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Why going beyond VMC?

Dependence of VMC from wave function Ψ
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Why going beyond VMC?

� Dependence on wave function: What goes in, comes out!

� No automatic way of constructing wave function Ψ

Choices must be made about functional form (human time)

� Hard to ensure good error cancelation on energy differences

e.g. easier to construct good Ψ for closed than open shells

Can we remove wave function bias?



Projector Monte Carlo methods

� Construct an operator which inverts spectrum of H
� Use it to stochastically project the ground state of H

Diffusion Monte Carlo exp[−τ(H− ET)]

Green’s function Monte Carlo 1/(H− ET)

Power Monte Carlo ET −H



Diffusion Monte Carlo

Consider initial guess Ψ(0) and repeatedly apply projection operator

Ψ(n) = e−τ(H−ET)Ψ(n−1)

Expand Ψ(0) on the eigenstates Ψi with energies Ei of H

Ψ(n) = e−nτ(H−ET)Ψ(0) =
∑

i

Ψi 〈Ψ(0)|Ψi 〉e−nτ(Ei−ET)

and obtain in the limit of n → ∞

lim
n→∞Ψ(n) = Ψ0〈Ψ(0)|Ψ0〉e−nτ(E0−ET)

If we choose ET ≈ E0, we obtain lim
n→∞Ψ(n) = Ψ0



How do we perform the projection?

Rewrite projection equation in integral form

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

where G (R′,R, τ) = 〈R′|e−τ(H−ET)|R〉

� Can we sample the wave function?

For the moment, assume we are dealing with bosons , so Ψ > 0

� Can we interpret G (R′,R, τ) as a transition probability?

If yes, we can perform this integral by Monte Carlo integration



VMC and DMC as power methods

VMC Distribution function is given ρ(R) =
|Ψ(R)|2∫
dR|Ψ(R)|2

Construct P which satisfies stationarity condition Pρ = ρ

→ ρ is eigenvector of P with eigenvalue 1

→ ρ is the dominant eigenvector ⇒ lim
n→∞Pnρinitial = ρ

DMC Opposite procedure!

The matrix P is given → P = 〈R′|e−τ(H−ET)|R〉
We want to find the dominant eigenvector ρ = Ψ0



What can we say about the Green’s function?

G (R′,R, τ) = 〈R′|e−τ(H−ET)|R〉

G (R′,R, τ) satisfies the imaginary-time Schrödinger equation

(H− ET)G (R,R0, t) = −∂G (R,R0, t)

∂t

with G (R′,R, 0) = δ(R′ − R)



Can we interpret G (R′,R, τ) as a transition probability? (1)

H = T

Imaginary-time Schrödinger equation is a diffusion equation

−1

2
∇2G (R,R0, t) = −∂G (R,R0, t)

∂t

The Green’s function is given by a Gaussian

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Positive and can be sampled



Can we interpret G (R′,R, τ) as a transition probability? (2)

H = V

(V(R) − ET)G (R,R0, t) = −∂G (R,R0, t)

∂t
,

The Green’s function is given by

G (R′,R, τ) = exp [−τ (V(R) − ET)] δ(R − R′),

Positive but does not preserve the normalization

It is a factor by which we multiply the distribution Ψ(R, t)



H = T + V and a combination of diffusion and branching

Trotter’s theorem → e(A+B)τ = eAτeBτ + O(τ2)

〈R′|e−Hτ |R0〉 ≈ 〈R′|e−T τe−Vτ |R0〉

=

∫
dR′′〈R′|e−T τ |R′′〉〈R′′|e−Vτ |R0〉

= 〈R′|e−T τ |R0〉e−V(R0)τ

The Green’s function in the short-time approximation to O(τ2) is

G (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]
exp [−τ (V(R) − ET)]

DMC results must be extrapolated at short time-steps (τ → 0)



Time-step extrapolation

Example: Energy of Li2 versus time-step τ

Umrigar, Nightingale, Runge, J. Chem. Phys. 94, 2865 (1993)



Diffusion Monte Carlo as a branching random walk (1)

The basic DMC algorithm is rather simple:

1. Sample Ψ(0)(R) with the Metropolis algorithm

Generate M0 walkers R1, . . . ,RM0 (zeroth generation)

2. Diffuse each walker as R′ = R + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(−ξ2/2τ

)
3. For each walker, compute the factor

p = exp [−τ(V(R) − ET)]

Branch the walker with p the probability to survive

Continue →



Diffusion Monte Carlo as a branching random walk (2)

4. Branch the walker with p the probability to survive

� If p < 1, the walker survives with probablity p

� If p > 1, the walker continues and new walkers with the

same coordinates are created with probability p − 1

⇒ Number of copies of the current walker equal to int(p + η)

where η is a random number between (0,1)

5. Adjust ET so that population fluctuates around target M0

→ After many iterations, walkers distributed as Ψ0(R)



Diffusion and branching in a harmonic potential

Ψ(x)
0

V(x)

Walkers proliferate/die in regions of lower/higher potential than ET



Some comments on the simple DMC algorithm

� ET is adjusted to keep population stable

IF M(t) is the current and M0 the desired population

M(t + T ) = M(t) e−T (−δET) = M0 ⇒ δET =
1

T
ln

[
M0

M(t)

]

If Eest(t) is current best estimate of the ground state

ET(t + τ) = Eest(t) +
1

gτ
ln [M0/M(t)]

⇒ Feedback on ET introduces population control bias

� Symmetric branching exp[−τ(V(R) + V(R′))/2] starting from

e(A+B)τ = eAτ/2eBτeAτ/2 + O(τ3)



Problems with simple algorithm

The simple algorithm is inefficient and unstable

� Potential can vary a lot and be unbounded

e.g. electron-nucleus interaction → Exploding population

� Branching factor grows with system size



Importance sampling

Start from integral equation

Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

Multiply each side by trial Ψ and define f (R, t) = Ψ(R)Ψ(R, t)

f (R′, t + τ) =

∫
dR G̃ (R′,R, τ)f (R, t)

where the importance sampled Green’s function is

G̃ (R′,R, τ) = Ψ(R′)〈R′|e−τ(H−ET)|R〉/Ψ(R)

We obtain lim
n→∞ f (R) = Ψ(R)Ψ0(R)



Importance sampled Green’s function

The importance sampled G̃ (R,R0, τ) satisfies

−1

2
∇2G̃ + ∇ · [G̃ V(R)] + [EL(R) − ET] G̃ = −∂G̃

∂τ

with the quantum velocity V(R) =
∇Ψ(R)

Ψ(R)

We now have drift in addition to diffusion and branching terms

Trotter’s theorem ⇒ Consider them separately for small enough τ



The drift-branching components: Reminder

Diffusion term

−1

2
∇2G̃ (R,R0, t) = −∂G̃ (R,R0, t)

∂t

⇒ G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R)2

2τ

]

Branching term

(EL(R) − ET)G̃ (R,R0, t) = −∂G̃ (R,R0, t)

∂t

⇒ G̃ (R′,R, τ) = exp [−τ (EL(R) − ET)] δ(R − R′)



The drift-diffusion-branching Green’s function

−1

2
∇2G̃ + ∇ · [G̃ V(R)] + [EL(R) − ET] G̃ = −∂G̃

∂τ

Drift term

Assume V(R) =
∇Ψ(R)

Ψ(R)
constant over the move (true as τ → 0)

The drift operator becomes V · ∇ + ∇ · V ≈ V · ∇ so that

V · ∇G̃ (R,R0, t) = −∂G̃ (R,R0, t)

∂t

with solution G̃ (R,R0, t) = δ(R − R0 − Vt)



The drift-diffusion-branching Green’s function

Drift-diffusion-branching short-time Green’s function is

G̃ (R′,R, τ) = (2πτ)−3N/2 exp

[
−(R′ − R − τV(R))2

2τ

]
×

× exp
{−τ [(EL(R) + EL(R′))/2 − ET]

}
+ O(τ2)

What is new in the drift-diffusion-branching expression?

� V(R) pushes walkers where Ψ is large

� EL(R) is better behaved than the potential V(R)

Cusp conditions ⇒ No divergences when particles approach

As Ψ → Ψ0, EL → E0 and branching factor is smaller



DMC algorithm with importance sampling

1. Sample initial walkers from |Ψ(R)|2

2. Drift and diffuse the walkers as R′ = R + τV(R) + ξ

where ξ is sampled from g(ξ) = (2πτ)−3N/2 exp
(−ξ2/2τ

)
3. Branching step as in the simple algorithm but with the factor

p = exp
{−τ [(EL(R) + EL(R′))/2 − ET]

}
4. Adjust the trial energy to keep the population stable

→ After many iterations, walkers distributed as Ψ(R)Ψ0(R)



An important and simple improvement

If Ψ = Ψ0, EL(R) = E0 → No branching term → Sample Ψ2

Due to time-step approximation, we only sample Ψ2 as τ → 0 !

Solution Introduce accept/reject step like in Metropolis algorithm

G̃ (R′,R, τ) ≈ N exp

[
−(R′ − R − V(R)τ)2

2τ

]
︸ ︷︷ ︸

T (R′,R,τ)

exp
[
−(EL(R) + EL(R′))

τ

2

]

Walker drifts, diffuses and the move is accepted with probability

p = min

{
1,

|Ψ(R′)|2 T (R,R′, τ)

|Ψ(R)|2 T (R′,R, τ)

}

→ Improved algorithm with smaller time-step error



Evolution equation of the probability distribution

� Ψ(R′, t + τ) =

∫
dRG (R′,R, τ)Ψ(R, t)

where G (R′,R, τ) = 〈R′|e−τ(H−ET)|R〉

(H− ET)G (R,R0, t) = −∂G (R,R0, t)

∂t

� Ψ(R, t) =

∫
dR0 G (R,R0, t)Ψ

(0)(R0)

satisfies the imaginary-time Schrödinger equation

(H− ET)Ψ(R, t) = −∂Ψ(R, t)

∂t



Electrons are fermions!

We assumed that Ψ0 > 0 and that we are dealing with bosons

Fermions → Ψ is antisymmetric and changes sign!

How can we impose antisymmetry in DMC method?

Stay tuned for second part of the lecture by Matthew Foulkes




