can show that

a(δ|σ) = min

»

1, exp

„

−δ −
σ2

2

«–

The noise always causes extra rejection !

D.M.Ceperley and M.Dewing, J. Chem. Phys., 110, 9812 (1999)
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The Penalty Method

EFFICIENCY: which level of noise is optimal?
For a generic observable we ask which level of noise minimizes its statistical error ε2 at
fixed computer time T : T = m[nt + t0]

m=total number of ionic steps attempted
n=number of electronic calculations before the acceptance test
t=CPU time for a single electronic calculation
t0=time in the noiseless part of the code per total step
In general ε = c(s)m−(1/2) and s = σn−(1/2). (c(s) and σ are unknown).
A measure of the inefficiency of our calculation is:

Tε2 = c2(s)t0

»

1 +
f

s2

–

f = σ2 t

t0

For any given application we have to chose s which minimize this quantity.

In few simple examples the optimal noise level was found to be s2 = σ2/n ≈ 1.
In CEIMC other constraints imposes the noise level but as a rule of thumb we always try
to stay around 1.

σ2 ∼ T−2: lowering the temperature requires smaller noise level, i.e. longer electronic
runs
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VMC 1

The “Variational Theorem”: assume a trial wave function for the electrons in the external
field of the ions ΨT (X|S) and compute the total energy as the average of the local
energy EL = Ψ−1

T HΨT

E0 ≤ ET =
< ΨT |Ĥ|ΨT >

< ΨT |ΨT >
=

R

dX|ΨT (X; S)|2Ψ−1
T (X; S)ĤΨT (X; S)

R

dX|ΨT (X; S)|2

The functional form of the trial wave function must be suitable

continuous

of proper symmetry

normalizable

with finite variance (for MC only)

Parametrized: for a given functional form ΨT depends on a number of parameters
~α = (α1, . . . , αn)

ΨT (X|S, ~α) =⇒ ET (S, ~α) = 〈EL(X|S, ~α)〉
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VMC 2

1. Since |ΨT |
2 ≥ 0, VMC uses Metropolis MC to sample P (X|S, α) = |ΨT |

2/
R

dr|ΨT |
2.

2. take averages of the local energy and the variance

3. optimize over {αi} by minimizing energy and/or variance

4. repeat until convergence is reached

in CEIMC VMC-optimization should be done for each protonic configuration:
major bottleneck for the method

possible solutions

use an automatic optimization method such as Projection MC

in special cases use trial wave functions without variational parameters
(mono-atomic metallic hydrogen)
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Reptation QMC: RQMC-1

Assume a trial state |ΨT >

|ΨT >=
P

i ci |Φi > eigenstates of Ĥ

|Ψ(t) >≡ e−tĤ |ΨT >=
X

i

cie
−tEi |Φi >=⇒ lim

t→∞
|Ψ(t) >∝ |Φ0 >

E0 =
< Φ0|Ĥ|Φ0 >

< Φ0|Φ0 >
= lim

t→∞

(

E(t) =
< Ψ(t/2)|Ĥ|Ψ(t/2) >

< Ψ(t/2)|Ψ(t/2) >
=

< ΨT |e
− t

2
ĤĤe−

t
2

Ĥ |ΨT >

< ΨT |e−tĤ |ΨT >

)

Define the generating function of the moments

Z(t) =< ΨT |e
−tĤ |ΨT > =⇒

8

>

>

<

>

>

:

E(t) = −∂t log Z(t) =< EL >t −→ E0

t →∞

σ2(t) = ∂2
t log Z(t) = −∂tE(t) > 0 −→ 0

- The energy converges monotonously from above (∂tE(t) 6 0)
- At any finite time t, E(t) is a variational upper bound to E0: E(t) > E0
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RQMC - 2

In configuration space

Z(t) =

Z

dRdR′ < ΨT |R > ρ(R, R′, t) < R′|ΨT >

ρ(R, R′, t) =< R|e−tĤ |R′ > is the thermal density matrix at inverse temperature t.

Factorization (t = Mτ ) =⇒ path integral

ρ(R, R′, t) =< R|(e−τĤ )M |R′ >=

Z

dR1 · · · dRM−1

M−1
Y

k=1

ρ(Rk−1, Rk, τ)

R0 = R, RM = R′ paths boundary conditions in imaginary time

Importance sampling

Z(t) =

Z

dRdR′ΨT (R)
D

e−
R

t
0

dτEL(R(τ))
E

DRW
ΨT (R′)
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Summary of FN-RQMC

Build a path Q = (R0, . . . , RM ) for the system of Ne electrons at fixed ionic
configuration S.

Sample the path space according to the distribution

Π(Q|S) = exp
ˆ

− U(R0|S)− U(RM |S)−A(Q|S)
˜

U(R|S) = <[lnΨ
T

(R|S)]

A(Q|S) = path action

FN: check ΨT (Rk−1)ΨT (Rk) > 0 along the path. Otherwise reject the new path.

Compute the local energy and the variance at path ends, other properties at the middle:

O(t) =
1

Z(t)

Z

dR1dR2dR3Ψ∗T (R1)ρ(R1, R2|
t

2
) < R2|Ô|R2 > ρ(R2, R3|

t

2
)ΨT (R3)

no mixed estimators bias!!!

ensure convergence to the continuum limit (τ → 0) and to the ground state (t →∞)
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Energy difference method

In CEIMC we need to evaluate the BO energy difference between two closeby protonic
configurations (S,S’).

Two independent electronic calculations (uncorrelated sampling) is very inefficient for
∆E << E.

Optimal sampling function: minimizes the variance of the energy difference

P (Q|S, S′) ∝
˛

˛Π(Q|S)(ES− < ES >)−Π(Q|S′)(ES′− < ES′ >)
˛

˛

but it requires an estimate of < ES >, < ES′ >.

simpler form: P (Q|S, S′) ∝ Π(Q|S) + Π(Q|S′)

These two forms have the properties that
- sample regions of both configuration spaces (S and S’)
- make the energy difference bounded

compute properties for the system S by reweighting technique (RQMC easier than
DMC).
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Energy difference method

Efficiency versus importance function on a system with Ne = Np = 16 and rs = 1.31. In
one system the protons are taken in a simple cubic lattice and in the other they are displaced
randomly, with an average displacement of ∆. The diffusion constant is defined as
∆2/TCPU where TCPU is the computer time needed to calculate the energy difference to
an accuracy of 1000 K.
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Finite size effects: TABC

In the metallic systems finite size effects coming from the discrete structure of the Fermi
surface are dominant and must be carefully treated.
The finite size effects can be reduced to the classical 1/N behavior averaging over the
undetermined phase of the wave function (Li et al. PRE 2001). For periodic systems we
have

Ψ(~r1 + L~̂x, ~r2, · · · ) = eiθxΨ(~r1, ~r2, · · · ) θ ∈ [−π, π)

TABC:

A =
1

(2π)3

Z π

−π
d3θ < Ψθ|A|Ψθ >

In practice θ can be chosen on a 3D grid and independent calculations are performed
for each grid point.

(Almost) no extra cost for TABC in CEIMC since we sum over twist angles to reduce the
noise.

Twist sampling: at high temperature we don’t need to average much with the Penalty
Method. But a too coarse grid induces a bias. We treat the twist as an additional
random variable.
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Twist sampling
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Sampling the electrons

VMC: in classical systems it is usually more efficient to move the particles one at a time by
adding a random vector to a particle’s coordinate. This remains true in VMC if we can update
the Slater determinant efficiently (single row and column updates).
With backflow wave functions we would need to recompute the entire Slater determinant
after any single particle move =⇒ global moves.

RQMC: at each move one end of the many-body polymer is randomly chosen.
A number of links are cut at the sampled end and added to the opposite end.
Detailed balance is imposed by computing the probability of the reverse move.
Problems: a) the memory of this algorithm in MC step scales as (#beads)2/acceptance.

b) persistent configurations can appear
Bounce algorithm: we propose to choose at random one end of the chain at the beginning of
the calculation and to reverse the growth direction upon rejection only.
It is possible to prove that it samples the correct probability distribution (Pierleoni Ceperley,
ChemPhysChem 2005).
Nice scaling of the memory.
No persistent configurations observed.
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The bounce algorithm

Bounce algorithm: choose at random one end of the chain at the beginning of the Markov
chain and reverse the growth direction upon rejection only. Minimal modification of the
algorithm and solve both problems
Proof of the Bounce algorithm:
- enlarge the configurational space {Q, d} and define P (Q, d → Q′, d′).
- assuming ergodicity, the Markov chain converges to a unique stationary state, Υ(Q, d)

solution of the eigenvalue equation:

X

Q,d

Υ(Q, d) P (Q, d → Q′, d′) = Υ(Q′, d′).

- allowed transitions

P (Q, d → Q′, d′) 6= 0 ⇐⇒

8

<

:

d = d′ , Q 6= Q′ accepted move

d′ = −d , Q = Q′ rejected move.

- assume d′ = +1. Since Π(Q) does not depend on d

Π(Q′)P (Q′,−1 → Q′, 1) +
X

Q6=Q′

Π(Q)P (Q, 1 → Q′, 1) = Π(Q′).
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The bounce algorithm

- DB (Π(Q)P (Q, 1 → Q′, 1) = Π(Q′)P (Q′,−1 → Q,−1)) provides

Π(Q′)

2

4P (Q′,−1 → Q′, 1) +
X

Q

P (Q′,−1 → Q,−1)

3

5 = Π(Q′)

The term in the bracket exhausts all possibilities for a move from the state (Q′,−1), thus it
adds to one. Hence Π(Q) is a solution and by the theory of Markov chains, it is the unique
probability distribution of the stationary state.
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The bounce algorithm
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The bounce algorithm
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Two level sampling

Since the electronic part is much more expensive than computing any classical effective
potential, in CEIMC we can use two level Metropolis sampling to improve the efficiency.
Suppose Vcl(S) is a reasonable proton-proton potential. The equilibrium distribution can be
written as:

P (S) ∝ e−β[EBO(S)−Vcl(S)]e−βVcl(S) = P2(S)P1(S)

A trial move is proposed and accepted or rejected based on a classical potential

A1 = min

»

1,
T (S → S′)

T (S′ → S)
exp(−β[Vcl(S

′)− Vcl(S)])

–

If we accept at the first level, the QMC energy difference is computed and the move
accepted with probability

A2 = min
ˆ

1, exp(−β∆EBO − uB) exp(β[Vcl(S
′)− Vcl(S)]

˜

where uB is the noise penalty.
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Quantum protons

By increasing pressure or decreasing temperature, ionic quantum effects start to
become relevant. Those effects are important for hydrogen at high pressure.

Static properties of quantum systems at finite temperature can be obtained with Path
Integral Monte Carlo method (PIMC).
We need to consider the thermal density matrix rather than the classical Boltzmann
distribution:

ρ
P

(S, S′|β) =< S|e−β(Kp+EBO)|S′ >

The same formalism as in RQMC applies. However
1 - β is the physical inverse temperature now.
2 - to compute averages of diagonal operators we map quantum protons over ring
polymers
3 - we limit to distinguishable particle so far (T > Td), but Bose or Fermi statistics could
be considered.

Factorization β = Pτp and Trotter break-up
For efficiency introduce an effective proton-proton potential Ĥeff = K̂

P
+ V̂eff

ρ̂
P

(τp) = e−τp[Ĥeff +(ÊBO−V̂eff )] ≈ e−τpĤeff e−τp[ÊBO−V̂eff ]
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Quantum protons - 2

We compute numerically the matrix elements of the effective pair density matrix

ρ̂
(2)
eff (τp) The effective N-body density matrix is approximated by

< S|ρ̂
(N)
eff (τp)|S′ >≈

Y

ij

< si, sj |ρ̂
(2)
eff (τp)|si, sj > +O(n3)

We add the remaining term of the original Hamiltonian (EBO − Veff ) at the level of the
primitive approximation.

With this Trotter break-up we found convergence to the continuum limit (τp → 0) for
1/τp > 3000K which allows to simulate systems at room temperature with only
M ≈ 10 proton slices (for metallic hydrogen at rs = 1).
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Quantum protons - 3

In CEIMC quantum protons are (almost) for free !

Suppose we run classical ions with a given level of noise (βσcl)
2. Consider now

representing the ions by P time slices. To have a comparable extra-rejection due to the
noise we need a noise level per slice given by: (τpσk)2 ≈ (βσcl)

2/P which provides
σ2

k ≈ Pσ2
cl. We can allow a noise per time slice P times larger which means considering

P times less independent estimates of the energy difference per slice. However we
need to run P different calculations, one for each different time slice, so that the amount
of computing for a fixed global noise level is the same as for classical ions.

When using TABC, for any proton time slice we should in principle perform a separate
evaluation of the BO energy difference averaging over all twist angles. We have
checked that, at each proton step, we can randomly assign a subset of twists at each
time slice and get the same results.

We need to move all slices of all protons together. This limits the length of proton paths,
therefore the temperature we can achieve. It is essential to use the best possible Trotter
factorization!!
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Summary of CEIMC method

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic
path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition
probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many
independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 31/59



Summary of CEIMC method

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic
path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition
probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many
independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 31/59



Summary of CEIMC method

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic
path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition
probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many
independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 31/59



Summary of CEIMC method

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic
path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition
probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many
independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 31/59



Summary of CEIMC method

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic
path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition
probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many
independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 31/59



Summary of CEIMC method

Given an initial configuration of the electronic path Q = {R1, . . . , Rt} and the protonic
path P = {S1, . . . , SP }, propose a trial protonic move P ′ with a suitable transition
probability (depending on the particular system).

Assign at random an equal number of twist angles to any proton slice and run many
independent electronic calculations for each twist angle: ideal for parallel computers !

Sample the electronic configuration space with the importance sampling distribution
depending on both P and P ′.

Use reweighting to compute energy difference ∆ and variance σ2 by averaging results
over all twist angles and proton slices

Performe the Metropolis test with the penalty method

Compute average quantities for the old protonic configuration P using reweighting.

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 31/59



Hydrogen: phase diagram
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Continuous transition lines (in black): experimental results
dashed lines: theoretical prediction from various methods
red lines: model adiabats for the interior of the giant planets of the solar system
diamonds: shock-waves experimens through liquid metalization (Weir et al. PRB ’96)
squares: CPMD predictions of molecular melting (Bonev et al, Nature ’04)
right-triangle: CPMD predictions for molecular dissociation in the liquid phase (Scandolo, PNAS ’03).
in green: CEIMC predictions
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Trial wave functions: historical record

2001/02: [Ceperley, Dewing, Pierleoni: Lecture Notes in Physics, vol 605, (2002)]
S(pw)-J(rpa)+EXTRA+SELF+3BODY+ep-BF+ee-BF: 12 variational parameters

ΨT (~R|S) = det(ei~ki·~xj )exp

0

@−

Ne
X

i=1

2

4

1

2

Ne
X

j 6=i

ũee(rij)−

Np
X

j=1

ũep(rij)−
1

2
~G(i) · ~G(i)

3

5

1

A

backflow: ~xi = ~ri +

Ne
X

j 6=i

ηee(rij)(~ri − ~rj) +

Np
X

j=1

ηep(rij)(~ri − ~rj)

ηα(r) = λα
b exp[−(r/wα

b )2]

3body: G(i) =

Ne
X

j 6=i

ξee(rij)(~rl − ~rj) +

Np
X

j=1

ξep(rij)(~ri − ~rj)

ũee(r) = uee(r)− ξ2
ee(r)r2

ũep(r) = uep(r)− ξ2
ep(r)r2

ξ(r) = λα
T exp[−(r/wα

T )2]
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Trial wave functions: historical record

2003/04: [Holzmann, Ceperley, Pierleoni, Esler PRE 68, 046707 (2003)]
Analytical expressions for the 3body and BF functions: PARAMETER FREE TRIAL
FUNCTION.
It performs very well, compared to the numerically optimized version, both for protons in
crystal structures and in disordered configurations.

Np EV MC (h/at) σ2 EDMC

16 LDA -0.4870(10) -0.4890(5)

BF3-O ep -0.4857(1) 0.0317 (5) -0.4900 (1)

BF-A -0.4850(1) 0.0232(1) -0.4905(1)

54 LDA -0.5365(5) -0.5390(5)

BF3-O ep -0.5331 (6) 0.033 (1) -0.5381 (1)

BF-A -0.5323(1) 0.0222(2) -0.5382(1)

128 LDA -0.4962(2) -0.4978(2)

BF3-O ep -0.4934 (2) 0.035 (2) -0.4958 (3)

BF-A -0.4928(2) 0.030(1) -0.4978(4)
rs=1.31, T=0K, BCC proton crystal, zero phase. (LDA=Natoli et al PRL 1993)
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2003/04: analytical SJ3BF
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CEIMC vs RPIMC for electron-proton and proton-proton correlation function at
rs = 1, T = 5000K, Np = Ne = 16, Γ point. RPIMC has ground state free particle nodes.
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2003/04: analytical SJ3BF
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CPMD-LDA predicts less structure than observed in CEIMC.

Proton melting:
- Tm(LDA) ' 350K (Lindemann ratio) (Kohanoff Hansen ’95)
- 1000K ≤ Tm(CEIMC) < 1500K (dynamical criterium)
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Trial wave functions: historical record

2005/06: [Delaney, Pierleoni, Ceperley, PRL 2006]
- Band structure and self consistent (LDA) orbitals (cusp corrected) + RPA-Jastrow to
approach lower densities (molecular dissociation region).
- No extra variational parameters to optimize at the QMC level.
- At rs ≥ 1.3 they provide lower energy than the metallic wave function.
- Used to study the molecular dissociation process in the liquid where molecular and
metallic wf of the same quality are needed.
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Nodal surfaces accuracy
2

energy differences. To handle electron antisymmetry, we
use the fixed-phase method [16] which allows the modulus
of the many-electron wavefunction to be fully optimized
while the phase is held fixed. This gives an estimate of
the ground state energy much lower than that of the vari-
ational estimate (by typically 2500K/atom) but above
that of the exact ground state energy. Analysis of re-
lated electron systems suggest that the error of the fixed-
phase energy will be between 10% and 30% of the VMC
error,[18] i. e., between 250K/atom and 750K/atom. We
expect relative errors, between different proton configura-
tions, to be even less.[19] We also employ twist-averaged
boundary conditions (TABC)[17] in the electronic cal-
culation to greatly reduce finite-size errors, a problem
that has caused substantial errors in earlier simulations
of fluid hydrogen.[20] Well-converged energies and cor-
relation functions are achieved using, depending on the
density, between 108 and 500 twist angles.

In the CEIMC approach, one is free to choose any trial
wavefunction for the electronic ground-state. An impor-
tant consideration is the computer time required per step,
since the wavefunction must be calculated for many nu-
clear configurations. When studying dense liquid hydro-
gen, we require a general wavefunction that is equally
accurate for both molecular and non-molecular configu-
rations. We therefore employ a fast band-structure cal-
culation with an effective one-electron potential designed
to produce accurate single-particle orbitals for a Slater-
Jastrow type wavefunction. Within the fixed-phase ap-
proach, it is only the orbitals that affect the systematic
bias. One such set of orbitals would be those computed
within Kohn-Sham theory. However, full self-consistency
for each proton displacement would be too expensive
for generating a large number of nuclear configuration-
space samples. Consequently, we use a bare electron-
proton potential for the effective single-particle poten-
tial. Further screening and correlation effects are in-
troduced with a Slater-Jastrow wavefunction; the Jas-
trow factor is from the RPA pseudopotential, including
the one-body term.[10] Such an approach is surprisingly
good, as demonstrated by Figure 1 which shows RQMC
total energies for five different frozen nuclear configura-
tions. This trial function is comparable in quality to one
using Kohn-Sham LDA orbitals in the Slater determinant
while being faster to generate. It is also more transferable
than both localized molecular orbitals[7] (which cannot
be used for atomic systems) and analytic backflow[21]
(which is highly accurate only for high-density metallic
systems).

We investigate the atomic-molecular transition in liq-
uid hydrogen at fixed density (1.35 ≤ rs ≤ 1.55 where
4πr3

s
/3 = 1/ne) and temperature (T = 2000K and

1500K). The pressure, estimated using the virial the-
orem, an approach that is accurate with RQMC due to
the lack of a mixed-estimator bias, lies between 135GPa
and 290GPa for this range of densities. Using a classical
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FIG. 1: RQMC total energy for five different crystal con-
figurations at two different densities (upper graph V =
9.42a.u./atom or rs = 1.31; lower V = 33.51a.u./atom or
rs = 2.0) using a number of different Slater-Jastrow wavefunc-
tions. Configuration 1 is molecular, 2–5 are non-molecular.
Owing to the variational principle, a lower energy implies
a better wavefunction. DFT-LDA and bare electron-proton
bands (see text) provide the best and most transferable or-
bitals for the Slater determinant. Gaussian for configuration
1 refers to localized molecular orbitals.

Monte Carlo simulation with an empirical potential,[8]
the system is prepared either in a purely molecular or a
purely atomic fluid initial configuration. During the sub-
sequent simulation the system evolves to its equilibrium
state, subject to overcoming any free-energy barriers dur-
ing the simulation. A typical simulation has 14,000 ionic
moves with a step size of 0.006–0.016Bohr. We collect
statistics along the sequence of ionic states, particularly
the proton-proton correlation functions which give in-
sight into the presence of molecules through a distinctive
peak at rpp ∼ 1.4Bohr when molecules are present. Fig-
ure 2 shows a set of proton-proton correlation functions
for simulations at several densities prepared with either
a molecular or atomic fluid as the initial state.

To quantify the number of molecules present at a given
phase point, a method of extracting from the pair correla-
tion function is needed. A rough estimate would involve
integrating the pair correlation function up to the first
minimum, however, the integral would include nearby
molecules and unbound atoms as can be seen in Fig. (2).
An improvement is obtained by fitting each of the pair
correlation functions to the functional form:

g (r) = λgm (r; {α}) + (1− λ) gat (r; {γ}) , (2)

where {α, γ} are fitting parameters and gm is a Gaussian
centered on 1.3–1.5Bohr. gat is a fit to the next-nearest
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Liquid-Liquid PT (PPT)
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Liquid-Liquid PT: CEIMC

Simulation details:

32 and 54 atoms, NVT ensemble

single electron orbitals from a band structure calculation with the bare coulomb
potential.

self-consistent KS orbitals provide only marginaly better energies than
band-structure orbitals (on selected static proton configuration).

T=2000K, 1500K.

P=0.5-2 Mbars

216 twist angles

classical protons so far

Delaney, Pierleoni, Ceperley: PRL 97, 235702 (2006)
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Liquid-Liquid PT: CEIMC
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V=10.31 a.u./atom
Pm=285(2) GPa
Pat=291(2) GPa

V=11.49 a.u./atom
Pm=225(2) GPa
Pat=232(2) GPa

V=12.77 a.u./atom
Pm=201(4) GPa
Pat=197(2) GPa

V=14.14 a.u./atom
Pm=169(1) GPa
Pat=162(1) GPa

V=15.60 a.u./atom
Pm=135(1) GPa
Pat=134(1) GPa
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V=11.49 a.u./atom
Pm=232(2) GPa
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Pat=181(4) GPa

V=14.14 a.u./atom
Pm=163(1) GPa
Pat=161(4) GPa

Np = 32, T = 2000K, NVT ensemble. VMC (left pane), RQMC (right pane).
Grey lines from a molecular fluid and black from an atomic fluid.
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Liquid-Liquid PT: CEIMC
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Solid lines are 32-atom simulations, dashed are 54 atoms. Grey lines are simulations started
from a molecular fluid and black are from an atomic fluid.

finite size effects are large with VMC supporting the presence of a discontinuous
transition

finite size effects are undetectable with RQMC supporting a continuous dissociation
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Liquid-Liquid PT: CEIMC

Main conclusions:

using VMC a clear hysterisis is observed
presence of metastable states =⇒ 1st order phase transition?

qualitative agreement with CPMD but at higher pressure (2Mbars vs 1.25Mbars).

using RQMC the hysterisis goes away =⇒ continuous molecular dissociation

Size effects check 54 atoms:
- detectable size effects with VMC
- undetectable with RQMC

same scenario is found at T=1500K.
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DFT+eeBF

2006: DFT/band orbitals (cusp corrected) + J-RPA + eeBF-A.
eeBF improves the energy and reduces by a factor of two the variance !!!
(RQMC:τe = 0.01, βe = 1.5)
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Metallic vs DFTBF
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                                      Rs=1, Np=54: Metallic vs DFTBF trial functions
total energy for static configurations
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EDFTBF < EMet; ODFTBF < OMet

Energy dispersions (mH/at)
- ∆dftbf =0.730(2); ∆met=1.380(3) almost a factor of 2!
- ∆rqmc=0.730(2); ∆vmc=0.820(1) small effect

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 45/59



Metallic hydrogen: liquid phase
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DFTBF wf is in very good agreement with CPMD data but not with the Metallic wf.

We don’t expect RQMC to change the picture.
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Metallic hydrogen: liquid phase
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Metallic wf does not seem to have the correct long wavelength behaviour and to provide
the correct compressibility at k=0.
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Lower density: rs = 1.31

0 1 2 3 4
-0,515

-0,51

-0,505

-0,5

-0,495

 IPP VMC
 IPP RQMC
 LDA VMC
 LDA RQMC
 LDABF VMC
 LDABF RQMC
 GGA_PBE

 rs=1.31

0 1 2 3 4

0,001

0,0015

0,002

0,0025

0,003

 IPP
 LDA
 LDABF

Same general picture as at rs = 1; DFTBF is lower in energy and overlap. Dispersion is
slightly less.

Energy dispersions (mH/at)
- ∆dftbf =0.486(1); ∆ipp=0.811(3) almost a factor of 2!
- ∆rqmc=0.486(1); ∆vmc=0.533(1) small effect
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Lower density: rs = 1.4
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Same general picture as at rs = 1; DFTBF is lower in energy and overlap. Dispersion is
slightly less.

Energy dispersions (mH/at)
- ∆dftbf =0.751(1); ∆ipp=1.608(1) almost a factor of 2!
- ∆rqmc=0.751(1); ∆vmc=1.017(1) large effect!!!
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Lower density: rs = 1.55
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Same general picture as at rs = 1; DFTBF is lower in energy and overlap. Dispersion is
slightly less.

Energy dispersions (mH/at)
- ∆dftbf =1.742(1); ∆ipp=1.608(1) almost a factor of 2!
- ∆rqmc=1.742(1); ∆vmc=1.627(1) small effect
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Liquid structure: rs = 1.4
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Rs=1.4, T=2000K  IPP vs DFTBF
VMC-TABC

Small effect of the wave function but g(r) is almost structureless....
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In progress

Quantitavive location of the melting line in the metallic-atomic phase

Study of the low temperature crystal stucture and possible appearence of a stable
low-temperature liquid.

Equation of state along the planets adiabates.

Demixing in H-He mixtures (high temperature).
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VMC vs RQMC
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Metallic Hydrogen: VMC vs RQMC

rs=1.2, T=5000K, Np=54, zero phase.

RQMC gives total energy lower by 7.6(2)mH/at=2400(60)K/at

RQMC pressure is 0.03Mbars lower than VMC (0.5%)

τe Etot(h/at) σ2 Ekin Epot P (Mbars)

vmc -0.4694(2) 0.0472(4) 0.8812(4) -1.3508(4) 5.55(1)

0.01 -0.4768(4) —– 0.8850(6) -1.3618(6) 5.50(1)

0.00 -0.47696 —– 0.89112 -1.36808 5.581

CPU time for RQMC ' 10 ×(CPU time for VMC)
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Metallic Hydrogen: VMC vs RQMC

0 1 2 3 4 5
0

0.5

1

1.5

VMC
RQMC

r
s
=1.2, T=5000K, N

p
=54, zero phase

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

1.1

Advanced School on Quantum Monte Carlo Methods in Physics and Chemistry, ICTP Feb 1, 2008 – p. 56/59



Metallic Hydrogen: VMC vs RQMC
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 Rs=1, T=1000K,  Np=54, Γ point
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Insulating Molecular Hydrogen
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LCAO: one guassian center on each proton of the molecule. A single variational parameter

PV MC=0.149(2)Mbars, PRQMC=0.224(5)Mbars, Pgas−gun=0.234Mbars
We still don’t have quantum protons here ! sorry
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Atomic Metallic Hydrogen
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rs = 1, Ne = Np = 32 spin unpolarized. Temperature dependence of the proton–proton pair correlation functions for
classical protons. The difference between the crystal and the liquid is clearly seen. Melting temperature is between 1000K

and 1500K.
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