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Statistical approach in nuclear reactions:
conception of equilibrium

Intermediate energy collisions Preequlibrium emission
+ equilibration

e

N.Bohr (1936)

Compound-nucleus decay channels

(sequential evaporation or fission)

o dominate at low excitation energy
\of thermal sources E"<2-3 MeV/nucl

N.Bohr, J.Wheeler (1939)
V.Weisskopf (1937)
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© starting 1980-th :
o ° @
@ o At high excitation energy
“ ‘ ° ‘ E*>3-4 MeV/nucl there is a
o . O © simultaneous break-up into

many fragments

evaporation fission multifragmentation



“If 1t were possible to experiment with neutrons or protons of
energies above a hundred million volts, several charged or uncharged
particles would eventually leave the nucleus as a result
of the encounter; with particles of energies of about a thousand
million volts, we must even be prepared for the collision to lead
to an explosion of the whole nucleus”

Niels Bohr, Nature 137 ( 1936) 351

Experimental evidences of multifragmentation:
induced by hadrons: N.A.Perfilov, O.V.Lozhkin, V.I.Ostroumov (1962)
by heavy ions: B.Jakobsson et al., Z.Phys. A307 (1982) 293

Statistical theories:
J.Randrup, S.E.Koonin (since 1981)
D.H.E.Gross (1982)

J.Bondorf, I.N.Mishustin, C.Pethick (1983)



Development of the statistical multifragmentation model (SMM)

J.P.Bondorf, R.Donangelo, I.N.Mishustin, C.J.Pethick, H.Schulz, K.Sneppen,
Nucl. Phys. A443 (1985) 321

A.S.Botvina, A.S.Iljinov, I.N.Mishustin, Sov. J. Nucl. Phys. 42 (1985) 712

application to description of hadron-nucleus reactions of high energy:

A.S.Botvina, A.S.Iljinov, I.N.Mishustin, JETP Lett. 42 (1985) 572

A.S.Botvina, A.S.Iljinov, I.N.Mishustin, J.Bondorf, R.Donangelo, K.Sneppen,
Nucl. Phys. A475 (1987) 663
A.S.Botvina, A.S.Iljinov, I.N.Mishustin, Nucl. Phys. AS07 (1990) 649

J.P.Bondorf, A.S.Botvina, A.S.Iljinov, I.N.Mishustin, K.Sneppen,
Phys. Rep. 257 (1995) 133 ( >400 citations according to ISI Web)



Equation of State of nuclear matter at subnuclear densities.

PHASE DIAGRAM of NUCLEAR MATTER

nucleon gas

related nuclear process:
thermal multifragmentation of nuclei

Production of hot fragments at

temperature T ~ 3---8 MeV  and
density p ~0.1p, (Py=0.15 fm?3)

Interpretation: liquid-gas phase transition
in finite nuclei. Investigation of properties
of fragments surrounded by nuclear
species.
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Statistical Multifragmentation Model (SMM)

J.P.Bondorf, A.S.Botvina, A.S.Iljinov, [.N.Mishustin, K.Sneppen, Phys. Rep. 257 (1995) 133

Ensemble of nucleons and fragments

in thermal equilibrium characterized by
neutron number N,

proton number  Z,, N+Z=A,
excitation energy E"=E -E
break-up volume V=(1+Kx)V,

All break-up channels are enumerated by the sets
of fragment multiplicities or partitions, f={N .}

Statistical distribution of probabilities: W.~exp {S.(A,, Z,, E*,V)}

under conditions of baryon number (A), electric charge (Z) and energy
(E*) conservation, including compound nucleus.



mass andcharge Z ‘\M'A— 4{}‘ z \432 Zﬂ

conservation
(A,Z) (A,Z)

OF
entropy of channel: Sy = — (d—r{) Energy conservation: Fjy = Ff + TS 7

Fragments obey Boltzmann statistics, liquid-drop description of individual fragments,
Coulomb interaction in the Wigner-Seitz approximation

32
R

free energy of channel: F¢(T,V) = F}" + Z FazNaz +
(4,Z)

V; Vi 30
Fir =T |3 Nyzln (943}‘3 A*) —In(Naz))| + Tln (}é 45;”)
(4,2)

individual fragments: Fuz = FB Az + F? w7+ Fi, S EEE

4
T2 O TCE T2\ " 2/3
Ffz — (_U[} - g) A Fiz =5 (Tcﬂ 472 A




A.S.Botvina, A.S.Iljinov, and I.N. Mishustin

Sov.J.Nucl.Phys. v.42, 712 (1985)

Onset of multifragmentation at high temperature

3
i A0=220,Zo=86
5 | N
g
(7p]
-l N
ST compound -
k=1.0
........... k=0.1
0 \ | | ‘ ‘

2 4 6 8 10 12 14



evolution of the mass distribution of fragments with excitation energy
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Phys. Rep. 257 (1995) 133 )
- 1 = compound nucleus (T< 5 MeV)
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E 2 - fission-like processes
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Multifragmentation in intermediate
and high energy nuclear reactions

Experimentally established: 1) few stages of reactions leading to multifragmentation,
2) short time ~100fm/c for primary fragment production, 3) freeze-out density is
around 0.1p,, , 4) high degree of equilibration at the freeze-out, 5) primary fragments
are hot.
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At freeze—out : thermal and chemical equilibrium



Residual nuclei after Intranuclear cascade calculations

INC + trawling = + = . = INC+trawling+preequilibrium

- = == INC cessseses INCHpreequilibrium

Nucl. Phys. A507(1990)649
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Dynamical stage of the reactions

masses and excitation energies of thermal sources:

INC

Nuclear Physics AS07 (1990) 649-674

W% FH'AE
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Fig. 3. Distribution of the RN masses in certain intervals of their excitation energy after the intranuclear

cascade. The target and the proton energies are indicated in the figure. The ICM with trawling is employed

for the calculation. The RN excitation energy intervals are shown by figures near the curves: 1= E;=
0-1 MeV/nucleon; 2- E; = 1-2 MeV/nueleon; ... 10- E;=9-10 MeV/nucleon.

QMD

Prog. Part. Nucl. Phys., Vol. 30, pp. 301-302, 1993,
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Figure 1: Excitation energies and densities of the
primordial fragments in Au (600 MeV /nucleon) +
C, Al, Cu. Each point characterizes a single frag-

ment present after a QMD propagation for 200
fm/c.



Time scale of the thermal multifragmentation

ISIS collaboration velocity correlations of fragments
n(8GeV/c)+Au
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FIG. 1. Reduced velocity correlation functions generated for E // ‘ﬂ"srt. (MEVJ

four different excitation energy per nucleon bins. IMF kinetic
energy acceptance is in source frame is Epyp /A = 1—10 MeV.

L.Beaulieu et al., Phys. Rev. Lett. 84, 5971 (2000)



Time scale of the thermal multifragmentation

angle correlations of fragments
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Fig. 5. Distribution of relative angles betwesn coincident
IMFsfor*Hed 14.6 GeV) 4+ Au collisions. The solid curve
iz calculated for the simultansous emission of fragments;
the dashed curve corresponds to the sequential, indepen-
dent evaporation.

Fig. 5. Comparison of the measured correlation functions (full circles) with the calculated ones for
different mean decay times of the fragmenting system: solid, dashed, dotted and dash-dotted lines for
T =0, 50, 100 and 200 fm/c. The upper panel is for the RC 4 & + SMM model with the parameters
(4,8, 1) (see notation in Fig. 4), the lower panel is for the same model, but with the parameters
(4,4, ) allowing the fragiments to overlap (see text).



Nuclear caloric curve

Predicted in 1985 within the SMM Experimental result in 1995
Bondorf, Donangelo, Mishustin, Schulz Pochodzalla and ALADIN collaboration,

NPA 444 (1985) 460 PRL 75 (1995) 1040
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Fig. 4. The average temperature T as a function of the excitation energy E*/A,. The dashed line
illustrates the temperature of a free nucleon gas. <E0>/<A0> (MeV)

FIG. 2. Caloric curve of nuclei determined by the dependence
of the isotope temperature Ty, ; on the excitation energy per
nucleon. The lines are explained in the text.



MULTICS

Au(35MeV/N)+Au, peripheral
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FIG. 8 Charge distibutions for peripheral and mmdperipheral

collisions (open point: experimental data; histogram: SMM predic-
tions).

M.D'Agostino et al., Nucl.Phys. A650 (1999) 329



ALADIN data
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Muclear Physics ASa] (1993) 466-476

BUU dynamics in projectile: Au (600 MeV/n) + Cu
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Fig. 5. Evolution of the mass number A and excitation energy £* of the cooling remnant of the Au on

Cu collision according 1o the BULI model for three different impact parameters (dashed lines). The

dots nn these lines are placed every 10 fm /¢ and the numbers indicate the times in fm /¢ The full
sfjuares indicate the break-up conditions calculated with the statistical model already shown in Fig. 2.



PHYSICAL REVIEW C, VOLUME 62, 024616

Two-stage multifragmentation of 1.4 GeV Kr, La, and Au
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FIG. 24. Second stage fragment charge distribution as a function
FIG. 19. Caloric curves (T vs Ej/4) for Kr. La, and Au. Points *_C!'f Z/ Z ypojacrita - Results are shown for three reduced multiplicity
are experimental and curves are from SMM. wtervals for both data and SMM.



PHYSICAL REVIEW C, VOLUME 65, 054617

Multifragmentation and the phase transition:
A systematic study of the multifragmentation of 1.4 GeV Au, La, and Kr
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INDRA
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Nuclear Physics A 709 (2002) 367-391



Physics Letters B 371 (1996) 175-180

Statistical multifragmentation in central Au + Au collisions at 35

MeV/u

MINIBALL + MULTICS

Fig. 1. Charge distribution N(Z). Points show experimental data
and lines show results of SMM predictions for sources with pa-
rameters Ay = 343, Z; = 138, E} /A = 6.0 MeV, p, = py/3 (part
a)) and Ag = 315, Z; = 126, Ef /A = 4.8 MeV, Ejpn/A = 0.8
MeV, ps = po/6 (part b)). Dashed curves are the unfiltered cal-
culations and solid curves are the filtered ones. The dot-dashed
and dotted curves represent filtered calculations for thermal exci-
tations E7 /A + | MeV/u and E} /A - 1 MeV /u, respectively.
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Vi

Fig. 2. Charge distribution of the six heaviest fragments, ordered
such as Z; > Z, if i < k. Experimental data are shown by
points, the solid and dashed curves show the results of SMM
calculations for py; = py/3, and py = py/6, vespectively (other

source parameters as in Fig. 1),



MINIBALL + MULTICS
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Fig. 3. Mean centre-of-mass kinetic energy per aucleon, (E/A),
as a function of the charge Z, for fragments emitted at
Bem = 90° £ 10° (left panel) and (for Z = 6,10, 14) as a func-
tion of Bem (right panels). Points give the experimental values of
(E/A) and vertical bars give the standard deviations AE/A of the
distributions. The solid and dashed lines are SMM predictions of
{E/A) (in the lefi panel show the two values {E/A) £AE/A) for
o= po/3, and py = py/6, respectively (other source parameters
as in Fag. 1). The energy range is the same in the left and in each
right panel.
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Fig. 4. Two-fragment correlation functions | + R(vpq) for
3< Z <30 and 8° < By, < 23° (parta)) and for 3 < Z < 10
and 23 < 8y, < 40° (part b)). Full points show experimen-
tal data. The solid and dashed lines are SMM predictions for
ps = po/3, and p;s = py/6 (other source parameters as in Fig. 1).




Eur. Phyvs. J. A 3. 7583 (1998)

Thermal multifragmentation in p + Au interactions at 2.16, 3.6

and 8.1 GeV incident energies
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Fig. 8. Energy distribution of carbon isotopes obtained at
8.1 GeV incident energy compared to the one from the
INC+Expansion+SMM caleulation
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Fig. 9. Angular distributions of carbon (in laboratory system) for 4He + Au and 12C + Au collisions. The lines

are calculated with RC + o + SMDM.
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Fig. 10. Fragment charge distributions at the beam energies
8.1 GeV (top), 3.6 GeV (scaled by 1/4) and 2.16 GeV (scaled
by 1/16). The lines are calculated by INC4+Expansion+SMM
(normalized at Z=3). The insert gives the T-parameter deduced
from the IMF-charge spectra for the beam energyv of 5.1 GeV
as a function of the measured IMF multiplicity



experiment: J.R.Grover, Phys.Rev. 126(1962)1540
S.Kaufman et al., Phys.Rev. C14(1976)1121

Nuclear Physics AS07 (1990) 649-674
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PHYSICAL REEVIEW C 70, 054607 (2004)
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FIG. 15. Companson of the measured mass distributions as a
function of the mass number for the system 561:'ve+p with the results
of GEMINI (upper part) and SMM (lower part). SMM 15 more
sensitive than GEMINI to the effect of a pre-equilibrium phase.



Multifragmentation versus sequential evaporation

ALADIN  Au(600MeV/n)+Cu

Principal component analysis

1 (8GeV/c)+Au

2 s 0.2
< 04 :
2 0.1
S 02 _
= i

0 0

E'/A (MeV)

FIG. 3. Left panel: dots present the raw measured probability to
detect an event with at least one heavy-fragment, Z=8. and sohd
(dotted) line presents the SMM (GEMINI) model prediction filtered
with the experimental detection efficiency. An initial angular mo-
mentum of L=20f for the hot nucleus was assumed for GEMINI
model calculations. Right panel: as in left panel, but for the prob-
ability of detecting events with at least two heavy-fragments, Z
=8§.

E /A=1-3 MeV

3-5 MeV

37 MeV

T4 MeV

Oy (deg)

FIG. 2. The measured folding-angle (the angle between two Z
=8 fragments) probability for the indicated excitation-energy bins.
Solid. dashed, and dotted lines show the SMM-hot, SMh-cold. and
GEMINI model predictions, respectively, filtered with the experimen-
tal detection efficiency.

Nuclear Physics A 604 (1996) 183-207
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Multifragmentation versus sequential evaporation

ISIS T (8GeV/c)+Au
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FIG. 3. Left panel: dots present the raw measured probability to
detect an event with at least one heavy-fragment, Z=8. and sohd
(dotted) line presents the SMM (GEMINI) model prediction filtered
with the experimental detection efficiency. An initial angular mo-
mentum of L=20f for the hot nucleus was assumed for GEMINI
model calculations. Right panel: as in left panel, but for the prob-
ability of detecting events with at least two heavy-fragments, Z
=8§.

E/A=1-3 MeV  3-5MeV  S5-7TMeV  7-9 MeV

Oy (deg)

FIG. 2. The measured folding-angle (the angle between two Z
=8 fragments) probability for the indicated excitation-energy bins.
Solid. dashed, and dotted lines show the SMM-hot, SMh-cold. and
GEMINI model predictions, respectively, filtered with the experimen-
tal detection efficiency.

ALADIN  Au (600 MeV/n) +X.

Muclcar Physics AS56 (1993) 672-696
P Kreutz et al, | Charge correlations
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Fig, 15, The average muliplicity of [MFs as a Tunction of 2, for Au 00 MeV/nueleon eollisions

on C {circles), Al (tmangles), Cu (squares) and Ph (stars). The ercor bars are in most cases smaller than

the size of the symbols, The lines are COPENHAGEN idashed), GEMINI (dotted) and percolation
[Full] predictions,



Nuclear Physics A734 (2004) 545-548

Proton energy spectra

: ”wﬁ:.:.ﬂ. L, P Am G Ll ﬁ
L D (A, i Pt o S B P g4It ... INC+Standard evaporation

[

]
Protons os [ ¢ — INC+multifragmentation
C+Au t 1000 AMaV
AusC 81 1000 AMsY
Inclusive, B, = 3176 deg.

dimdEAD (mbAla¥ er)
T T T
e :-=.,
=
-

EFE?

L
do/dE (Arbitrary unit)

a
X
g g8

=
=
-

o
g
a_
H_
B
g
g
£
g

50 T F] 0
E (MeV)

Figure 1. Left part: The INDRA proton kinetic energy spectrum (full dots) for the C+Au
reaction at 1. GeV/nucleon for angle-integrated data between 3° < 8, < 176°, is compared to
the EOS spectra (full and empty squares from [4] and [5] respectively). Data are in the gold
reference frame, Right part: Comparison between proton EOS data and calculations with the
INC+percolation model followed by the Dresner evaporation code (dashed line) or the multi-
fragmentation SMM model (full line). The normalization is done on the high energy part.



The surface (B,) and symmetry (y) energy coefficients
in the multifragmentation scenario

Fom = y+(N-Z)%/A
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ALADIN: 2C+ 1121248y A.Le Fevre et al., Phys.Rev.Lett 94(2005)162701

Evolution symmetry energy toward multifragmentation
Egn=7(A-2Z)*A

(by analyzing the 1soscaling phenomenon)
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Isoscaling and coefficient y

ALADIN: 12C+ 1121248 A.Le Fevre et al., Phys.Rev.Lett 94, 162701 (2005)

S(N)=Y(24Sn)/Y(112Sn)=C-exp(N-a+Z-p) o T = -4y (Z,/A 2-Z7,/A2)
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The symmetry energy coefficient y and isospin of fragments

E,,.=Y(A-2Z)A

A.S.Botvina et al., PRC72(2005)048801 G.Souliotis et al., PRC75(2007)011601
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Isotope Distributions

J.Iglio et al. PRC74, 024605 (2006)

Relative yield
S,

FIG. 12, Tzotopic wield distribution for the carbon element in
BCa+"Ni reaction at 45 MeVinucleon. The solid line is the SMM
calculation with symmetry energy coeflficient p = 25 MeV, and the
dashed hine 15 the calculaton with 3 = 15 MeV. The solid points
correspond to the experimental result.

G.A.Souliotis et al., PRC75, 011601 (2007)
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relative yiald

One can distinguish effects of the surface and symmetry energies since
the charge yield of fragments is very sensitive to the surface:

A.S.Botvina et al., PRC74(2006)044609

Fsuf = BO((TCZ_TZ) /(Tc2 +T2))5/4 A2/3
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Properties of hot fragments: the surface energy term B,
7" analysis of IMF yields

projectiles with different isospin SMM
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Evolution of the surface energy toward multifragmentation

o ]
o Zpound/Zo = 0.85

o Zpound/Zo = 0.65
Zoound/Zo = 0.55

= >n
18 | I S °
. MS \\\\o N
16 | —
[ [ |
14 1.5 1.6
N/Z

for single isolated nuclei:

C -- Cameron mass formula (1957)
MS -- Myers-Swiatecki mass formula (1966)

(include separate volume and surface
contributions to the symmetry energy)

We analyze all available observables:
distributions of IMF ,Z_.. ., T, ... VS Z ;u0q »
and involve additionally new 1 - observables
for each projectile (Xe, Au, U)

We have found the isospin independence
of the surface energy, that is equivalent to
the surface independence of the symmetry
energy.
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Conclusions on nuclear multifragmentation:

Multifragmentation of nuclei is fast decay process taking place in all reactions where
high excitation energy is reached. It dominates over sequential evaporation and fission
which are usual at low energy.

Multifragmentation takes as much as 10-15% of the total cross section in high energy
hadron nucleus reactions, and much more for high energy nucleus-nucleus collisions. It
must be included in hybrid calculations of particle transport in complex matter: nuclear
transmutation (environment studies), electro-nuclear breeding (new methods of energy
production), proton and ion therapy (medical research), radiation protection of space
detectors (space research). Multifragmentation can be the dominating channel for
production of some particular isotopes.

Multifragmentation can be interpreted as a manifestation of the liquid-gas type phase
transition in finite nuclei, and it allows for investigating the phase diagram of nuclear
matter. In particular, one can investigate properties of hot nuclei/fragments surrounded
by other nuclear species.



Outlooks for description of spallation reactions:

1) Excited residuals produced after initial dynamical stage should be investigated
in details. Their distributions in mass number, excitation energy and isospin are of
primary importance for the following statistical fragment production mechanisms:

evaporation, fission, multifragmentation.

16

o E It 1s necessary to find out how the
el B E distribution of residuals evolve with beam
E B T 31 energy, target, projectile. This should be
< °F ML 1 combined experimental + theoretical
w6 SEHHHT T studies. Without this knowledge the

A3 CommmmaMLL 4 secondary stages responsible for fragment

of gl production can not give precise answer.
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Example of residuals extracted for ALADIN
Au(600MeV/n)+Au peripheral collisions



Outlooks for description of spallation reactions:

2) Intermediate mass fragments (IMF) are predominantly produced at high
excitation energies of residuals. Therefore, they can be used for investigation
of the high energy limit for these residuals. This also can help to understand
what parameters have residuals at low and intermediate (1-4 MeV/n) energies,
since their transformation in (A,Z)-Ex plane is continuous.

3) Transition from sequential evaporation/fission to fast simultaneous
multifragmentation (at 2-4 MeV/nucleon) must be investigated in details:
This would allow for fixing parameters of statistical models

4) Future of fragmentation reactions is i1sotope measurements and fragment
correlations. These data improve considerably our knowledge about reaction
mechanisms. Whereas inclusive data do not always allow for unambiguous
interpretation.
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Schematic classification of statistical ensembles used for describing break-up of the
nuclear system with mass number A, charge Z, and total energy E,in a volume V.




E. Geraci et al. / Nuclear Physics A 732 (2004) 173-201 Chlmera, 35 MeV/N
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energy per nucleon in the CM reference frame as a function of the fragment charge. Circles represent data. lines
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Fig 12 Charge distriburtion and charge partition. 1 e, charge distributions of the heaviest three fragments 1n each

event (£ = Z£> = Z3). Circles represent data, lines show SMM-filtered predictions for central g + BNy
collisions.
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Statistical fragmentation of Au projectiles at E / A =600 MeV

1Copenhagen

'm Ay 4+ Cu
| E/8 = EO0D e

F1G. 3. Comparison of the (M -2 ppues correlation ob.
served for Auv + Cu reactions (squares) with predictions of the
sequential decay code GEMINI (left part) and of the statistical
multifragmentation models of Gross and co-workers (center
part) and of Bondorf and co-workers (right partl. The lines
represent  excitation functions for different initial systems
[ Ay, Z 0=0100,40), (131,34), and (190,73). The shaded bands
are predictions based on initial conditions provided by BUU
simulations.
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4.3.2. The Fermi break-up

For light primary fragments (with A < 16) even a relatively small excitation energy may be
comparable with their total binding energy. In this case we assume that the principal mechanism of
de-excitation is the explosive decay of the excited nucleus into several smaller clusters (the secondary
break-up). To describe this process we use the famous Fermi model [105]. It is analogous to the
above-described statistical model, but all final-state fragments are assumed to be in their ground or
low excited states. In this case the statistical weight of the channel containing n particles with masses
m; (i=1,...,n) in volume V, may be calculated in microcanonical approximation:

_ n a2 .
S Vi =TT my (2qr) 3/ 2= (32052
A e > i By — c *

J D(G((Zfrh)f‘) ( My rimn-1) ( . Uf) (58)

where mgy = Y., m; is the mass of the decaying nucleus, S =[], (2s; + 1) is the spin degeneracy

factor (s; 1s the ith particle spin), G = Hj‘:, n;! 1s the particle identity factor (n; is the number of
particles of kind j). Ey, is the total kinetic energy of particles at infinity which is related to the
prefragment excitation energy E7, as

Eyn = E5, + mpc” — Zm,-cz, (59)
=

US is the Coulomb interaction energy between cold secondary fragments given by Eq. (49), U§ and
V; are attributed now to the secondary break-up configuration.

'Q"_[ Y™ d‘p..:-d"pms( y p_,,‘,)a( y Paz Piz y .F"”‘)

(27h )M AZ AzZ2Maz Az
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4.3.3. Evaporation from hot fragments

The successive particle emission from hot primary fragments with A > 16 is assumed to be their
basic de-excitation mechanism. Due to the high excitation energy of these fragments, the standard
Weisskopf evaporation scheme [2] was modified to take into account the heavier ejectiles up to '*O,
besides light particles (nucleons, d, ¢, «), in ground and particle-stable excited states [81]. This
corresponds to the excitation energies €' of the ejectiles not higher than 7-8 MeV. By analogy with
standard model the width for the emission of a particle j from the compound nucleus (A, Z) is given

| P

Ej,~Bj—¢!"

LT #-18}” paz(Ejz — Bi — E)
I = —_— E
p= / s OB ey EdE (60)

=1 0

Here the sum is taken over the ground and all particle-stable excited states f}”(f =0,1,...,n)

of the fragment j, g = (25! + 1) is the spin degeneracy factor of the ith excited state, z; and
B, are corresponding reduced mass and separation energy, E7, is the excitation energy of the initial
nucleus (55), E is the kinetic energy of an emitted particle in the centre-of-mass frame. In Eq. (60)
paz and p, , are the level densities of the initial (A, Z) and final (A', Z') compound nuclei, They
are calculated using the Fermi-gas formula (41). The cross section o;(E) of the inverse reaction
(A", Z) + j = (A, Z) was calculated using the optical model with nucleus—nucleus potential from
Ref. [117]. The evaporational process was simulated by the Monte Carlo method using the algorithm
described in Ref. [ 118]. The conservation of energy and momentum was strictly controlled in each

emission step.



4.3.4. Nuclear fission

An important channel of de-excitation of heavy nuclei (A > 200) is fission. This process competes
with particle emission. Following the Bohr-Wheeler statistical approach we assume that the partial
width for the compound nucleus fission 1s proportional to the level density at the saddle point g, ( E)

[1]:
E:, —B;
Ff= g——7 pwe(E}z — By — E) dE, (61)

where B, is the height of the fission barrier which is determined by the Myers-Swiatecki prescription
[ 120]. For approximation of p,, we used the results of the extensive analysis of nuclear fissility and
",/ I'; branching ratios [121]. The influence of the shell structure on the level densities p,, and
Paz 15 disregarded since in the case of multifragmentation we are dealing with very high excitation

energies E* > 30-50 MeV when shell effects are expected to be washed out [122].
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P.Napolitani et al., Phys. Rev. C70 (2004) 054607; Fe (1GeV/N) + H, Ti
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FIG. 16. (First row) Expenimental velocity spectra (circles) and reconstructed velocity specira (solid line). Each spectrum 1s drawn in the
reference frame cormresponding to the measured average velocity value of the fragment considered. (This frame corresponds to the “center of
mass” frame of the reaction product drawn m Fig. 5). (Second row) Calculated velocity spectra obtained by GEMINI or SMM following INC
and the pre-equilibrium stage, and from SMM following directly INC. Each spectrum 1s drawn in the reference frame corresponding to the
calculated average velocity value of the fragment considered. {Third row) Velocity recoil introduced by the GEMINI or SMM phase alone
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TABLE I Critical parameters from data and SMM, ;.

Parameter Allge Lags, Kl Augyny Lagyn Kronm Per® LG
i, 28+3 24+3 18+2 263 23+3 172
Ef 45205 5.5%06 65X1.0 43x05 53x06 6.2+x1.0
T 2.16x0.08 2.10£0.06 1.88=0.08 2.11+0.05 2.05+0.05 1.81+0.06 2.20 221
B 0.32+0.02 0.34x0.02 0.53x0.05 0.35x0.03 0.37+0.03 0.57£0.06 0.44 0.328
Bly 022+0.03 0.25+0.01 050001 0.28+0.03 029+0.05 0.52+0.01
¥ 1.4+0.3° 1.02+0.23° 1.76 1.24
¥ 1.32%0.15¢ 1.20+0.08°
*Percolation.
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PHYSICAL REVIEW C, VOLUME 64, 054502

Comparison of 1.4 GeV 7Au+C data with thermodynamics: The nature of the phase transition
in nuclear multifragmentation
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Thermal expansion effects in the 8 GeV/ec 7w + Y7 Au reaction
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FIG. 4. Upper panel: decay channel probability as a function of
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[5.6.14.15] for more details.
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Sidewayvs-peaked angular distributions in hadron-induced multifragmentation:
Shock waves, geometry, or Kinematics?
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FIG. 3. Relative angular distributions as a function of IMF ki-
netic energy for Z=5-9 fragments from events with IMF mult-
plicity Np =3 from 5 GeVie 7w~ (left) and 14.6 GeV/c proton
(center) reactions on °"Au. Data are gated on fragment E/4. as
indicated. The absolute yield for each kinetic-energy cut decreases
with increasing fragment E/4 value. Solid lines are the result of a
two-component moving-source fit to the data. The night-hand frame
shows predictions of an INC and SMM hybnd calculation of the
angular distributions for 14.6 GeV/c protons, gated on fragment
energy (symbols and dashed line). All distributions are normalized
to unity at the most backward angle.
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Signals for the transition from liquid to gas in hot nuclei
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Figure 6. Dependence on E*/A for the fol-
lowing quantities, from bottom up: relative
IMF emission time T, extra radial expansion
energy €, charge distribution power-law ex-
ponent T, and probabilbiy for IMF multiplic-
it}F M]’HF > 3 [OPEII:I and MIMF < {Elﬂsb-d)
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FIG. 1. Reduced velocity correlation functions generated for

four different excitation energy per nucleon bins. IMF kinetic
energy acceptance 1s in source frame is Ejyp /A = 1—10 MeV.
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FIG. 3 (color). Dependence on E”/A for source lifetime
(bottom), thermally driven expansion energy €, [29] (center),
and probability of observing a given IMF multiplicity (top). In
the bottom panel, the shaded area mndicates the range of possible
solutions (space-time) consistent with IMF observables. The
solid line 1s an exponential fit to the IS15 results; the dashed
line a simuilar fit using heavv-ion data [11].
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Multifragmentation with GeV Light-Ion Beams®

Figure 2. Reduced relative ve-
locity correlation function for the
4.8 GeV *He + '"Au reaction
(points). Data were selected for
pairs of events with thermal mul-
tiplicity < 11 and EfA = 0.7-
3.0 MeV. Lines are results of N-
body simnulation with p/p, = 0.25
and maximuim residue size Z=12.

Time scale is indicated on fig-
ure.
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Multifragmentation reactions and properties of stellar matter at subnuclear densities
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FIG. 1. Entropy per nucleon for different disintegration channels
of U as a function of excitation energy per nucleon. Calculations are
performed within the grand-canonical version of the SMM [12.21] at
the freeze-out density o = pp,/3. Dashed and dotted lines correspond
to compound nucleus and vaporization (A € 4)channels, respectively.
Solid line is the total entropy, obtained by summing over all breakup
channels.
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FI1G. 2. Mean N/Z vs charge of fragments produced in breakup
of ¥ with energy 1 GeV/nucleon on Pb and Ti targets. Points are
experimental data obtained on fragment separator (FRS) at GSI[24].
Dashed line 15 SMM calculation for primary hot fragments; solid
and dot-dashed lines are fragments after secondary deexcitation.
Dotted line 1 corresponds to stable nuclei, dotted line 2 1s the EPAX
phenomenological parametrization for nuclei produced by spallation.
Solid and dashed lines are calculations at the standard symmetry
energy parameter =25 MeV, dot-dashed line is for reduced
¥ =15 MeV.
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Multifragmentation of spectators in relativistic
heavy-ion reactions

197 Ay + Cu at E/A = 600 MeV.
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Crab nebula, after supernova explosion




Numerical simulations of supernova explosions
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Statistical description of supernova matter

Statistical ensemble
with fixed 7T, p,,Y Le) nuclear species (A,Z): u,,=An+Z¢

baryon number conservation

pPp=2,,Ap,, find p

charge conservation — electric neutrality

Po= X.,2p,, find &

lepton number conservation

Y, =p,/p, (free neutrinos)

calculations done in a box Y L= ( p,+p, )/ p B (trapped V)
containing 1000 baryons

A.S.Botvina and I.N.Mishustin, Phys.Lett. B584, 233 (2004);
Phys.Rev. C72, 048801 (2005)



Grand-Canonical approximation for stellar matter

Ve A3/2 1
Nuclear pressure:  Frye = 'TZ g_az?f }\% exp I_T (Faz — ,u:_,;z)] =T ; PAZ

Nuclear fragment free B g S c
energies are as in SMM: Faz=Fiz+Fiz+ Fy; +Eqy

2 1/3
with Coulomb screening: EEZ — Si 1 — % P 1+ l r
' 5ry 2 \ po 2\ po

Z?
Al/3

Including electrons and neutrinos:

1
for T’ pte >> m, Pe= 372

1 +9 (WT): il (WTY _me (3+ (WTY)]
he 15\ pre I e

Neutrinos are treated as electrons but as massless particles with the spin factor twice smaller

3
[ﬁg T He (WET? — §mg>] = PQ - electro-neutrality

e
1272

electron pressure: P, =

equilibrium with electrons fhe— = —Het = —E + py,
and neutrinos (if trapped): fy = —py = JUL .
T4
Thermal photons included (black body radiation), e.g., pressure: P, = T
| bh e




Energy evolution of mass distributions of fragments in
multifragmentation reactions and in stellar mater

A.Botvina and I.Mishustin, PRC72(2005)048801
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Conclusions: multifragmentation for astrophysics

Similar conditions of nuclear matter are reached in multifragmentation
reactions and during collapses and explosions of massive stars.

The statistical models successfully applied for nuclear multifragmentation
can be generalized for astrophysical conditions. Nuclear parameters of the
models, in particular, the symmetry energy, can be extracted from
multifragmentation experiments.

Broad variety of nuclei including exotic and neutron-rich are produced in
stellar matter. Modification of the symmetry energy of nuclei in dense hot
medium is important for rates of electro-weak reactions, and for
nucleosynthesis of heavy elements.
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