

1932-9

Winter College on Micro and Nano Photonics for Life Sciences

11 - 22 February 2008

Nanoscale Resolution in Far-field Fluorescence Microscopy (part I &II)

Volker Westphal Max-Planck-Institute for Biophysical Chemistry Goettingen Germany

Nanoscale Resolution in Far-field Fluorescence Microscopy

Part I

Basics and Axial Resolution Improvement

Stefan W. Hell

Max Planck Institute for Biophysical Chemistry Department of NanoBiophotonics Göttingen, Germany Fluorescence microscopy importance in the life sciences:

Fluorescence excitation and emission of labels:

Sheppard, Kompfner, Appl Opt. (1978)

Denk, Strickler, Webb, Science (1990)

Z- resolution improvement

4Pi- Microscopy:

70 - 140 nm

 $\vec{E}^{4Pi}(r,z,\varphi) = \vec{E}_1(r,z,\varphi) + \vec{E}_2(r,-z,\varphi)$

Coherent illumination and/or fluorescence detection

Hell, *Europ Patent* OS 0491289 (1990) Hell, et al JOSA A (1992) Hell, et al , *Appl. Phys. Lett.*, 64, 11 (1994)

Measured PSF/OTF (λ = 800nm)

Confocal

Green and red beads, 100 nm diameter

Microtubules, mouse fibroblast Immunofluor, Oregon Green

How does the linear lobe filter really work ?

Separability: $h_{4Pi}(x, y, z) \approx c(x, y)h(z)$

-> treat the lobe problem separately, in the z-direction

Frequency domain

Non-linear image restoration:

- Know the full PSF (not just height and position of lobes)
- Positivity of image (and PSF) assumed

Examples: Richardson-Lucy Algorithm (RL)

Maximum-Likelihood Estimation Algorithm

Confocal

Confocal

÷

Restoration

(RL)

X

Ζ

4Pi + Restoration (RL)

4Pi

Egner, Jakobs & Hell, PNAS, 99, 3370 (2002)

Application: Mitochondrial network in S. cerevisiae

3D-reconstruction Electron Microscopy

B. J. Stevens & J. G. White, 1975

4Pi microscopy

Mitochondrial compartment in live yeast @ 100 nm 3D-resolution

GFP

Egner, Jakobs, Hell, PNAS, (2002)

Number of nodes increases 4-fold

Quantitative live cell 4Pi microscopy

→ Diameter increases by 20 nm on average

Surface 2.8 x larger

Quantitative live cell 4Pi microscopy

UDP-Galactosyltransferase-EGFP

Ζ

X

2.5 mm

Egner & Hell, TiCB (2004)

Ζ

2.5 mm

UDP-Galactosyltransferase-EGFP

4Pi Image Golgi in *live Vero Cell*

3D-resolution: ~100 nm

Practical issues

Practical issues

1) Alignment of lenses

Piezo closed loop alignment (< 50 nm precision)

'Dark exit' of Sagnac interferometer

Checking out phase changes and aberrations ...induced by live yeast cell

Checking out object induced phase changes and aberrations ...

Practical issues

- 1) Alignment of lenses
- 2) Need establish PSF (phase, lobes):
- 3) Refractive index changes:

point or planar objects in sample index matching (water lenses)

Ζ

erbB1-EGFP

In Chinese Hamster Ovary (CHO) Cells

18 x 33 x 16 µm (x,y,z)

4Pi type C

(coherent detection + illumination)

Compact 4Pi-microscope

Z- resol < 100 nm (live cells /aqueous cond.) 1 & 2 photon

How essential is the use of <u>focused</u> (spherical) wavefronts?

4Pi

Isn't it just about making a focal "interference standing wave pattern"?

Standing Wave microscopy

Non-Confocal !

Bailey et al, Nature (1993)

Comparison of the effective PSFs

Comparison of the effective OTFs

PSFs: Overview

OTFs: Overview

No.

Essential physical element: increase in solid angle (" 4π ")

Isn't it just about making a focal "interference standing wave pattern"?

Two opposing lenses give 3-7 fold increased z-resolution

60- 150 nm

..provided that they increase the aperture angle of the microscope

Nanoscale Resolution in Far-field Fluorescence Microscopy Part II Breaking the diffraction barrier

Stefan W. Hell

Max Planck Institute for Biophysical Chemistry Department of NanoBiophotonics Göttingen, Germany

Jena, Germany "Breaking the diffraction resolution limit by stimulated emission"

Hell & Wichmann, Opt. Lett. 19, 11, (1994)

Stimulated Emission Depletion (STED)

 λ_{STED} = 770 nm

Westphal, Hell, PRL (2005)

40 nm beads (Molecular Probes)

Confocal

Biological imaging....

(Immunofluorescence)

SNAP- 25 / plasma membrane

... just physics !

Confocal:

STED:

K. Willig et al, NJP (2006)

Syntaxin 1A/ plasma membrane

... just physics !

Confocal

Sample: T. Lang, J. Sieber, R. Jahn

Neuronal communication

Synaptotagmin I antibody labeled

New biology:

Synaptic vesicle protein synaptotagmin I is clustered after exocytosis

Willig, Rizzoli, Jahn, Hell, Nature (2006)

Nonbiological imaging....

Colloids: Silica beads with fluorescent core

Confocal

STED

Sample by A van Blaaderen

Willig et al, New J Phys (2006)

Colloids: Silica beads with fluorescent core

Confocal + Lin Deconv.

STED + Lin Deconv.

500nm

Confocal + Lin. Deconv.

STED + Lin. Deconv.

Field: (6x6) µm; Pitch 120 nm; Line width: 60 nm

E-beam lithography on dyed PMMA

Westphal et al, J Phys B (2005)

x y ↓ 200 nm

y y

In <u>far-field</u> fluorescence microscopy:

Diffraction resolution barrier does no longer exist !

Molecular scale resolution is possible with visible light and regular lenses.

"With a rectangular depletion curve, the resolution could be increased to infinity." Hell & Wichmann, *Opt. Lett.* 19 (1994)
STED Microscopy

Westphal & Hell, PRL 94 (2005)

Triplet Relaxation STED microscopy

..provides <20 nm resolution (x,y)

Heavy subunit of neurofilaments in neuroblastoma

Axial resolution improvement

by

STED - 4Pi microscopy

S.W. Hell, *in Topics Fluoresc Spectr V*, Plenum Press (1997)

XY-Overview

STED-4Pi

Confocal

7

... 15 x improved

Monolayer M. Dyba &SWH, *Nature Biotech* 21, (2003) How does resolution scale with intensity ?

Resolution gain with intensity

The basic principle

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'
fluorescent (absorbing	$(\mathbf{A}) \leftarrow (\mathbf{B})$	Non-fluorescent Non-absorbing
trans	k _{BA} = optical, thermal	cis

'BRIGHT'	$k_{AB} = \sigma l(r)$	'DARK'
fluorescent absorbing		Non-fluorescent Non-absorbing
trans	$k_{\rm BA}$ = optical, thermal	cis

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'	
fluorescent absorbing trans	A k_{BA} = optical, thermal	Non-fluorescent Non-absorbing cis	

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'
fluorescent absorbing	$(A) \leftarrow (B)$	Non-fluorescent Non-absorbing
trans	κ _{BA} = optical, thermal	cis

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'
fluorescent absorbing	A) - (B)	Non-fluorescent Non-absorbing
trans	$k_{\rm BA}$ = optical, thermal	cis

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'	
fluorescent absorbing	A) - (B)	Non-fluorescent Non-absorbing	
trans	$k_{\rm BA}$ = optical, thermal	cis	

'BRIGHT'	$k_{AB} = \sigma l(r)$	'DARK'	
fluorescent absorbing	A) - (B)	Non-fluorescent Non-absorbing	
trans	k _{BA} = optical, thermal	cis	

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'	
fluorescent absorbing trans	k _{BA} = optical, thermal	Non-fluorescent Non-absorbing cis	

'BRIGHT' fluorescent absorbing trans	$k_{AB} = \sigma l(r)$ $k_{BA} = optical, thermal$	'DARK' Non-fluorescent Non-absorbing cis
---	--	---

STED microscopy

$$I_{s} = \frac{1}{\sigma \tau} \approx 10^{-16} cm^{2} 10^{-9} s \approx$$

There must also be

Other Molecular States

&

transitions

to

break the diffraction barrier

Confocal

40 nm beads

Ground State Depletion Micr.

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'
fluorescent absorbing	$(\mathbf{A}) \rightarrow (\mathbf{B})$	Non-fluorescent Non-absorbing
trans	k _{BA} = optical, thermal	cis

Optical Bistability (Synthetic compounds)

$$\Delta x \approx \frac{\lambda}{\pi n \sqrt{I \sigma \tau_{BA}}}$$

Photoisomerisation

Hell, *in Topics Fluoresc Spectr V*, Plenum Press (1997) Dyba & Hell, *Phys. Rev. Lett.* 88 (2002) Hell, Jakobs, Kastrup, *Appl. Phys. B 77* (2003)

'BRIGHT'	$k_{AB} = \sigma I(r)$	'DARK'	
fluorescent absorbing	(A) (B)	Non-fluorescent Non-absorbing	
trans	k_{BA} = optical, thermal	cis	

Optical Bistability (Fluorescent proteins)

Photoswitchable fluorescent proteins

Hell, Jakobs, Kastrup, *Appl. Phys. B* 77 (2003) Hofmann, et al PNAS (2005)

Camera detection possible.

Zeros & scanning are required !

MGL Gustafsson, PNAS (2005)

Sequential read-out with at least one...

Intensity 'Zero'

+

<u>Reversible Saturable/Switchable Optical Linear (Fluorescence)</u> Transition

=

IZ RESOLFT

RESOLFT

Switching molecule <u>ensembles</u> (confinement by zeros)

STORM / PALM

RESOLFT

Switching molecule <u>ensembles</u> (confinement by zeros)

STORM / PALM

What is the common enabling physical element

behind all these approaches ?

Establishing a

state (A) contrasted with (B) in a sub- $\lambda/2$ region

moved through the object and detected sequentially

Energy state: **S**₀, **S**₁, **T**₁, ...

(Photophysics)

Conformational states: cis, trans, binding

(Photochemistry)

need not be fluorescent, but just detectable (e.g. heat).

Long lifetimes of states τ are advantageous

Key is the states, not the density of photons !

m-photon absorption does not really work for resolution!

STED

d=_____ Insing (1+J/Js

Concepts using zeros

... Abbe's equation ?

...expanded.

SWH, Nature Biotech 21, 1347 (2003) SWH, Phys. Lett. A 326 , 140 (2004) Westphal, SWH, Phys. Rev. Lett. (2005)

Acknowledgements References

Pictures/Movies

www.nanoscopy.de

SW HeII (Review article)

Physics:

G. Donnert et al

K Willig, J Keller, M Bossi, SWH

V Westphal, SWH

L Kastrup, H Blom, C Eggeling, SWH

Applications:

K Willig, S Rizzoli, R Jahn, SWH

R Kittel, et al

Science, May 25, (2007)

PNAS, July 24 (2006)

New J Phys, (2006)

Phys Rev Lett, 94 (2005)

Phys Rev Lett, 94 (2005)

Nature, April 13, (2006) Science, May 19, (2006)