



1930-18

#### Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions

4 - 8 February 2008

The de-excitation code ABLA07

Karl H. Schmidt Gesellschaft fuer Schwerionenforshung (Gsi) Darmstadt Germany

### **The de-excitation code ABLA07**

Aleksandra Kelić, Maria Valentina Ricciardi and Karl-Heinz Schmidt

GSI Darmstadt, Germany

### Layout

- Introduction
- Thermal breakup (related to A. Botvina's talk)
- Binary decay (related to R. Charity's talk)
  - Evaporation
  - Fission
- Influence of INC
- Conclusion

# Introduction

#### **Stages of a spallation reaction**



**Final residues** 

- Primary collisions (≈10 fm/c = 3.3 10<sup>-23</sup> s)
  - − ► Distorted nuclear system
- Thermalisation of nucleonic motion (≈100 fm/c)
  - Compound nucleus

#### ABLA07 starts here

- Expansion (a few 100 fm/c)
  - Thermal instabilities
- Shape evolution (≈1000 fm/c)
  - − ► Fission delay
- De-excitation (up to ≈10<sup>7</sup> fm/c)
  - Final residue

ABLA07 is 2nd part of ABRABLA07 (Abrasion-ablation code).

#### **Fingerprints of the de-excitation process**



P. Armbruster et al., PRL 93 (2004) 212701

The de-excitation process wipes out most of the properties of the heated thermalised system. Most of the characteristica of the final residues are fingerprints of the de-excitation process.

The situation after the primary collision process can be expressed by the parameters of the compound nucleus. They define the starting

point of the de-excitation process.

#### **Parameters of the compound nucleus**

- Composition in A and Z
  - Starting point on the chart of the nuclides
- Thermal excitation energy (Bohr) (nucleonic motion)
  - Influence on emission rates
  - Reduced in de-excitation
- Angular momentum (Bohr)
  - Influence on barriers (mostly fission)
  - Modified in de-excitation
- Linear momentum
  - No influence on de-excitation
  - Signature of reaction channel
- Volume (extended)
  - Response to heating breakup

#### Phenomena in the de-excitation process



Some processes let particularly strong fingerprints in the decay products:



- E\* > 3 A MeV: Thermal (spinodal) instabilities
  - ► Multifragmentation
- E\* < 3 A MeV Binary decay
  - ► Fission evaporation
- E\* < 20 MeV: Shell effects</li>
  Fission channels
- E\* < 10 MeV: Pairing correlations
  - ► Even-odd structure

#### **Spirit of ABLA07**

- Coverage of all phenomena relevant for residue production (in contrast to old ABLA).
- As much theory as possible for good predictive power.
- As much empirical information as needed for good reproduction of data.
- Code should be "fast" (analytical whenever possible).

# Simultaneous break-up

#### Importance of the density degree of freedom



#### **Two components in mass distribution**



High-mass component: Surviving heavy residue!

Low-mass component: Pre-equ., multifragmentation of binary decay? Additional information required.

### Exp. signature of multifragmentation ?







Longitudinal cuts in velocity

#### Multifragmentation:

One central component due to expansion of an homogenous source.

#### **Binary decay:**

2 separated forward and backward components due to Coulomb repulsion.

PhD, P. Napolitani

#### Mass distribution: Power law



Multifragmentation in ABLA07:

When *E*\* > 3 *A* MeV, part of the system decomposes into several IMFs.

Size distribution is given by a power law.

Exponent depends on  $E^*/A$ .

V. A. Karnaukov, Phys. Part. Nucl. 37 (2006) 165

# **Binary decay**

### **1. Evaporation**

#### **Macroscopic features of binary decay**





Binary decay over all possible mass splits Fission barrier of heavy system

system

Evaporation and fission are limiting cases of binary decay.

Fission involves more collective phenomena.

#### **IMF emission in ABLA07**

• All nuclei below the Businaro-Gallone maximum of the massasymmetry dependent barrier are taken into account in the evaporation process  $\Rightarrow$  transition between fission and evaporation picture.

• The barriers are given by the Bass nuclear potential.



#### **Particle emission widths**

Weisskopf-Ewing formalism

$$\Gamma_{\nu}(E_{i}) = \frac{2 \cdot s_{\nu} + 1}{2 \cdot \pi \cdot \rho(E_{i})} \cdot \frac{2 \cdot m_{\nu}}{\pi \cdot \hbar^{2}} \cdot \int_{0}^{E_{i} - S_{\nu}} \sigma_{c}(\varepsilon_{\nu}) \cdot \rho(E_{f}) \cdot (\varepsilon_{\nu} - B_{\nu}) dE_{f}$$

• Barriers  $\rightarrow$ 

>calculated with the Bass nuclear potential (deduced from fusion)

- Inverse cross section  $\rightarrow$ 
  - ➢influence of the Coulomb barrier
  - >energy-dependent inverse cross sections

Ievel density with shell and pairing, including excitations of IMFs

- tunnelling through the barrier (for light charged particles)
- Angular momentum  $\rightarrow$

Change in angular momentum due to particle emission included

### $\sigma_{inv}$ in ABLA07

Particle-decay width in Weisskopf-Ewing approach:

$$\Gamma_{\nu}(E_{i},J_{i}) = \frac{2 \cdot s_{\nu} + 1}{2 \cdot \pi \cdot \rho(E_{i},J_{i})} \cdot \frac{2 \cdot m_{\nu}}{\pi \cdot \hbar^{2}} \cdot \int_{0}^{E_{i}-S_{\nu}} \sigma_{in\nu}(\varepsilon_{\nu}) \cdot \rho(E_{f},J_{f}) \cdot (\varepsilon_{\nu} - B_{\nu}) dE_{f}$$
$$\varepsilon_{\nu} = E_{i} - S_{\nu} - E_{f}$$

- Inverse cross section:
  - Ingoing-wave boundary condition
  - Optical model  $\sum_{l} (2 \cdot l + 1) \cdot \pi \cdot \lambda^2 \cdot T_{\nu}^{l}(\varepsilon_{\nu})$
  - Parameterization (e.g. NASA)

#### Ingoing-wave boundary condition

 Analogous to the diffraction of light by a totally absorbing disc or sphere, once the barrier is overcome

$$\sigma_{inv}\left(\varepsilon_{v}\right) = \pi \cdot R^{2} \cdot \left(1 - \frac{B_{v}}{\varepsilon_{v}}\right), \quad R = R_{geom} + R_{\lambda}$$

$$R_{geom} = 1.16 \, fm \cdot \left(A_1^{\frac{1}{3}} + A_2^{\frac{1}{3}}\right), \quad \text{and} \quad R_{\lambda} = \sqrt{\frac{\hbar^2}{2 \cdot \mu \cdot \varepsilon_{\nu}}}$$

 $B_{v}$  - Bass model for fusion of two spherical nuclei.

Ingoing-wave boundary condition -> full absorption (inverse of complete fusion).

(Enhanced emission for protons, alphas -> due to missing preformation-factor for IMFs? decay of unstable residues?)

#### Comparison with data (neutrons)



#### Comparison with data (protons)



#### Comparison with data (deuterons, <sup>4</sup>He)



### Comparison with data (carbon, oxygen)



#### **Production of helium**



Data: R. Michel et al., NIM B 103, C. M. Herbach et al., Proc SARE-5 meeting, 2000

#### Production of <sup>7</sup>Be



#### Odd-even structure in yields of light nuclei



# Detailed consideration on particle-gamma competition needed



#### **Summary: Evaporation in ABLA07**

- Emission of nucleons, LCPs, IMFs, continuous coverage up to Businaro-Gallone maximum
- Particle decay widths and energy spectra:
  - energy-dependent inverse cross sections based on nuclear potential, ingoing-wave boundary condition
  - tunneling
  - thermal expansion of emitting source
  - angular momentum in particle emission (moment expansion, analytical)
- Gamma emission at energies close to the particle threshold (Ignatyuk, 2002)

# **Binary decay**

### 2. Fission

#### Fission-decay width – statistical basis

- Bohr-Wheeler approach (transition-state model)
- Fission barriers from FRLDM (Sierk) + g.s. shell effects, angular-momentum dependent
- Macroscopic level density from Ignatyuk  $(a_f/a_n)$
- Shell effects, pairing in level density from Ignatyuk
- Collective enhancement, energy dependent (A. R. Junghans)

#### **Fission cross sections**

Low-energy fission  $\rightarrow$  influence of double-humped structure in fission barriers of actinides and symmetry classes at saddle



• exp data - Gavron et al., PRC13

— ABLA07

#### **Transient effect**

considered by approximated solution of the Fokker-Planck equation

B. Jurado et al, Nucl. Phys. A 747 (2005) 14



#### How to model the fission yields?



Complexity of multi-modal fission

### Fission valleys and fission channels <sup>224</sup>Th

 $A_4$ - $A_7$  minimization

#### Measured Z yields



Shells of fragments already decisive at outer saddle?! (Two-centre shell model calculations. Mosel, Schmitt, ...)

#### Curvature of macroscopic potential and width of mass distribution are related in a statistical approach



 $d^2 V/d\eta^2 \sim T/(\sigma_A^2)$ 

Mulgin et al. NPA 640 (1998) 375

#### **Macroscopic potential**

Experiment: In cases when shell effects can be disregarded (high E\*), the fission-fragment mass distribution of heavy systems is Gaussian.



Systematics of second derivative of potential V in mass asymmetry **ŋ** deduced from measured width  $\sigma_{A}$  of fissionfragment mass distributions.

 $d^2 V/d\eta^2 \sim T/(\sigma_{\Delta}^2)$ 

 $\leftarrow$  Mulgin et al. NPA 640 (1998) 375

ABLA07 uses this empirical parameterization for the macroscopic part of a macro-microscopic approach.

#### Shell effects deduced from fragment yields



$$\frac{Y_{\rm exp}}{Y_{\rm macro}} = \exp\left(-\frac{\delta U}{T_{eff}}\right)$$

Idea introduced by Itkis et al., Sov. J. Nucl. Phys. 43 (1986) 719

Enhanced yields attributed to shell effects.

#### Shells in fragments

#### A. Karpov, 2007





Schematic: only two shells: N = 82 and N = 92

Fission-fragment yields are given by number of levels above the mass-asymmetric potential.

Potential is composed of macroscopic part (CN property) and microscopic part (fragment property).

**Powerful separability principle!** (arXiv nucl-ex/0711.3967)

# Application: Transition from single-humped to double-humped distributions



 $N_{\rm CN}/2 = 67.5$   $N_{\rm CN}/2 = 68.5$   $N_{\rm CN}/2 = 69.5$ Reason: Moving position of symmetry in neutron number

#### Comparison with mass distributions <sup>238</sup>U + n (1.7 ... 5.5 MeV)



Data: F. Vives et al. NPA 662 (2000) 63

#### Multimodal fission around <sup>226</sup>Th



Black: experimental data (GSI experiment) Red: model calculations (N=82, Z=50, N=92 shells) Possible fissionning systems in spallation of <sup>238</sup>U!

#### Spallation <sup>238</sup>U (1 A GeV) + <sup>1</sup>H



### **Summary: Fission in ABLA07**

- Coverage beyond the Businaro-Gallone maximum
- Influence of nuclear viscosity on the fission decay width:
  - analytical time-dependent approach (B. Jurado et al., 2003)
  - influence of initial conditions
- Symmetry classes and barrier structure
- Particle emission on different stages of the fission process
- Nuclide distributions with statistical macromicroscopic approach (spont. fission .. high E\*)
  - Separability principle: Compound-nucleus and fragment properties

# Influence of the INC phase

#### Variation of beam energy



Increase of beam energy leads to higher excitation energies after INC and to larger mass loss in evaporation.

Data:

T. Enqvist et al., NPA 686, 481, NPA 703, 435

B. Fernandez et al., NPA 747, 227

L. Audouin et al., NPA 768, 1

## Conclusion

#### ABLA07

#### Developed by A. Kelic, M.V. Ricciardi, K.-H. Schmidt

New features (with moderate increase of computing time):

- Multifragmentation
- CN-decay channels γ, n, p, LCP, IMF, fission (continuous)
  - inverse x-sections from nuclear potential
  - treatment of angular momentum
  - fission transients from Fokker-Planck equation
  - barrier structure in low-energy fission
  - nuclide production in fission with 1 parameter set
    - from spontaneous fission to high E\* for all CN
  - evaporation on fission path

Ready to be coupled with INCL 4 (or other INC, or ABRA, or ..)