

1930-7

Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions

4 - 8 February 2008

Spallation Data and Applications

Alberto Mengoni IAEA Nuclear Data Section Vienna Austria

Nuclear Physics, Astrophysics, and Advanced Technologies with Neutrons

Alberto Mengoni IAEA, Vienna

Generalities

Example of experimental activity: n_TOF at CERN

From experimental data to evaluated data libraries

a.mengoni@iaea.org

Nuclear Reaction Experiments

Neutron induced reactions

a.mengoni@iaea.org

Nuclear Reaction Experiments

Neutron induced reactions

www.cern.ch/n_TOF

a.mengoni@iaea.org

Nuclear Astrophysics

 Nuclear Technologies advanced reactors, nuclear waste transmutation, etc.

Neutrons as probes for fundamental Nuclear Physics

Nucleosynthesis: the s-process

direct correlation between neutron capture cross section and abundance:

 \geq

 $\sigma(n,\gamma) \cdot N = const.$

The canonical s-process

Solar system elemental abundances

Energy generation and Nucleosynthesis: not only in stars!

The Candu Qinshan Nuclear Power Plant

Th/U fuel cycle

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d st	Cm 241 32,8 d	Cm 242 162,94 d st # 5113: 5.009 st:p 7 (44). 6" 6" 20 6" - 5	Cm 243 29,1 a sf a 5765 5742 c st; g y 276; 2281; 210 sr a 130; ag 620	Cm 244 18,10 a = 5405;6702 st.g - 743; = - 715;11	Cm 245 8500 a st a 6.361; 5.304 st.g r 175; 133. r 350; m 2109	Cm 246 4730 a a 5.386; 5.343 st; g 7 (45); e r 1,2; or 0,16
Am 236 ? 3,7 m	Am 237 73,0 m st (* 6.042 7001 438, 474 909 9	Am 238 1,63 h st *	Am 239 11,9 h \$ \$ \$774_ \$ \$774_ \$ \$774_ \$ \$ \$774_ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Am 240 50,8 h • 5,378. • 7988,889 •	Am 241 432,2 a st 05,400; 5,443 st; y 60; 25 07,9 07,9 050 + 590; or at	Am 242	Am 243 7370 a st st: +75:44. *75+3 n; 0.074	Am 244	Am 245 2,05 h sl (241,290 (241,290 (241,290) (241,290) (241,290)
Pu 235 25,3 m	Pu 236 2,858 a #5,786;5,721 st. Mg 70 +140;105; e* my 160	Pu 237 45,2 d	Pu 238 87,74 a 5,400; 5,409 0, 51, Mg 1,43, 100,2,e ⁺ 9,510; op 17	PU 239 2,411 - 10 ⁴ a a £ 157; £ 144 a'; 157; £ 144 a'; 17 270; 49; 752	Pu 240 6563 a 05,168; 5,124 95,168; 5,124 95,1465) 97,292; 01 ~ 0,044	Pu 241 14,35 a F 0.02: 0 + 4.440. 1 (14914 + 370+ 1010	Pu 242 3,750 · 10 ⁵ a a4,601; 4,856 b1, y (45) p10; oj < 0,2	Pu 243 4,956 h st ^{(p-0.6} (94-0) (ref 100(ref 200)	Pu 244 8,00 - 107 a 4,538,4,546 9(1) 6 ⁻¹ + 1,7
Np 234 4,4 d * ,8+ 7 1559: 1528, 1802 #1*900	Np 235 396,1 d 5,005,5 5,007 y126; 84h.e ⁻ g: o 160 + 7	Np 236 22,5 h 154 10 ⁵ h 4 h 0.5. + F 14 1985 - 198 - 198 - 198	Np 237 2,144 - 10 ⁶ a = 4,790; 4,774, 7,20; 67,, 9 + 180; -9,0,020	Np 238 2,117 d ^{β-1,2} γ 984; 1029; 1026; 924e ⁻ g, σ;2100	Np 239 2,355 d ^{B⁺} 0.4; 0.7 y 106: 278: 228. e ⁻ ; g o 32 + 19: or < 1	Np 240 7,22 m 65 m 7,555 87 97 0.9 7,555 87 97 0.9 7,555 807 0.900 0000 00000000000000000000000000	Np 241 13,9 m ^{β⁻1,3} γ 175; (133) 9	Np 242 2,2m 5,5 m F 2,7 F 7738, 7786, 746 H45 1477 9 9 9	Np 243 1,85 m ^{β⁻} γ 288 9
U 233 1,592 • 10 ⁵ a « 4,824, 4,783 Ne 25: γ (42: 97); e σ 47; σ: 530	U 234 0,0055 2,455 · 10 ⁵ a 1,475;4720_ist Mg 28; Nrc 153; 121 - a ² - ¹ 25; 121 - 1 ² - ¹ 25;121 -	U 235 0,7200 25 = 7,038-10° 0 44386d h= 000 a* 4,386d h= 000 a* 4,386d	U 236 120 ns 2,342-10°a 4,445 14,445 15,3°a 10° r 5,4	U 237 6,75 d β ⁺ 0,2 γ 60: 208 e ⁻ σ - 100; σt < 0,35	U 238 99,2745 2007 4485 10°a 1534 10°a 1534 10°a 1534 10°a 1534 10°a	U 239 23,5 m ^(b) 1.2; 1.3 ^(c) 75; 44 ^(c) 22: e: 15	U 240 14,1 h \$^0,4 \$^44;(190) e^m		U 242 16,8 m ³⁷ 768:58:585; 573 m
Pa 232 1,31 d β ⁻ 0,3,1,3e y 969,894 150a ⁻ o 460; m 700	Pa 233 2.70 d β [−] 0,30,1 y 312, 300 341;e [−] r20+19; m < 0.	Pa 234 1,17 m 6,70 h 1,17 m 6,70 h 1,2 1,10001 1,2 1,131,081 h(74.54 m 6555) h(74.54 m 6555) h(74.54 m 6555) h(74.54 m 6555)	Pa 235 24,2 m ^{p⁻1,4} ^{7 128 - 659}	Pa 236 9,1 m 8* 2.0; 3,1 9 642; 587; 1763; g Bsf ?	Pa 237 8,7 m ^{β⁻1,4, 2,3} y 854; 865; 529; 541	Pa 238 2,3 m 8 ^{-1,7;2,9} 1015:635: 448;680 9	148		150
Th 231 25,5 h ^{β=0,3;0,4} γ 26;84 e ⁻	Th 232 100 1,405-10 ¹⁹ a # 4,013, 3,950 # 9 54 () 67 19 7,37: +0,0000005	Th 233 22,3 m 11,12,79, 459 F 1500, 415	$\begin{array}{c} Th \ 234 \\ 24,10 \ d \\ \mu^{-} 0.2 \\ \gamma \ 63; 92; 93 \\ e^{-}; m \\ \sigma \ 1.8; \ \sigma < 0.01 \end{array}$	Th 235 7,1 m γ 417; 727; 696	Th 236 37,5 m ^{β⁻1.0_} γ 111; (647; 196_)	Th 237 5,0 m			

www.cern.ch/n_TOF

ADS (Accelerator Driven Systems)

World scene for tof measurements

facility		driver and energy	repetition rate	n source	n energy range	flight path length
FZK TIT 	Karlsruhe Tokyo 	varii in the MeV range	MHz	⁷ Li(p,n) & others	few keV up to 1 MeV monoE above	10s cm
GELINA	EC-JRC Geel	electron linac 150 MeV	800 Hz	photo-n photo-f	10 meV – 20 MeV	10m to 400m
LANSCE	Los Alamos National Laboratory	proton linac 800 MeV	20 Hz	spallation	< 500 keV (DANCE)	20m
n_TOF	CERN	PS 20 GeV	0.4 Hz (average)	spallation	10 meV – 250 MeV (or wider)	200m

CERN accelerator Complex

Linac(s): up to 50 MeV PSB: up to 1 GeV PS: up to 24 GeV

The n_TOF facility at CERN

www.cern.ch/n_TOF

n_TOF basic parameters

proton beam momentum	20 GeV/c
intensity (dedicated mode)	7 x 10 ¹² protons/pulse
repetition frequency	1 pulse/2.4s
pulse width	6 ns (rms)
n/p	300
lead target dimensions	80x80x60 cm ³
cooling & moderation material	H ₂ O
moderator thickness in the exit face	5 cm
neutron beam dimension in EAR-1 (capture mode)	2 cm (FWHM)

www.cern.ch/n_TOF

wide energy range

dN/dlnE/7.e12 protons Monte Carlo Simulation ²³⁸U(n,f) with PPACs ²³⁵U(n,f) with PTB ionisation chamber 10 ²³⁸U(n.f) with PTB ionisation chamber ⁶Li(n,a) Silicon Flux Monitor 2001 ⁶Li(n,a) Silicon Flux Monitor 2002 ¹⁹⁷Au(n,g) with C_eD_e detectors ^{nat}Fe(n,g) with C₆D₆ detectors 10 10 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9 10^{10} 10⁻² 10⁻¹ 1 E_n (eV)

www.cern.ch/n_TOF

 $^{232}Th(n,\gamma)$

wide energy rangehigh neutron flux &

high energy resolution

www.cern.ch/n TOF

- wide energy range
- high neutron flux & high energy resolution

- wide energy range
- high neutron flux & high energy resolution

⁹³Ζr(n,γ

www.cern.ch/n_TOF

²³²Th(n,γ)

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver

 $\frac{f_1}{f_2} \times \frac{L_1}{L_2} = \frac{0.28 \left[\frac{1}{s} \right]}{800 \left[\frac{1}{s} \right]} \times \frac{187.5 \left[\frac{m}{m} \right]}{30 \left[m \right]} = \frac{1}{457}$

source: P Rullhusen (GELINA)

comparison with GELINA (~ same average flux at 30m)

www.cern.ch/n_TOF

Basic characteristics of experiments at n_TOF U Abbondanno et al. (The n_TOF Collaboration)

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- low background conditions

Phys. Rev. Lett. 93 (2004), 161103

S Marrone et al. (The n TOF Collaboration)

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions

D Cano-Ott, *et al.* (The n_TOF Collaboration) ND2004 Conference, Santa Fe, NM – Sept. 2004

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

www.cern.ch/n_TOF

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

The n

TOF Collaboration

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

sample changer and beam pipe made out of carbon fiber

- 40 BaF₂ crystals
- high detection efficiency ≈100%
- good energy resolution

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)

²⁴⁰Pu(n,γ)

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)

C Guerrero *et al.* (The n_TOF Collaboration)

ND2007 Conference, Nice, France, April 2007

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- low background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)
- advanced dag system

50

100

R Plag et al. (The n TOF Collaboration)

The n TOF Collaboration

250

300

200

150 Number of bursts

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)
- advanced daq system

n_TOF beam characteristics and experimental setup proved to be a unique combination for high accuracy measurements

www.cern.ch/n_TOF

Capture

¹⁵¹Sm

204,206,207,208Pb, 209Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**0**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

- Measurements of <u>neutron cross sections</u> relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

Evaluated Data Libraries

Evaluated data sets are produced through the process of critical comparison, selection renormalization and averaging of the available experimental data, normally complemented by nuclear model calculations.

Evaluated Libraries are computer files of evaluated data which, appropriately processed, form the input data to computations for a wide variety of nuclear science and technology applications. Each of these evaluated libraries may consist of individual evaluated data sets for several hundred isotopes or elements (commonly referred to as 'materials').

Data Libraries

www-nds.iaea.org

Data Libraries

Major Evaluated Nuclear Data libraries available for display & retrieval:

Libraries: All Selected Clean 								
O Major Librarie	s	O Other Libraries	•					
ENDF/B-VII.0	(USA, 2006)	IAEA-Standards, 2006						
JEFF-3.1	(Europe, 2005)	IAEA-Medical (for radioisotope prod.)						
JENDL-3.3	(Japan, 2002)	IRDF-2002 (Dosimetry)						
ENDF/B-VI.8	(USA, 2001)	□ JEFF-3.1/A (Activation)						
BROND-2.2	(Russia, 1992)	Special Purpose Libraries						
CENDL-2	(China, 1991)	Archival Libraries						

The End

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96**Zr**, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Th/U nuclear fuel cycle

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d st 	Cm 241 32,8 d 51 472.431.132	Cm 242 162,94 d st #6112:6009 \$10 7.141	Cm 243 29,1 a 5765 5742 519 1075:2281 210	Cm 244 18,10 a *5405.6702. *15 ** 11	Cm 245 8500 a st g 05.361; 5.364 st g 175 133. r 350; rs 2100	Cm 246 4730 a ± 5,388; 5,343 st; g + (45); e t; 1,2; or 0,16
Am 236 ? 3,7 m	Am 237 73,0 m * 6.042 7200: 430, 674 909- 9	Am 238 1,63 h * ± 5.94 y \$53, \$15, 561 60 0	Am 239 11,9 h 4 * 5.774. 1270: 220. 9	Am 240 50,8 h , , , , , , , , , , , , , , , , , , ,	Am 241 432,2 a • 5406, 5443 • 576, 25 • 570; 0, 25	Am 242 141 a 16 h 51 h 141, c 16 k 5201, 07, 14 141, 6 10, 14 5201, 14 141, 6 10, 14 5201, 14 14, 14 15, 16 16 16 16 16 16 16 16 16 16 16 16 16 1	Am 243 7370 a stars, 5231. st. y75, 5231. st. y75, 41. y, 9,074	Am 244 st p 1.5. p 1.5. p 1.6. p	Am 245 2,05 h 10,05 h 10,05 h 10,05 h 10,05 h 10,05 h
Pu 235 25,3 m	Pu 236 2,858 a *576k.5721 *5.49 M *146.105	Pu 237 45,2 d	Pu 238 87,74 a # 5,492; 5,458 (1,51 Mg Y (42, 100); e + 510; m; 17	Pu 239 2,411+10 ⁴ a 151 15157:5144 1517:5144 1517:5144 1517:5144 1517:5144 1517:5144	Pu 240 6563 a st st,168;5,124 st;y165) e;s +292;e;=0,044	Pu 241 14,35 a 51 51 0.02: 9 4.4501. 7 (143.) 51 7 (143.	Pu 242 3,750 · 10 ⁵ a a 4,901; 4,696 e1, y (45) e1, y (45) e1, g, e1, e1, e1, e1, e1, e1, e1, e1, e1, e1	Pu 243 4,956 h sf	Pu 244 8,00 - 10 ⁷ a st st st, st, st, st, r e ⁻ e ⁻ e ⁻ 1,7
Np 234 4,4 d *, β* γ 1659; 1528; 1602 στ. 900	Np 235 396,1 d 5,025; 5,007 y[26; 84], e ⁻ g; \pi 160 + 7	Np 236 2258 154 10 ⁹ 8 4 8 - 0.5 4 10 ⁹ 8 4 8 - 0.5 4 10 ⁹ 8 960 1 4 10 ⁹ 10 ² - 0 0 4 9 200 4 9 2010	Np 237 2,144 - 10 ⁶ a 4,790: 4774 7,20: 67a ⁺ + 190: 47.0.920	Np 238 2,117 d ^{p-1,2} 7 984; 1029; 1026; 924e ⁻ g; er 2100	Np 239 2,355 d ^{B⁻0.4;0.7} y 106;278; 228 e ⁻ ;9 g 32 + 19; gr < 1	Np 240 7,22 m 65 m 7,555 87 97 509 7,555 87 97 509 7,555 87 97 509 7,556 87 97 97 97 97 90 97 97 97 97 97 90 97 97 97 97 97 97 97 97 97 97 97 97 97	Np 241 13,9 m ^{β^{-1,3} ^γ 175; (133)}	Np 242 2,2 m 5,5 m 1° 2,7 F 7788, 645; 1677 9 1645; 1647 9 19 19 19 19 19 19 19 19 19 19 19 19 19	Np 243 1,85 m
U 233 1,592 • 105 a « 4,824; 4,783 Ne 25: γ (42; 97); e « 47; m 530	U 234 0,0055 2,455 · 10 ⁵ c 4775 47225 Mg 28 Net 153, 121 c ² - 95 n - 0.005	U 235 0,7200 26 = 7,688-10 - 4 4,588 ff Ne 1 - 108 - 4588 ff	U 236 120 ns 2,342-10°a 4,445 4,445 dr. y (42) 642 115 m ⁻ = 6,4	U 237 6,75 d β ⁻ 0,2 γ 60: 208 e ⁻ σ - 100; σt < 0,35	U 238 99,2745 2007 4468 10% 1531 37,100 37,100 37,100 422,400	U 239 23,5 m 8 ^{-1,2;1,3,} ^{7,75;44,} e 22: e: 15	U 240 14.1 h \$^0.4 7 44: (190) e ⁻ m		U 242 16,8 m ³⁷ 7 68: 58: 585; 573 m
Pa 232 1,31 d 5 ^{-0,3,1,3} , e 969,894 150, e ⁻ 9480, er 700	Pa 233 2, 0 d β=0,3:0,1 y3:2,300 341;e ⁻ u20+19:u≤0	Pa 234 1,17 m 6,70 h 1,12 z. 1,10001 12 12 12 10 10 12 12 12 12 13 12 13 13 12 13 13 13 13 13 13 13 13 13 13	Pa 235 24,2 m ^{β⁻1,4} ^{γ 128 - 659}	Pa 236 9,1 m β 2,0; 3,1 γ 642; 587 1763; g βsf 7	Pa 237 8,7 m ⁽⁵⁾ 1,4; 2,3 ₇ 854; 865; 529; 541	Pa 238 2,3 m p=1.7; 2,9 y 1015; 635; 448; 680 9	148		150
Th 231 25,5 h ^{β⁻0,3; 0,4} ^{γ 25; 84}	Th 232 100 1,405-10 ¹⁹ a + 6013-3.950	Th 233 22,3 m 1,47,2 m 1,489	Th 234 24,10 d μ ⁻ 0.2. ⁷ 63; 92; 93 e ⁻ ; m σ 1.8; σt < 0.01	Th 235 7,1 m ^{β^{-1,4}}	Th 236 37,5 m β ^{-1,0} γ 111: (647; 196)	Th 237 5,0 m			

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

186,187,188<mark>0</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

²³²Th(n,γ)

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

> G Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

> G Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

TABLE II. Different components of estimated systematic or correlated uncertainty in the measured cross section.

Component	Uncertainty (%)		
PHWT	0.5		
Normalization	0.5		
Background	2.5		
Flux shape	2.0		
Total	3.3		

For $E_n = 4$ keV up to 1 MeV full dataset is available on the PRC publication

E_{low}	$E_{\rm high}$	Cross section	Uncertainty
(keV)	(keV)	(b)	(b)
3.994	4.482	0.958	0.020
4.482	5.028	1.281	0.021
5.028	5.642	1.097	0.016
5.642	6.331	1.004	0.014
6.331	7.103	0.912	0.013
7.103	7.970	0.919	0.013
7.970	8.942	0.848	0.013
8.942	10.033	0.817	0.012
10.033	11.257	0.800	0.012
11.257	12.631	0.787	0.012
12.631	14.172	0.761	0.012
14.172	15.902	0.729	0.011
15.902	17.842	0.685	0.011
17.842	20.019	0.613	0.010
20.019	22.461	0.641	0.010
22.461	25.202	0.566	0.009
25.202	28.277	0.545	0.009
28.277	31.728	0.513	0.008
31.728	35.599	0.497	0.009
35.599	39.943	0.468	0.009
39.943	44.816	0.456	0.008
44.816	50.285	0.413	0.007
50.285	56.421	0.365	0.006
56.421	63.305	0.346	0.006
63.305	71.029	0.318	0.006
71.029	79.696	0.275	0.005
79.696	89.421	0.248	0.005
89.421	100.332	0.229	0.005
100.332	112.574	0.220	0.004
112.574	126.310	0.204	0.004
126.310	141.722	0.192	0.004

The n_TOF Collaboration

&

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

