

1930-4

Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions

4 - 8 February 2008

Introduction and Aim of the Meeting

Detlef Filges
Forschungszentrum Juelich Gmbh
Julich
Germany

Introduction and Aim of the Meeting

Detlef Filges

Institut für Kernphysik

Forschungszentrum Jülich GmbH, Germany

Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions

Trieste – Italy, February 4 - 8, 2008

CONTENTS

- > The importance of spallation reactions
- > The models and state-of-the-art particle transport systems
- > Why do we need model validations?

The importance of spallation reactions ----- in general -----

Computer simulation opens up new potentials to study physical and technical issues.

Computer simulation is sometimes the only way to understand the complexity of physical phenomena.

The classical categories – theory and experiment – nowadays are completed by a third catagory – THE COMPUTER SIMULATION.

BUT not to misunderstood:

Computer simulation cannot substitute experiments. It extends the field of science and enables experiments in a hypothetical world.

The simulation models used, must be validated against experiments to demonstate their realibility, accuracy, and their predictive power.

The importance of spallation reactions -----the applications----(1)

High intensity spallation sources:

SINQ (Switzerland), 0.6 GeV, 1-1.5 MW,

SNS (USA), 1.0 GeV, 1-1.5 MW

JPARC (Japan), 3.0 GeV, 1 MW and 50 GeV hadron facility

ADS, ADTT, waste management, transmutation, benchmark experiments:

e.g. MEGAPIE, MUSE, Race-ISU, YALINA-booster etc.

New accelerator facilities:

e.g. GSI-FAIR, SPIRAL

Materials in high intensity particle fields:

e.g. irradiation facilities, rare isotope production, radiation damage etc.

Safety and radiation protection:

e.g. shielding, radiation fields, dosimetry etc.

The importance of spallation reactions -----the applications----(2)

- Medium and high energy detector development for running or future accelerator projects
- Astrophysics, space science and technology
- IAEA activities in the area of small proton accelerators and their applications

State-of-the-Art Particle Transport Codes

	MCNPX	PHITS	FLUKA	GEANT4	MARS
version	2.6	2.09	2006.3	4.9.1	15
institution	LANL	RIST	CERN	CERN	FNAL
		GSI	INFN	INFN	
				KEK/SLAC	
cost	free	free	free	free	free
manual pages	470	180	390	280	150
language	Fortran90/C	Fortran77	Fortran77	C++	Fortran95/C
parallel	yes	yes	yes	yes	yes
processing					

web site or contact

MCNPX	http://mcnpx.lanl.gov/	
PHITS	http://rcwww.kek.jp/research/shield/phits.html	
FLUKA	http://fluka.org	
GEANT4	http://geant4.web.cern.ch/geant4/	
MARS	http://www-ap.fnal.gov/MARS/	

Physics Models and some Features

	MCNPX	PHITS	FLUKA	GEANT4	MARS
particles	34	38	68	68	41
energy loss	Bethe-Bloch	id.	id.	id.	id.
scattering	Rossi	Moliere	Moliere	Lewis	Moliere
straggling	Vavilov	Vavilov	custom	Urban	custom
Cherenkov	no	no	yes	yes	no
low energy	cont.	cont.	72 multi-	cont.	cont.
neutrons	ENDF	ENDF	group	ENDF	ENDF
low energy	cont. ENDF	models	models	models	models
protons	models	models	models	models	models
used models					
e.g.	Bertini	Bertini	PEANUT	Bertini	CEM
	ISABEL	GEMJAM	DPMJET	INCL	LAQGSM
	INCL/CEM	JAM/JQMD	Glauber	ABLA	DPMJET
	LAQGSM	>3GeV	neutrinos	GEM	
	FLUKA89			GHEISHA	
other features					
delayed	n's / γ's	n's	β's / γ's	a's / β's / γ's	$\gamma's$
decay of			33		
eigenvalue	yes	no	no	no	no
burnup	yes	no	no	no	no
fields E, B	yes	yes	yes	yes	yes

Other well - known particle tranport systems

name	purpose of the system	main authors
CALOR	calorimeter design / spallation sources	Gabriel et al.
EA-MC	ADS and energy amplifying	Kadi et al.
HERMES	spallation sources / calorimeter design	Cloth et al.
LCS	spallation sources / general purpose	Prael et al.
SHIELD	general purpose / spallation	Sobolevsky et al.
TIERCE	general purpose / spallation	Bersillon et al.

Examples of Event generators JÜLICH

INC (intra-nuclear-cascade ≤3 GeV)	QMD		
Bertini	JQMD		
CEM	QMD-SDM		
INCL	QMD, BUU		
ISABEL	SMM		
Evaporation and fission			
ABLA / ABRABLA	GEM		
ALICE / ASH	GEMINI		
EVAP-versions	JULIAN /PACE		
ORNL-fission	RAL-fission		

Intra-nuclear-cascade + evaporation

BRIC / DISCA / MICRES

Aim of the Workshop

Demonstration and discussion of the state-of-the-art INCE /QMD event generators

- Model dependent and critical parameters, validity and deficiency etc.
- What model could be named as standard model in the energy range between 0.1 up to 3.0 GeV ?

Is it a dream to have only one model ??

Presentations of recent thin target experiments

- Double differential cross sections, reaction rates, multiplicities, excitation functions, residuals etc.
- Availability of the experimental data, corrections, accuracy etc.

Aim of the Workshop

Discussion, definition /or establish a <u>BENCHMARK</u> on spallation reactions of ,thin' targets

- Defining the experimental data, which data should be used?
- Which experiments?
- Making a selection !!
- What is the best format to distribute the data?
- Who should be responsible on collecting the data and will retrieve/disseminate them?
- Figures of merit
- How much time is needed to finish and to present the BENCHMARK at a follow-up workshop?
- Who will participate ??