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Photonic Crystals

Periodic dielectric structures that can interact resonantly with radiation with
wavelengths comparable to the periodicity length of the dielectric lattice.

WHY ARE THEY CALLED PHOTONIC CRYSTALS?

Can affect the properties of photons in much the same way that ordinary
semiconductor and conductor crystals affect the properties of electrons.

Properties of electrons in ordinary crystals are affected by parameters like lattice
size and defects, for example. Crystals are made of periodic arrays of atoms at
atomic length scales.

HOW DO THEY LOOK?

Crystal Photonic Crystals Yablonovite

From Bragg Gratings to Photonic Crystals in 5 Steps

1785: The first man-made diffraction grating was made by
David Rittenhouse, who strung hairs between two finely
threaded screws.

1913: Bragg formulation of X-ray diffraction by cristalline solids

1928: Bloch’s Theorem describe the conduction of electrons
in crystalline solids. ( Math developed by Floquet in 1D case in 1883)

1976: A.Yariv and P. Yeh, study of dielectric multilayer stacks,
waveguides and bragg fibers.

1987: Prediction of photonic crystals

S. John, Phys. Rev. Lett. 58,2486 (1987), “Strong localization of photons
in certain dielectric superlattices”

E. Yablonovitch, Phys. Rev. Lett. 58 2059 (1987), “Inhibited spontaneous
emission in solid state physics and electronics”




Suggested readings
Websites:
http://www.pbglink.com for Extensive web listing of PBG information

http://ab-initio.mit.edu/mpb MIT photonic- band package
http://homepages.udayton.edu/~sarangan Dayton Univ. Lectures on Photonic crystals

Books:

Photonic Crystals: Towards Nanoscale Photonic Devices, J-M Lourtioz et al. Springer (2003)

Roadmap on Photonic Crystals by Susumu Noda (Editor), Toshihiko Baba (Editor), Kluwer
Academic Publishers; (2003).

Nonlinear Photonic Crystals by R. E. Slusher and B. J. Eggleton Eds., (2003).

Photonic Crystals: The Road from Theory to Practice: S. G. Johnson and J. D.Joannopoulos,
Kluwer (2002).

Optical Properties of Photonic Crystals K. Sakoda, Springer (2001).
Quantum Electronics 3°edition A. Yariv, Wiley (1989).

Optical waves in Layered media Pochi Yeh, Wiley (1988).

1-D Photonic Crystals

a closer look —— Unit cell
N\

The dielectric constant is periodically
modulated in one dimension:

8(7) =e(x)= E(x + na);
n=0,+1+2....

From cartoons to pictures....

A scanning electron microscopy image of a tiny
dielectric mirror being cut from a larger piece of
material.

The alternating layers of Ta,Og and SiO, which
form the mirror are clearly visible.




1-D Photonic Crystals

a closer look

According to their definition, photonic crystals can interact resonantly with
radiation with wavelengths comparable to the periodicity length of the
dielectric lattice.

Broadband dielectric mirrors used in optics experiments. The characteristic color
of the mirrors is caused by their wavelength dependent reflectivity.

2-D Photonic Crystals

a closer look , o
Square lattice of cylindrical rods

The dielectric constant is periodically
modulated in two dimensions:
£(r) =&(x,y)= €(x +na,y+ma, );
n,m=0,t1,%£2....
y
DD

A cylinder is put at every lattice point.
Any Bravais 2-D lattice is defined by 2 C\ N\ ]
primitive vectors, for the square lattice they NN VAN
are: " : :
C0Pe0
dy =a,y; D (N D
Th latti int can be writt N e e
us every lattice point can be written as: <> () x.c. )
R=nd, + mi; * 444
nom=0+112,... C/ NOZAAN AN \D




2-D Photonic Crystals
a closer look

Primitive unit cell: Unit Cell: a volume (if 3D) space that, when translated through all
the vectors of a Bravais lattice, just fills all of space without either overlapping itself or
leaving voids.

There is no unique way of choosing a primitive cell for a given Bravais lattice.

. L. . Rhombic lattice or isosceles triangular lattice
Obvious primitive cell can be defined ( triangular lattice if triangles are equilateral)

starting from the primitive vectors: y
di  &(F)=elF +nd, +ma,);
dy; nm=0,x+112,...

With Fbelonging to the primitive cell

B\ 2
Primitive cell with the full symmetry of the @@@@@

Bravais lattice. It is the region of space around
a lattice point, closer to that point than to any
other lattice point

2-D Photonic Crystals

a closer look

Living example of a 2D Photonic Crystal, the “Sea Mouse” spine.

Available onling a1 www.sciencedirect com

lcx!ue!@mllefl leun -

2
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Structural colours through photonic crystals

R.C. McPhedran™®, NA. Nicorovici®, D.R. McKenzie'. G.W. Rouse”.
L.C. Botien®. V. Weleh®, A.R. Parker®, M. Wohlgennant®, V. Vardeny®

Depariment of Th v, Setol of Phisicn, Unirvrsite of Stiboes, NSI0 06, fuirui

Fig. 1: A sea mouse or Aphrodita (note the iridescent felt or
the edge of its body). From Sue Daly, Marine Life of the
Channel Islands, 1998 (with permission).




2-D Photonic Crystals

a closer look

e Electronmicrographs of a spine and a felt hair. Both
contain close packed voids of water in chitin (refractive
index 1.52). The spine has 88 layers of holes with a
spacing of (.51 g,

3-D Photonic Crystals

a closer look

The dielectric constant is periodically modulated in three dimensions.
Lattice is defined by 3 primitive vectors:

a;

d,;

as; R =nad, +ma, +ld,;
n,m,l=0,t1,12,...

£(r) = &(7 +na, + ma, +la, ),
n,m,=0+1%2,...

With Fbelonging to the primitive cell

Reference: Ashcroft & Mermin, Solid State Physics, Saunders College Publishing for
details on 3D Bravais lattices and crytal symmetries




3-D Photonic Crystals

a closer look

At the micro scale precious opal is composed of silica(SiO2) spheres some 150 to 300
nm in diameter in a hexagonal or cubic closed packed lattice. These ordered silica
spheres produce the internal colors by causing the interference and diffraction of light
passing through the microstructure of opal

Propagation of e.m waves in
periodic media:




Scattering of light in periodically patterned media

Periodicity comparable to incident light wavelengths can be responsible for
constructive interferences among scattered light by every lattice point. The
phenomenon is exactly the same as it happens in diffraction gratings.

The tracks of a compact disc act as a diffraction grating, producing a separation of the colors of
white light. The nominal track separation on a CD is 1.6 micrometers, corresponding to about 625
tracks per millimeter. This is in the range of ordinary laboratory diffraction gratings. For red light of
wavelength 600 nm, this would give a first order diffraction maximum at about 22°.

Periodically patterned media
Vs.

. http://my.fit.edu/~phsu/
Random media

Si wafer top side with devices - patterned roughness. wafer back side with random roughness

Light is scattered in all directions, there is no
evidence of frequency or angle dependent response
induced by random roughness

Resonant reflectivity at given incident
angle and wavelengths




Introduction to Bloch’s Theorem

waves in a periodic medium can propagate without scattering

Electrons

If the atoms were randomly placed the free
electrons  would  experience  strong
scattering with the lattice atoms and a short
mean free path is expected.

This is in contrast with the high value of
measured conductivity for some crystals.

But crystal lattice are periodic with typical
sizes of a few A and electrons can be
treated as waves (quantum mechanics)
with energies corresponding to a typical
wavelength comparable to lattice size.

Photons

Light scattered from a random media: The
effect can be weak or strong depending on
density of scatterers. Size and shape of the
scatterers produce wavelength and angular
dependence on the efficiency of scattering

Laser scattered by dust

Photonic crystals are characterized by primitive
cells of a size comparable to the wavelength of
the photon. Resonant scattering can occur as a
function of frequency and wavevector.

Introduction to Bloch’s Theorem

Electrons

As a results electrons can propagate in a
periodic  lattice  without experiencing
scattering with a proper dispersive relation
(energy as a function of the wave vector)

Band diagrams can be calculated using
Bloch theorem

NOTE forbidden region called GAPs.
Electrons with forbidden energies cannot
propagate inside the crystals.

Electronic Band Gap

electron energy

\

wavevector

Photons

Periodic modulation of the dielectric constant
can affect the properties of photons in much
the same way that ordinary semiconductor and
conductor crystals affect the properties of
electrons.

For certain geometries it exists a range of
frequencies called GAP for which light is
forbidden to exist inside the crystal

Photonic Band Gap

photon frequency

wavevector




Bloch’s Theorem

for e.m waves in photonic crystals

Starting point: Maxwell equations and constitutive relations.

If the e.m field is time-harmonic and if the bodies are at rest or

VXE = _873 , in very slow motion relative to each other:
ot
Vxﬁ:aﬂ+/z Jj=0E, D=¢EéE, B=u,fLH.
ot
V.-D= Neutral Insulators or dielectrics: p=0
_ ﬂ’ o(conductivity) is negligibly small; non
V-B=0. magnetically active p,=1;

If we seek solutions of the form: E(?, 1) = E(?)e_m’; H(?,t) = H(?)e_im;

We have....

Ashcroft & Mermin, Solid State Physics, Saunders College Publishing for a proof of the theorem

’
Bloch’s Theorem
for e.m waves in photonic crystals
...the following eigenvalue equations:

1

£,(7)

r

LLE®) Vx{VxE() )= E),

-
2
Wﬁ(?)}:“’jﬁm,

o

c

Lo o 1
FHH(r)_Vx{gﬁ)

If &, is a periodic function of the spatial coordinate Bloch’s Theorem states that fields solutions are
characterized by a Bloch wave vector K, a band index n and have the form:

E(?) = E‘kn(;:)eilfi; H(?) — Hf(n(;:)eiki;

with:

E(r)=¢(r+a,); a;

- _ — . . - Primitive vectors of
E. (r)=E_ (r+a;), =123 Q,; the periodic lattice
H.(F)=H_ (F+a); ds;

10



Bloch’s Theorem

for e.m waves in photonic crystals

Substituting Bloch’s solution into eigenvalue equations it is possible to calculate:

Eigen-angular frequencies: @y ;

Bloch modes (eigenvectors): Ekn (r); H,gn (r);

If we consider infinite periodic structures, real values of € (i.e lossless case), I'c
and I';, are Hermitian eigen-operators:

Wy € R

E~ (7); I:I (7); Are a complete set of orthogonal eigen-functions.

Solving equations for several values of K and w it is possible to calculate and plot
band diagrams ( dispersion relations)

Band Diagrams

Some Computational tools:

Plane Wave Expansion (PWE) Method -CPU time demanding and poor convergence
Koringa-Kohn-Rostker (KKR) Method - spherical waves expansion

Transfer matrix method - Developed by Pendry’s group at Imperial College. It also provides
amplitude and phase information.
- Rigorous Coupled-wave analysis RCWA

Dispersive properties:

Group velocity=Energy velocity ( proof: Yariv's Optical waves in crystals)
v, =Va(K)| .

8 K=K,
Phase velocity CANNOT be defined appropriately in photonic crystals because
eigenfunctions are superposition of plane waves and equiphase surfaces cannot be defined

properly. Nevertheless, in the effective medium approximation, long wavelengths with respect to
lattice periodicity the effective phase velocity can be defined as:

_ wK,) »
=——0K
Tk

11



Analysis of 1D photonic crystals:

Also called Bragg gratings

Analysis of 1D Photonic crystals

since 1887

&l & & &8 &8 & |8 & & &

>

a &x) = &x+a)

For 1D systems we can write the field as:

E(x)=

E, (x)

ein

with EK(X)ZEK(x+ma); m=0,+1,+2,...

But what happens if we consider the Bloch mode with a wavevector K’=K+2*n/a?

E(x) =

E K,(x)eZT¢

27

iKx
Periodic function satisfying the
same conditions as

E(x) = E¢(x+ma);

12



Analysis of 1D Photonic crystals

k is periodic:
— k + 211/a equivalent to k
“quasi-phase-matching”

First Brillouin zone Slow light close to the band edge

—ﬁ/ a / 0 1T7a k

Almost linear behaviour:
Effective medium regime

irreducible Brillouin zone

Analysis of 1D Photonic crystals

& & 18| &|& 6|8 & |8 &8 &

—

8 X

1D lattice has only one primitive vector

a,=ax

B

a ax) = &x+a)

Being a periodic function, the dielectric constant can be expanded as a Fourier serie

gx)= Y eUE(G), n=0x122,..

G=n2rxla

The set of values of G are called the reciprocal lattice vectors:

NOTE: the primitive cell of the reciprocal lattice is g=2m/a

Dispersion curves are periodic with a unit cell = 2r/a called Brillouin zone

=) The Brillouin zone is a primitive cell of the reciprocal lattice

13



Analysis of 1D Photonic crystals

Calculating photonic bands

y
no ny ny Ny My ny n(N+1)
a0 | a an-1) | an a(N+1)
b0 b1 b(n-1)| bn
Xo X4 X2 Xn2  Xn Xp XN XN
X

For simplicity we consider only TE polarized waves.
In the lth layer the field at angular frequency w can be written as:

ol ik (x—x K,y —i
Ez(x,y,t)zla,e’k*(" W g pe ")Je’ YeTiar

@ 1 1} 2
Where k, is a conserved quantity in every layer and k'=—n,; k., = (k ) - ky ;
c

Analysis of 1D Photonic crystals

Calculating photonic bands

Thus the field in x; can be described by the following vector:

a
[=0,1,..,.N
b,

With this field's representation and imposing continuity of E, and H, at every interface it can be
shown that: ( see Optical waves in layered media by Pochi Yeh edited by Wiley & Sons)

eiiklxd’ 0 \I(al _ A B a,
0 &~ hb) (C Db

1(1+k§/k;‘ 1—k' k" '
2\ 1=kl KT 1+ kLR

Back propagation through the I-layer
Jump at the interface from /to /-1

14



Analysis of 1D Photonic crystals

Calculating photonic bands

For periodic structures with a unit cell composed of 2 layers, the transfer matrix of a
unit cell, relating the fields at the beginning of a unit cell with the field at the next cell

is:
an_l_AlBAZB Aan
bnfl - Cl D B n
* The index n refers to

the unit cell number
Transfer matrlx of the unit cell

Transfer matrix of the layer composed by material 2

Next step: Use Bloch’s theorem to calculate bands!

Analysis of 1D Photonic crystals

Calculating photonic bands
According to Bloch’s Theorem the field in the (n)-th unit cell can be written as:
E(x+(n—1a) = E,(x)e™e* " 0<x<a
The field in the (n-7)-th unit cell can be written as:
E(x+(n—2)a)= E(x)e™e* "™ = E(x +(n—1)a)e™

The field at the first layer of the (n)-th unit cell is related to the field at the first layer of
the (n-1)-th unit cell by the relation:

a . a
G But also: a,.,
bnfl bn b,k]

I
>
> 8

15



Analysis of 1D Photonic crystals

Calculating photonic bands

Thus we have an eigenvalue problem:
M, M,)a, s a,
MZI MZZ bn bn i

So we can calculate eigen values and eigenvectors:
a ) M.,
no emKa ke 12
b, e -M

Kk, 0)= larccos[%(Mll +M22)}
a

and

[(M;;+M,,)|<2; KeR — propagating Bloch wave

[(My1+M,)[>2; K=mm/a + iK| — evanescent Bloch wave

Analysis of 1D Photonic crystals

Calculating photonic bands

angular frequency (rad/s)

K (units ofr/a)

Onedimsimple.m
Matlab code developed using the model previously described. Codes are available.

16



Analysis of 1D Photonic crystals

Calculating photonic bands
y
1

Off axis propagation in one dimensional photonic crystals

Consider the plane x,y. and e.m. wave propagating
with an angle with respect to the direction normal to

E1 58 5|6 5 585 € &

interfaces.
/
4
K, component is conserved because it is parallel to I
the interfaces. 0 >/K - (k1. K ),
K, =—n,sin(6) =—n,sin(6,);

Yo c e «

Electric field can be written as: \ //

Ev(x’ y) f EKX (x)ginXeiK)-),

Bloch mode for 1D PhC Bloch wavevector

_ g 8X) = &x+a)
K=(K.K,)

Analysis of 1D Photonic crystals

Calculating photonic bands

o= w(Kx’Ky);

15
x10

25

n1=1.5 .
n2=2 _
d1=250 nm g

d2=200 nm 7"
g

E 1
g

0.5

0]

8

15
Brillouin zone 2 0

No periodicity in y direction

Kx( 1)

Ky (1fm)

17



Analysis of 1D Photonic crystals

Calculating photonic bands

Isofrequency curves: slices of (KK )=cost.

The group velocity ( or energy velocity) is orthogonal to the isofrequency curves

v, = %w([%)|

k=K,

and are not parallel

Ky (units ofr/a)

I
. .
I I I
AP 1”1*\:—”/”*1 --+1--1 Anisotropy induced by stratification in one
asf - -r--p--p--y--1--1--4--4 direction. For 2D cases strong curvatures
B T R S T of dispersion curves leads to superprism
2o 0 emawe 2 effects and negative refraction.

Onedimband.m
Matlab code developed using the model previously described. Codes are available.

Analysis of 1D Photonic crystals

15 Calculating photonic bands

n1=1.5
o n2=3
d1=250 nm
77777777 o — b - d2=200 nm
air light cone

| Omnidirectional mirror: Consider a
finité structure embedded in airlight

fror’q outside is reflected at any angles

angular frequency (rad/s)

i If th:ere is some fluorescence inside
| | the structure at this frequency range, it
7777777 |- - - - --—4-----will be guided-inside the layers
| | |
| | |
| | |
| | |
| | |
L L L

|

|

|

|

|

1
0 5 10 15 20 25

Ky ( 1/um)

NOTE: a True omnidirectional mirror should work for both TE and TM polarization. Dispersion curves
for TM polarized field should be calculated and overlapped to the dispersion curves for TE pol.

18



Analysis of 1D Photonic crystals

Calculating photonic bands

.....:.:f T . e
| . .
e e o
«® el o
-.- .. :...
.77.'777." 77777777
.. .l:
— - o’ I
K [ |
© \..‘ |
g -77774 7777777 4‘ 77777777
c
5 . TE
g . T™
5 |
=
2
<

Wavelength range for omnidirectional mirror

|
|
|
|
I
I
0 5 10 15 20 25

Onedimguide.m

Finite Size 1D Photonic Crystals

Consider a structure made of N
periods embedded in air:

& 6 |E &€
For a a given incident plane 18654
monochromatic wave we want to

calculate transmitted field and
reflected field.

WE use the transfer matrix method:

(%J [aj Ta ax) = &x+a)

Tt
)
)

In this case we cannot invoke Bloch’s Theorem because the translational symmetry is broken.
Nevertheless we can take advantage of the following relation:

(aNj 1[1+k§“'/k§2 l—k:“'/kflj
=5 out /7.6, out |76, At the end of the structure there
by ) 200=k[kE 14k k20 is only the transmitted field

19



Finite Size 1D Photonic Crystals

Going back to the input:
Unitary incident field

n_1 1+k;/kx_ 1—k;/kx_ éﬁﬂf’zM”“l T+k [k 1=k k& \(t
r) 2\ 1=k k" 1+ kS ki ) 20—k [k 1+k™ [k |0

First unit cell out—n2 material

Transfer matrix 0% the unit Transmitted field
Reflected field cell applied N-1 times

\31 82’51 ) 515_ ____________ i‘% & 82"{\}/'
/% i 5 U

U

Finite Size 1D Photonic Crystals

Gap for the infinite structure n1=1.5; nin=1;
Transmittance for N=5 and N=10 periods n2=2.5; nout=1;
Normal incidence d1=250 nm

d2=400 nm

Iy (A Bt |

r) ¢ DNO) oot 1

t=l; rzg; /
A A

0 0.2 0.4 0.6 0.8 1 1.2 1.4
angular freequency (rad/s)

YA

K units of wa

— Tour . 0.8
- ’
in 0.6 7
-
0.4 B
0.2 4
— nom Cos(eout) ‘tz.
- 9 L L L L L L L
n;, COS(Hm) % 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
angular freequency (rad/s) x10"°

Onedimfinite.m
Matlab code developed using the model previously described. Codes are available.

20



Finite Size 1D Photonic Crystals

> Density of States pz‘%

Calculation of DOS for 2D and 3D requires a complex procedure. Nevertheless a s ageneral
property of photonic crystals, DOS is maximum at band edges
25 I -

pioe)
DOS for
infinite lattice

20 +

DOS for
15 period lattice

p/p homogeneous medium

L] 025 05 0.75 1 125 15 1.75 2

Finite Size 1D Photonic Crystals

Fields inside the structure can be calculated starting from the value of transmitted field and
applying the transfer matrix backward, layer by layer:

by | _ A t Interface from output to n2 material
b - Hout—>2 0

2N

(am_l)_ 1 (ka”/kf“ 1—k§N/k§”-‘J e [aJ

by ) 2\ 1=k KN 1kl 2N byy

0 eikf"'dz,v

And so on....

Localization of field is related to the bandwidth of the resonance. Maximum field localization
is achieved at the band edge.

21



Finite Size 1D Photonic Crystals

Field localized in the high index material

413
0 L L L L
0 0.5 1 15 2 25

angular freequency (rad/s) X 10‘5

Field localized in the low index material

Finite Size 1D Photonic Crystals

Condition for guided modes can
be set using the transfer matrix
method in the following way:

Guided mode must fulfill the
condition to be evanescent
waves out of the guiding
structure, thus:

4]
ky > 7ndud;
c

0]
ky>—n
c

sub?

Guided modes

Neiag 1N nzn n2 n

sub

“a &x) = ax+a)

Moreover, if A is the matrix that relates the fields in the substrate to the field in the cladding,

the following relation must be fulfilled

Values of K, fulfiling the

0 ~[a _ conditon A,;=0 are the
( ] = A[ N“j —> A=0 propagation  constants  of
b, 0 guided modes

22



Finite Size 1D Photonic Crystals

Guided modes

Infinite structure bands N=5 period structure guided modes

angular frequency (rad’s)

Fields profile of guided modes can be calculated the same way as before using transfer matrix.

Analysis of 2D and 3D
structures:

23



Analysis of 2D and 3D Photonic crystals

2D and 3D structures have many properties in common with 1D structures but they offer the
opportunity to tailor localization properties in 3D.

WE start by giving a general definition of the reciprocal lattice, already introduced for the one
dimensional case.

A function of the 3d space with a given periodicity can be written as a function of a vector r
belonging to the primitive cell:

F=ad, + fa, + ), 0<a,B,7<1
?

S S
Primitive vectors

f(F+na, +ma, +la,) = f(r) n,m,l =0,£1,12,...;F € u.c.
A periodic function can be expanded according to Fourier series:

f(F)=3 e F(G);
G

Analysis of 2D and 3D Photonic crystals
Ther set of G vectors are selected in order to have a periodic oscillating function over the unit
cell. This means that in a lattice point identified by vector R:
. ”‘R
ef =1
Equivalent to:

G-R=2np; p=011,12,..
Reminding that every lattice point can be obtained by linear combination of primitive vectors:
R =na, + ma, +la;;

n,m,l=0+112,... - a,Xd;

a; '(52 Xas),

The reciprocal lattice is defined as the set of vectors G ~ a. Xa
generated by its three reciprocal primitive vectors, g, = 2 _~3_.—1_~,
through the formula : a,: (a3 Xal)
5 =2 d, Xd,
Any Bravais lattice has a reciprocal lattice 8= = (7 w7 )
v P as- (al Xaz)

24



Analysis of 2D and 3D Photonic crystals

Examples in 2D

Exercise: Verify for 1D the reciprocal lattice primitive cell corresponds to the Brillouin zone.

This statement is always true and it can be used as a definition:

The Brillouin zone for a Bravais lattice is the primitive unit cell of the reciprocal lattice.
As a consequence, for a given lattice, band diagrams are periodic functions over its reciprocal
lattice.

Example

) Reciprocal lattice
Square lattice

y Ky Brillouin zone

Folo
® 0|0
OO0

)

d, ps
} 8> Kx

a; would have infinite modulus and orthogonal to a, and a,

Analysis of 2D and 3D Photonic crystals

Examples in 2D
Kx Irreducible Brillouin Zone for the
square lattice: first Brillouin zone
4 ® ® ® reduced by all thhe symmetries in the
point group of the lattice.
® @ M
S Sk BN K R R
RN RN NS y PR
. . A
82 I Center of the Brillouin zone
M Center of an edge
® @ L L X Center of a face

It is enough to calculate band diagrams in the irreducible Brillouin zone and then use
the symmetry of the lattice to extend the diagrams to the first Brillouin zone.

25



Analysis of 2D and 3D Photonic crystals

Examples in 2D

Triangular lattice Reciprocal lattice
AR Ky
81 a\/g 5 5 f
5 = AT s
& a\/g i @CD
; o)
% x S
QS0 2

& Irreducible Brillouin zone

K Middle of an edge joining two hexagonal faces

Brillouin zone: N>

Analysis of 2D and 3D Photonic crystals

a Examples in 2D
!
0000 - Og; ; =
<o
3
S
@000 0@ ;o
< 05
@ 00 00 3,
> 0 3 Photonic Band Gap
0000
g 3 TM bands
e=12:1 = 04
0: T T 1
irreducible Brillouin zone r X M r
M ®©
— E f
pa ™ gap for
k| r X e n>~175:1
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Analysis of 2D and 3D Photonic crystals

a Examples in 2D
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S
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Analysis of 2D and 3D Photonic crystals

Examples in 2D

Comparison between 2D free space | R o
dispersion diagram and 2D Photonic = < / (.._‘ \
crystal dispersion diagram. iy
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Analysis of 2D and 3D Photonic crystals

Examples in 2D

TM band gaps tend to occur in

lattices formed by isolated high-
permittivity regions; TE gaps in
connected lattices.

High degree of compactness of
triangular lattice make the
connected lattice keep some of
the properties of the isolated
lattice.

Triangular lattice

- |
gt
&

Fig. 1.11. Left. Triangular lattice formed by pores created in a dielectric substrate and cor-
responding Brillodin zone. Right. Band diagram calculated for a dielectric substrate with a
permittivity & = 11.7 and a period a = 2um, while the radius of the pores is ria = 0.45. The
band gaps are indicated by grey bands

Analysis of 2D and 3D Photonic crystals

3D example

-

Frequency (ma/2xc)

2

0.4

o
B

Ca
M

Yablonovite

0,0

Fig. 1.14. Brillouin zone of the fce lattice and band diagram of the Yablonovite structure
calculated for the first six bands. The permittivity of the dielectric is &= 13, while the ratio
between the radius of the holes and the period of the crystal is such that the air filling factor
is equal to 57% after the holes have been drilled (David 2003)
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Review on Bulk Photonic crystals
properties

backwards slope:

2

1.5

7

®/C (units of 2n/a)
Q\ /)
/

dw/dk — 0: slow light
‘ (e.g. DFB lasers)

5

(=]
U L r X WK

Com.ple; band structure Internal field enhancement

strong curvature: - Low threshold lasing
super—prisms, - Enhanced nonlinear optical effects

(+ )

Spatial dispersion (Superprism effect)
- Negative refraction

- Large angle deflection 500x
- Self-collimation

Dispersive refractive index dispersion
- Control of light propagation
- Phase-matching for harmonic generation

Photonic crystals with
intentional defects
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Control of Electromagnetic Waves

Using Photonic Crystals with intentional defects

Photonic GAPs can be used to confine light in a region of space

E>

Light cannot propagate inside the crystal and it is confined
in a finite region of space.

Mode of electromagnetic waves inside the cavity must
fulfill proper boundary conditions
(discrete eigenfrequency spectrum)

E’

Light tuned in the gap cannot exit form the line defect
which acts as a waveguide. Propagation constants of
guided modes will appear in the gap of the perfectly
periodic crystal’'s band diagram.

RESONANT CAVITIES

WAVEGUIDES

1d periodicity
000000000
000000000
O00O0000O00O0
conserved k!

000000000
OO000O0000OO0
000000000

Control of Electromagnetic Waves

1D Micro-cavity

Consider an infinite stack:
n1=1.5; d1=250 nm;
n2=2.0; d2=150 nm;

We introduce a defect, by adding a layer of material 2.
The structure is no longer periodic. We can calculate
the new dispersion relation defining a supercell.

NOTE: in order to get good results distance between

angular frequency (rad's)

15
x 10

- N s >

o
@

I [l [l

1 1 1
-1 -08 -06 -04 -02 0 02 04 06 08 1
] K (units ofr/a)

periodic defects in the supercell must be large with |

respect to wavelength ( weak coupling)

o~ defect

TTT

1 1 1 1
1 08 06 04 02 0 02 04 06 08 1
K (units ofn/a)

s.c=8periods-defect-8periods
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Control of Electromagnetic Waves
1D Micro-cavity

In we consider finite structures: 1 . :
|
SN
Symmetric structure, |
N=14 periods (HL)+H ]
[ |
04fF-—————-——-—F——|-—-
I
02F----d-----L--l---
0 1
0 0.5
1
1
0.8 |-
Structure with central defect: i
0.6F---- -
7 periods (HL)+H+ 7periods (LH) = |
04F - -~ - R
I
I
02F---- oo
| |
L L
% 0.5 1 1.5 2 25
angular freequency (rad/s) 10‘5

Control of Electromagnetic Waves
1D Micro-cavity

Micro-cavity sandwiched between two Bragg mirrors.
High Q factors, high fields intensity enhancement inside the structure.

IEP
(arbu.)

7 n 5 ) 0 1 105 1
X (um) wavelength (um)

Stored Energy <Energy> o Y

Q0=2x

Energy lost per cicle B <P0wer loss> Aw,




Control of Electromagnetic Waves
2D single mode Micro Cavity

Dielectric Defect
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monopole
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O C O OO 00O
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dipole

Control of Electromagnetic Waves

Spontaneous emission suppression

E. Yablonovitch. PRL (1987)

» Excited atoms 1n a Photonic crystal will not
radiate; i.e. no radiation mode is available.

* Add a defect that introduces a single mode in the
band gap. Now when an atom radiates its first
photon it has no other choice except into the
defect mode. Thereafter the atoms radiate by
stimulated emission. Zero threshold laser.

@
.

Free space

PC no defect

PC line defect
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Control of Electromagnetic Waves

Photonic Crystal waveguides

Bands of the infinite structure

n1=1.5; d1=250 nm;
n2=2.0; d2=150 nm;

1 ;
& 1.5 |
g
§
L |
g’ No guided modes in the gap
©
0.5 |
N=4 (HL)+1H; embedded in air 0 L - |
Ky (1 m)

Guided modes for the finite structure

Control of Electromagnetic Waves

Photonic Crystal waveguides

We add a defect:

N

angulyy freequency (rad/s)

guided mode in the gap
Combination of index guiding and Ky (Thm)
photonic band gap guiding
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Control of Electromagnetic Waves

Hollow Bragg waveguides

15

Guided light in low index material, ( for x10
example air) is possible taking advntage of
the photonic band gap.

,/ Air light cone

For infinite structures guided modes are
lossless ( in principle). Finite number of layers
is responsible for leaky guided modes.

Air core guided modes

and odd modes Surface modes

L L L L

: 2 4 10 12 14 16 1
L . air defect __0_ 6 8 KY(1(ZUT? 6’
™~
e Bragg waveguides (Yeh 1978) are the basic
™ principle for the OmniGuide:
S / . B. Temelkuran et al.,
\ v % / Nature 420, 650 (2002)

Control of Electromagnetic Waves

2D waveguides

o 000 O O
0 0 O 6 &%
gO(;_ ©c ® 0 0.0
-
g C @0 O @
0. O & © & . .&
* O 0 O O O

0.050.10.150.20.250.3 0.350.4 0.450.5
wavenumber (2w/a)

any state in the gap cannot couple to bulk crystal —> localized
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Control of Electromagnetic Waves

2D waveguides

100% Transmission fhrough Shanp Bends

000000000 00 00O
ooooooooo.ooooo

C0O0OO0DO0DO0OO0OO0OO _ ©0OO0OO0O0O LOSSIGSS
ooooooooo.eoooo

CoOoo0OO0OODOOO "TOOOOO
C00O0O0DO0DO0OOOEOOCOOOD Bends
00000000 0000

000000000 _ 00000
ooooooooo.aoooo

©C0O0O0O0O0OO ocoo0oo0o0O

= e Poooooo
0COO0OO0DO0OODOODODOOOO0OOO
0000000000000 O0O
OC0O0OO0DODO0OO0OODODOO0O0OOO
0000000000000 O0O .
OC0O0OO0D0OD0DODOOOO0OO0OOOO [ A. Mekis et al.,

Phys. Rev. Lett. 77, 3787 (1996) ]

symmetry + single-mode + “1d” = resonances of 100% transmission

Photonic Crystal Fibers

Guiding light: Conventional Optical Fibres

nCIadding <Ncore

Total Internal Reflection (TIR)
- nCladding < Ncore
— Core must be dielectric material

— Interaction between light and matter
unavoidable

» Non-linearit :
neamy Cladding
» Material Dispersion
» Losses
. : n >N ;
http://www.physics.usyd.edu.au/cudos/ Core~ " 'Cladding
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Photonic Crystal Fibers

» Bragg reflection

— Very low losses
Bandwidth ?

Angle of incidence ?
Index contrast ?
Fabrication ?

» Bragg fibres, “OmniGuide” fibres

Burak Temelkuran et al

Nature 420, 650-653, December 2002.

Photonic Crystal Fibers

Birks, Roberts, Russel, Atkin, Shepherd, Electron.
Lett. 31, 1941-1942 (1995)

Holes

Silica (or other

Core : - hollow }
- solid

http://www.physics.usyd.edu.au/cudos/
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Photonic Crystal Fibers

Holey Silica Cladding

* Hollow core and solid core PCFs

Mangan et al, OFC 2004 o b ez mhoton
(1.7dB/km Loss@1550nm) driarazphotenics
. . n=1.46
Photonic Crystal Fibers ﬁ2@
Hollow Core and Holey Silica Cladding

r=0.45a } @

above air line:
guiding in air core
is possible

25
| light cone

,,,,,,,,,,,,,,,,,

o (211c/a)

L L L
0.5 1 15 2

4] .
[ figs: West et al, B (2m/a)

Opt. Express 12 (8), 1485 (2004) | below air line: surface states of air core
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Photonic Crystal Fibers

Effective index vs PBG guidance

Mechanism TIR “averaged coherent
index” scattering
Periodicity Not necessary Crucial
Bandwidth Unlimited AMA~10%
Core Solid Hollow or solid
Hole/pitch Small or large Large (typ.
d/A>0.9

Winter college lectures on Photonic Crystals

Photonic Crystals (1 hour)

- Natural Photonic crystal

- Fabrication technologies

- Properties of bulk photonic crystals
- super prism, super lens

- enhancement of nonlinear effects

Photonic Crystals- applications ( 1hour)

- Photonic crystal cavities — sensors and detectors
- Photonic crystal waveguides — data processing
- Photonic crystal fibers — high intensity laser delivery
- supercontinuum generation for spectroscopy
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