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Outline
Introduction: Photonic Crystals: definition and History;

1D, 2D,3D Photonic Crystals: examples;

Propagation of e.m waves
in periodic media: Bloch’s Theorem, Band Diagrams; 

Group velocity, band edge effects;
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Off axis propagation, isofrequency curves;
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Optical properties of Bulk Ph. C.

Photonic Crystals with
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Photonic Crystals
Periodic dielectric structures that can interact resonantly with radiation with 
wavelengths comparable to the periodicity length of the dielectric lattice.

WHY ARE THEY CALLED PHOTONIC CRYSTALS?
Can affect the properties of photons in much the same way that ordinary 
semiconductor and conductor crystals affect the properties of electrons.
Properties of electrons in ordinary crystals are affected by parameters like lattice 
size and defects, for example. Crystals are made of periodic arrays of atoms at 
atomic length scales.

HOW DO THEY LOOK?

1d 2d 3d

YablonovitePhotonic CrystalsCrystal

From Bragg Gratings to Photonic Crystals in 5 Steps 

1913: Bragg formulation of X-ray diffraction by cristalline solids

1785: The first man-made diffraction grating was made by 
David Rittenhouse, who strung hairs between two finely 
threaded screws.

1976: A.Yariv and P. Yeh, study of dielectric multilayer stacks, 
waveguides and bragg fibers.

1987: Prediction of photonic crystals

S. John, Phys. Rev. Lett. 58,2486 (1987), “Strong localization of photons  
in certain dielectric superlattices”
E. Yablonovitch, Phys. Rev. Lett. 58 2059 (1987), “Inhibited spontaneous 
emission in solid state physics  and electronics”

1928: Bloch’s Theorem describe the conduction of electrons 
in crystalline solids. ( Math developed by Floquet in 1D case in 1883) 
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Websites:

http://www.pbglink.com for Extensive web listing of PBG information
http://ab-initio.mit.edu/mpb MIT photonic- band package
http://homepages.udayton.edu/~sarangan Dayton Univ. Lectures on Photonic crystals

Books:

Photonic Crystals: Towards Nanoscale Photonic Devices, J-M Lourtioz et al. Springer (2003)

Roadmap on Photonic Crystals by Susumu Noda (Editor), Toshihiko Baba (Editor), Kluwer
Academic Publishers; (2003).

Nonlinear Photonic Crystals by R. E. Slusher and B. J. Eggleton Eds., (2003). 

Photonic Crystals: The Road from Theory to Practice: S. G. Johnson and J. D.Joannopoulos, 
Kluwer (2002).

Optical Properties of Photonic Crystals  K. Sakoda, Springer (2001).

Quantum Electronics 3°edition A. Yariv, Wiley (1989).

Optical waves in Layered media Pochi Yeh, Wiley (1988).

Suggested readings 

1-D Photonic Crystals
a closer look
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The dielectric constant is periodically 
modulated in one dimension:
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From cartoons to pictures…. 

A scanning electron microscopy image of a tiny 
dielectric mirror being cut from a larger piece of 
material.

The alternating layers of Ta2O5 and SiO2 which 
form the mirror are clearly visible. 

Unit cell
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Broadband dielectric mirrors used in optics experiments. The characteristic color 
of the mirrors is caused by their wavelength dependent reflectivity. 

1-D Photonic Crystals
a closer look

According to their definition, photonic crystals can interact resonantly with 
radiation with wavelengths comparable to the periodicity length of the 
dielectric lattice.

2-D Photonic Crystals
a closer look

The dielectric constant is periodically 
modulated in two dimensions:

Square lattice of cylindrical rods
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A cylinder is put at every lattice point. 
Any Bravais 2-D lattice is defined by 2 
primitive vectors, for the square lattice they 
are:
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2-D Photonic Crystals
a closer look

y

xa1

Obvious primitive cell can be defined 
starting from the primitive vectors:

Primitive unit cell: Unit Cell: a volume (if 3D) space that, when translated through all 
the vectors of a Bravais lattice, just fills all of space without either overlapping itself or 
leaving voids.
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There is no unique way of choosing a primitive cell for a given Bravais lattice.

a2
With r belonging to the primitive cell

Wigner-Seitz primitive cell

Primitive cell with the full symmetry of the 
Bravais lattice. It is the region of space around 
a lattice point, closer to that point than to any 
other lattice point

Rhombic lattice  or isosceles triangular lattice
( triangular lattice if triangles are equilateral)

2-D Photonic Crystals
a closer look

Living example of a 2D Photonic Crystal, the “Sea Mouse” spine.
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2-D Photonic Crystals
a closer look

3-D Photonic Crystals
a closer look

The dielectric constant is periodically modulated in three dimensions.
Lattice is defined by 3 primitive vectors:
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With r belonging to the primitive cell

Reference: Ashcroft & Mermin, Solid State Physics, Saunders College Publishing for 
details on 3D Bravais lattices and crytal symmetries
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Natural opalsNatural opals

At the micro scale precious opal is composed of silica(SiO2) spheres some 150 to 300 
nm in diameter in a hexagonal or cubic closed packed lattice. These ordered silica 
spheres produce the internal colors by causing the interference and diffraction of light 
passing through the microstructure of opal 

3-D Photonic Crystals
a closer look

Propagation of e.m waves in 
periodic media:
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Periodicity comparable to incident light wavelengths  can be responsible for 
constructive interferences among scattered light by every lattice point. The 
phenomenon is exactly the same as it happens in diffraction gratings. 

The tracks of a compact disc act as a diffraction grating, producing a separation of the colors of 
white light. The nominal track separation on a CD is 1.6 micrometers, corresponding to about 625 
tracks per millimeter. This is in the range of ordinary laboratory diffraction gratings. For red light of 
wavelength 600 nm, this would give a first order diffraction maximum at about 22°.

Scattering of light in periodically patterned media

http://my.fit.edu/~phsu/

Periodically patterned media
Vs.

Random media

Si wafer top side with devices - patterned roughness. wafer back side with random roughness

Resonant reflectivity at given incident 
angle and wavelengths

Light is scattered in all directions, there is no 
evidence of frequency or angle dependent response 
induced by random roughness
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If the atoms were randomly placed the free 
electrons would experience strong 
scattering with the lattice atoms and a short 
mean free path is expected.

This is in contrast with the high value of 
measured conductivity for some crystals.

But crystal lattice are periodic with typical 
sizes of a few Å and electrons can be 
treated as waves (quantum mechanics) 
with energies corresponding to a typical 
wavelength comparable to lattice size. 

Introduction to Bloch’s Theorem 
waves in a periodic medium can propagate without scattering

Electrons Photons

Photonic crystals are characterized by primitive 
cells of a size comparable to the wavelength of 
the photon. Resonant scattering can occur as a 
function of frequency and wavevector.

Light scattered from a random media: The 
effect can be weak or strong depending on 
density of scatterers. Size and shape of the 
scatterers produce wavelength  and angular 
dependence on the efficiency of scattering 

Laser scattered by dust

As a results electrons can propagate in a 
periodic lattice without experiencing 
scattering with a proper dispersive relation
(energy as a function of the wave vector)

wavevector
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Band diagrams can be calculated using 
Bloch theorem

NOTE forbidden region called GAPs. 
Electrons with forbidden energies cannot 
propagate inside the crystals. 

Introduction to Bloch’s Theorem 

wavevector
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For certain geometries it exists a range of 
frequencies called GAP for which light is 
forbidden to exist inside the crystal

Periodic modulation of the dielectric constant 
can affect the properties of photons in much 
the same way that ordinary semiconductor and 
conductor crystals affect the properties of 
electrons.

Electrons Photons
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Bloch’s Theorem
for e.m waves in photonic crystals

Ashcroft & Mermin, Solid State Physics, Saunders College Publishing for a proof of the theorem

Starting point: Maxwell equations and constitutive relations.
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If the e.m field is time-harmonic and if the bodies are at rest or 
in very slow motion relative to each other:

Neutral Insulators or dielectrics: ρ=0
σ(conductivity) is negligibly small; non 
magnetically active µµµµr=1;
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We have….

Bloch’s Theorem
for e.m waves in photonic crystals

…the following eigenvalue equations:
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If εr is a periodic function of the spatial coordinate Bloch’s Theorem states that fields solutions are 
characterized by a Bloch wave vector K, a band index n and have the form:
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Bloch’s Theorem
for e.m waves in photonic crystals

Substituting Bloch’s solution into eigenvalue equations it is possible to calculate:

Eigen-angular frequencies: ;nK
vω

Bloch modes (eigenvectors): 

);(rE
nK

v

r

r );(rH
nK

v

r

r

If we consider infinite periodic structures, real values of ε (i.e lossless case), ΓE
and ΓH are Hermitian eigen-operators:

RnK ∈vω

Are a complete set of orthogonal eigen-functions.
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Solving equations for several values of K and w it is possible to calculate and plot 
band diagrams ( dispersion relations)

Dispersive properties:

Group velocity=Energy velocity  ( proof: Yariv’s Optical waves in crystals)

Band Diagrams
Some Computational tools:

Plane Wave Expansion (PWE) Method -CPU time demanding and poor convergence

Koringa-Kohn-Rostker (KKR) Method - spherical waves expansion

Transfer matrix method - Developed by Pendry’s group at Imperial College. It also provides 
amplitude and phase information.

- Rigorous Coupled-wave analysis RCWA
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Phase velocity CANNOT be defined appropriately in photonic crystals because 
eigenfunctions are superposition of plane waves and equiphase surfaces cannot be defined 
properly. Nevertheless, in the effective medium approximation, long wavelengths with respect to 
lattice periodicity the effective phase velocity can be defined as: 

0
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Analysis of 1D photonic crystals:

Analysis of 1D Photonic crystals

For 1D systems we can write the field as:

iKx
K exExE )()(

rr

= );()( maxExE KK +=
rr

with m = 0, ±1, ± 2,…

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2

ε(x) = ε(x+a)a

Also called Bragg gratings 
since 1887

But what happens if we consider the Bloch mode with a wavevector K’=K+2*ππππ/a?

iKxa

x
i

K eexExE
π2

' )()(
rr

= Periodic function satisfying the 
same conditions as

);()( maxExE KK +=
rr
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Analysis of 1D Photonic crystals

band gap

k

ω

0 π/a–π/a

irreducible Brillouin zone

First Brillouin zone

Almost linear behaviour: 

Slow light close to the band edge

Effective medium regime

k is periodic:

k + 2π/a equivalent to k
“quasi-phase-matching”

Analysis of 1D Photonic crystals

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2

ε(x) = ε(x+a)a

xa1

1D lattice has only one primitive vector

;ˆ1 xaa =
r

Being a periodic function, the dielectric constant can be expanded as a Fourier serie
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π
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The set of values of G are called the reciprocal lattice vectors:

NOTE: the primitive cell of the reciprocal lattice is g=2π/a

Dispersion curves are periodic with a unit cell = 2π/a called Brillouin zone

The Brillouin zone is a primitive cell of the reciprocal lattice
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For simplicity we consider only TE polarized waves.
In the l-th layer the field at angular frequency w can be written as:
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Analysis of 1D Photonic crystals
Calculating photonic bands

Thus the field in xl can be described by the following vector:
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With this field’s representation and imposing continuity of Ez and Hy at every interface it can be 
shown that: ( see Optical waves in layered media by Pochi Yeh edited by Wiley & Sons)
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Back propagation through the l-layer

Jump at the interface from l to l-1

Analysis of 1D Photonic crystals
Calculating photonic bands
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For periodic structures with a unit cell composed of 2 layers, the transfer matrix of a 
unit cell, relating the fields at the beginning of a unit cell with the field at the next cell 
is:
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* The  index n refers to 
the unit cell number

Transfer matrix of the layer composed by material 1

Transfer matrix of the layer composed by material 2

Transfer matrix of the unit cell

Analysis of 1D Photonic crystals
Calculating photonic bands

Next step: Use Bloch’s theorem to calculate bands!

According to Bloch’s Theorem the field in the (n)-th unit cell can be written as:
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The field at the first layer of the (n)-th unit cell is related to the field at the first layer of 
the (n-1)-th unit cell by the relation:

But also: 
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Analysis of 1D Photonic crystals
Calculating photonic bands

The field in the (n-1)-th unit cell can be written as:

iKaiKaaniKiKx
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Thus we have an eigenvalue problem:
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If:
|(M11+M22)|<2;   K∈R  → propagating Bloch wave

|(M11+M22)|>2;   K=mπ/a + iKi → evanescent Bloch wave

Analysis of 1D Photonic crystals
Calculating photonic bands
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Analysis of 1D Photonic crystals
Calculating photonic bands

Matlab code developed using the model previously described. Codes are available.

Onedimsimple.m
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Off axis propagation in one dimensional photonic crystals

Consider the plane x,y. and  e.m. wave propagating 
with an angle with respect to  the direction normal to 
interfaces.

Ky component is conserved because it is parallel to 
the interfaces.

Electric field can be written as:

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2

ε(x) = ε(x+a)a

Analysis of 1D Photonic crystals
Calculating photonic bands
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Analysis of 1D Photonic crystals
Calculating photonic bands

( );, yx KKωω =

Brillouin zone
No periodicity in y direction

n1=1.5
n2=2
d1=250 nm
d2=200 nm
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The group velocity ( or energy velocity) is orthogonal to the isofrequency curves
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Analysis of 1D Photonic crystals
Calculating photonic bands

Isofrequency curves: slices of ω(Kx,Ky)=cost.
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Anisotropy induced by stratification in one 
direction. For 2D cases strong curvatures 
of dispersion curves leads to superprism
effects and negative refraction.

Matlab code developed using the model previously described. Codes are available.

Onedimband.m

Analysis of 1D Photonic crystals
Calculating photonic bands
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n1=1.5
n2=3
d1=250 nm
d2=200 nm

Omnidirectional mirror: Consider a 
finite structure embedded in air,light
from outside is reflected at any angles 
of incidence.

If there is some fluorescence inside 
the structure at this frequency range, it 
will be guided inside the layers

NOTE: a True omnidirectional mirror should work for both TE and TM polarization. Dispersion curves 
for TM polarized field should be calculated and overlapped to the dispersion curves for TE pol. 

air light cone
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Analysis of 1D Photonic crystals
Calculating photonic bands
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TE
TM

Wavelength range for omnidirectional mirror

Onedimguide.m

Consider a structure made of N 
periods embedded in air:

For a a given incident  plane 
monochromatic wave we want to 
calculate transmitted field and 
reflected field.

WE use the transfer matrix method:

Finite Size 1D Photonic Crystals
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ε(x) = ε(x+a)a
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In this case we cannot invoke Bloch’s Theorem because the translational symmetry is broken. 
Nevertheless we can take advantage of the following relation:
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At the end of the structure there 
is only the transmitted field
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Finite Size 1D Photonic Crystals
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Going back to the input:

Unitary incident field

Reflected field
Transmitted field

ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2 ε1 ε2

ε(x) = ε(x+a)a

out→n2 material

Transfer matrix of the unit 
cell applied N-1 times

First unit cell
n1 material→input

Finite Size 1D Photonic Crystals
Gap for the infinite structure
Transmittance for N=5 and N=10 periods
Normal incidence

n1=1.5; nin=1;
n2=2.5; nout=1;
d1=250 nm
d2=400 nm

Matlab code developed using the model previously described. Codes are available.
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Finite Size 1D Photonic Crystals

DOS for 
infinite lattice

DOS for 
15 period lattice

ω
ρ

d
dk=� Density of States

Calculation of DOS for 2D and  3D requires a complex procedure. Nevertheless a s ageneral
property of photonic crystals, DOS is maximum at band edges

ρρ ρρ
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Finite Size 1D Photonic Crystals
Fields inside the structure can be calculated starting from the value of transmitted field and 
applying the transfer matrix backward, layer by layer:
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And so on….

Localization of field is related to the bandwidth of the resonance. Maximum field localization 
is achieved at the band edge. 
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Finite Size 1D Photonic Crystals

Finite Size 1D Photonic Crystals
Guided modes

n1n2n1n2

ε(x) = ε(x+a)a

Condition for guided modes can 
be set using the transfer matrix 
method in the following way:

Guided mode must fulfill the 
condition to be evanescent 
waves  out of the guiding 
structure, thus:
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Moreover, if A is the matrix that relates the fields in the substrate to the field in the cladding, 
the following relation must be fulfilled

A11=0

Values of Ky fulfilling the 
condition A11=0 are the 
propagation constants of 
guided modes
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Finite Size 1D Photonic Crystals
Guided modes

Infinite structure bands N=5 period structure guided modes
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Fields profile of guided modes can be calculated the same way as before using transfer matrix.

Analysis of 2D and 3D 
structures:
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Analysis of 2D and 3D Photonic crystals
2D and 3D structures have many properties in common with 1D structures but they offer the 
opportunity to tailor localization properties in 3D.

WE start by giving a general definition of the reciprocal lattice, already introduced for the one 
dimensional case.

A function of the 3d space with a given periodicity can be written as a function of a vector r
belonging to the primitive cell:

1,,0       321 ≤≤++= γβαγβα aaar
rrrr

Primitive vectors

..,...;2,1,0,,       )()( 321 curlmnrfalamanrf ∈±±==+++
rrrrrr

A periodic function can be expanded according to Fourier series:
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Equivalent to:

,...2,1,0     ;2 ±±==⋅ ppRG π
rr

The reciprocal lattice is defined as the set of vectors G 
generated by its three reciprocal primitive vectors, 
through the formula :
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Ther set of G vectors are selected in order to have a periodic oscillating function over the unit 
cell. This means that in a lattice point identified by vector R: 

Reminding that every lattice point can be obtained by linear combination of primitive vectors:

,...2,1,0,,

;321

±±=

++=

lmn

alamanR
rrr

r

Any Bravais lattice has a reciprocal lattice

Analysis of 2D and 3D Photonic crystals
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Exercise: Verify for 1D the reciprocal lattice primitive cell corresponds to the Brillouin zone.

This statement is always true and it can be used as a definition:

The Brillouin zone for a Bravais lattice is the primitive unit cell of the reciprocal lattice.
As a consequence, for a given lattice, band diagrams are periodic functions over its reciprocal 
lattice.

Example

Square lattice
Reciprocal lattice

Brillouin zone

Analysis of 2D and 3D Photonic crystals
Examples in 2D

1a
r

2a
r

a3 would have infinite modulus and orthogonal to  a1 and a2
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Analysis of 2D and 3D Photonic crystals
Examples in 2D

Irreducible Brillouin Zone for the 
square lattice: first Brillouin zone 
reduced by all thhe symmetries in the 
point group of the lattice.

Ky

Kx

2g
r

2g
r

Γ X

Μ

It is enough to calculate band diagrams in the irreducible Brillouin zone and then use 
the symmetry of the lattice to extend the diagrams to the first Brillouin zone.

Center of the Brillouin zoneΓ

Center of an edgeM

Center of a faceX
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Analysis of 2D and 3D Photonic crystals
Examples in 2D
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Triangular lattice
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Brillouin zone:

a 2

a 1

g2

g1 Kx

;ˆ
3

4

;
2

ˆ

2

3ˆ

3

4

2

1

y
a

g

yx

a
g

π

π

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

r

r

Irreducible Brillouin zoneΓ

Μ Κ

Middle of an edge joining two hexagonal facesK

ε=12:1

E

H
TM

a

fr
eq

ue
nc

y
ωω ωω

(2
π

c/
a)

  =
 a

/ λ

Γ X

M

Γ X M Γirreducible Brillouin zone

r 

k 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Photonic Band Gap

TM bands

gap for
n > ~1.75:1

Analysis of 2D and 3D Photonic crystals
Examples in 2D

http://ab-initio.mit.edu/photons/tutorial/
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Analysis of 2D and 3D Photonic crystals
Examples in 2D

http://ab-initio.mit.edu/photons/tutorial/

Analysis of 2D and 3D Photonic crystals
Examples in 2D

Comparison between 2D free space 
dispersion diagram and 2D Photonic 
crystal dispersion diagram.

;22
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b

kk
c

+=
ε

ω

Γ→X; ky=0;

X → M; kx=cost

M → Γ; kx=ky
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Analysis of 2D and 3D Photonic crystals
Examples in 2D

Triangular lattice 

TM band gaps tend to occur in 
lattices formed by isolated high-
permittivity regions; TE gaps in 
connected lattices.

High degree of compactness of 
triangular lattice make the 
connected lattice keep some of 
the properties of the isolated 
lattice.

Analysis of 2D and 3D Photonic crystals
3D example

Yablonovite

I: rod layer II:  hole layer
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Complex band structure Internal field enhancement
- Low threshold lasing
- Enhanced nonlinear optical effects

Spatial dispersion (Superprism effect)
- Negative refraction
- Large angle deflection 500x
- Self-collimation

Dispersive refractive index dispersion
- Control of light propagation
- Phase-matching for harmonic generation

dω/dk → 0: slow light
(e.g. DFB lasers)

backwards slope:
negative refraction

strong curvature:
super-prisms, …

(+ negative refraction)

Review on Bulk Photonic crystals 
properties

Photonic crystals with
intentional defects
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Control of Electromagnetic Waves
Using Photonic Crystals with intentional defects

Photonic GAPs can be used to confine light in a region of space

WAVEGUIDES
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Light cannot propagate inside the crystal and it is confined 
in a finite region of space.

Mode of electromagnetic waves inside the cavity must 
fulfill proper boundary conditions
(discrete eigenfrequency spectrum)

RESONANT CAVITIES

conserved k!conserved k!

1d periodicity

Light tuned in the gap cannot exit form the line defect 
which acts as a waveguide. Propagation constants of 
guided modes will appear in the gap of the perfectly 
periodic crystal’s band diagram.

Control of Electromagnetic Waves
1D Micro-cavity

Consider an infinite stack:
n1=1.5;  d1=250 nm;
n2=2.0;  d2=150 nm;

We introduce a defect, by adding a layer of material 2. 
The structure is no longer periodic. We can calculate 
the new dispersion relation defining a supercell. 
NOTE: in order to get good results distance between 
periodic defects in the supercell must be large with 
respect to wavelength ( weak coupling)

defect
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Control of Electromagnetic Waves
1D Micro-cavity

In we consider finite structures:

Symmetric structure,
N=14 periods (HL)+H
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Structure with central defect:

7 periods (HL)+H+ 7periods (LH)
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Micro-cavity sandwiched between two Bragg mirrors.
High Q factors, high fields intensity enhancement inside the structure. 

wavelength (µm)x (µm)

T|E|2
(arb.u.)

Control of Electromagnetic Waves
1D Micro-cavity
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Control of Electromagnetic Waves
2D single mode Micro Cavity

Radius of Defect   (r/ a)
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Control of Electromagnetic Waves
Spontaneous emission suppression
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Control of Electromagnetic Waves
Photonic Crystal waveguides

Consider a finite stack as in the picture:
n1=1.5;  d1=250 nm;
n2=2.0;  d2=150 nm;

N=4 (HL)+1H; embedded in air 0 5 10 15
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Bands of the infinite structure

Guided modes for the finite structure

No guided modes in the gap

Control of Electromagnetic Waves
Photonic Crystal waveguides

We add a defect:
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guided mode in the gap
Combination of index guiding and
photonic band gap guiding
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air defect

Control of Electromagnetic Waves
Hollow Bragg waveguides

Guided light  in low index material, ( for 
example air) is possible  taking advntage of  
the photonic band gap.

For infinite structures guided modes are 
lossless ( in principle). Finite number of layers 
is responsible for leaky guided modes.
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Air core guided modes
Even and odd modes

Surface modes

Air light cone

Bragg waveguides (Yeh 1978) are the basic 
principle for the  OmniGuide:

B. Temelkuran et al.,
Nature 420, 650 (2002)

Control of Electromagnetic Waves
2D waveguides
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Control of Electromagnetic Waves
2D waveguides

Lossless 
Bends

symmetry + single-mode + “1d” = resonances of 100% transmission

[ A. Mekis et al.,
Phys. Rev. Lett. 77, 3787 (1996) ]

Photonic Crystal Fibers
Guiding light: Conventional Optical Fibres

Cladding

Core

nCore>nCladding

nCladding<nCore

nCore

• Total Internal Reflection (TIR)

– nCladding < nCore

– Core must be dielectric material

– Interaction between light and matter 
unavoidable

Non-linearity

Material Dispersion

Losses

http://www.physics.usyd.edu.au/cudos/
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Photonic Crystal Fibers
• Bragg reflection

– Very low losses

– Bandwidth ?
– Angle of incidence ?

– Index contrast ?

– Fabrication ?

• Bragg fibres, “OmniGuide” fibres

Burak Temelkuran et al
Nature 420, 650-653, December 2002.

ΛΛΛΛ

dHoles

Silica (or other)

Core : - hollow
- solid

Photonic Crystal

Birks, Roberts, Russel, Atkin, Shepherd, Electron. 
Lett. 31, 1941-1942 (1995)

Photonic Crystal Fibers

http://www.physics.usyd.edu.au/cudos/
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• Hollow core and solid core PCFs

Mangan et al, OFC 2004
(1.7dB/km Loss@1550nm)

Photonic Crystal Fibers
Holey Silica Cladding

2r

a

n=1.46

β (2π/a)

r = 0.45a

ω
(2
π

c/
a)

light cone

air
lig

ht
lin

e ω
= βc

above air line:

guiding in air core
is possible

below air line: surface states of air core
[ figs: West et al, 

Opt. Express 12 (8), 1485 (2004) ]

Photonic Crystal Fibers
Hollow Core and Holey Silica Cladding



38

Effective index vs PBG guidance

Hole/pitch

Core

Bandwidth

Periodicity

Mechanism

CrucialNot necessary

∆λ/λ∼10%Unlimited

Large (typ. 
d/Λ>0.9

Small or large

Hollow or solidSolid

coherent 
scattering

TIR “averaged 
index”

Photonic Crystal Fibers

Photonic Crystals (1 hour)

- Natural Photonic crystal
- Fabrication technologies
- Properties of bulk photonic crystals
- super prism, super lens
- enhancement of nonlinear effects

Photonic Crystals- applications ( 1hour)

- Photonic crystal cavities – sensors and detectors
- Photonic crystal waveguides – data processing 
- Photonic crystal fibers – high intensity laser delivery

- supercontinuum generation for spectroscopy

Winter college lectures on Photonic Crystals


