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RAMAN EFFECT
The Raman effect has its origin in molecular 
transitions which occur during the light scattering 
process. When a light quantum with any frequency ν0
(wavelength λ0) and energy hν0 interacts with a 
molecule in its ground state n or in any of its excited 
stationary states k (fig.1) the energy of the system is 
increased to hν0 + En or hν0 + Ek.

Fig.1. An energy level diagram representing the quantum theory of Raman and Reyleigh scattering. The solid 
arrows indicate the molecular transitions while the broken arrows represent virtual transitions. The resulting 
spectrum is shown at the bottom.
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If the molecule possesses a stationary state with the 
energy hν0 + En or hν0 + Ek, the incident light 
quantum is absorbed raising the molecule to this 
excited state. After a certain time, a quantum can be 
re-emitted with the same frequency ν0 or a changed 
frequency, depending on whether the molecule 
returns to its original state or to a different state. This 
process is called fluorescence.
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If the molecule returns to its original state, no energy 
has been taken from the light quantum nor has 
energy been given to it. Therefore, the frequency of 
the quantum remains unchanged and we have 
Rayleigh scattering.

Rayleigh
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If the molecule goes over to another stationary state, 
it has either taken energy from the light quantum or 
given up part of its energy and the frequency of the 
light quantum is changed. As a consequence, the 
frequencies ν0 – νnk and ν0 + νnk appear in the 
scattered light and we have the Raman effect.
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The intensity of scattered light at ν0 ± νnk is given by
0 nk 0 0 nk nkI(v v ) NI(v )h(v v )A , (1)± = ±

where the transition probability Ank for a molecular 
transition n ↔ k during the scattering process is 
defined as 

( )
4

3 2
nk 0 nk nk3

64 hA , (2)
3 c
π

= ν ± ν µ

with
nr rk nr rk

nk
rn 0 rk 0r

1 M M M M E. (3)
h

⎡ ⎤
µ = +⎢ ⎥ν − ν ν + ν⎣ ⎦

∑

c is the velocity of light, h is Planck’s constant, r 
represents any one level of a complete set of 
electronic levels, Mnr is the matrix element of the 
transition n ↔ r, E is the electric field of the light 
wave, N is the number of molecules in the initial state 
and I(ν0) the intensity of the incident radiation. 
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For k = n these equations apply to Rayleigh 
scattering.          

The angular dependence of the scattered light 
intensity is given by I(θ) = I(ν0)(1+ cos2θ)/2 where θ
is the angle between the incident and scattered light.
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Equations (2) and (3) show that the probability for a 
Raman transition from a state n to a state k is 
determined by the sum over all states r of products of 
transition moments from the state n to some other 
state r and from the state r to the state k. Thus it can 
be seen that the Raman selection rules differ from the 
rules governing absorption and emission of dipole 
radiation: the former depend on the product of 
transition moments Mnr Mrk, and the latter depend only 
on the transition moments Mnr or Mrk. 

( )
4

3 2
nk 0 nk nk3

64 hA , (2)
3 c
π= ν ± ν µ
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⎡ ⎤
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The explicit Raman selection rule is that only levels 
having eigenfunctions of the same symmetry can 
combine with one another. 

nr rk nr rk
nk

rn 0 rk 0r

1 M M M M E. (3)
h

⎡ ⎤
µ = +⎢ ⎥ν − ν ν + ν⎣ ⎦

∑
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In the scattering formula for molecules in their 
ground electronic states under certain conditions 
(which are generally always fulfilled in experiments), 
the induced dipole moment µkn in eq.(3) can be 
replaced by 

µ = αE 

where E is the electric field vector of the light wave 
and α is the molecular polarizability tensor.

nr rk nr rk
nk

rn 0 rk 0r

1 M M M M E. (3)
h

⎡ ⎤
µ = +⎢ ⎥ν − ν ν + ν⎣ ⎦

∑
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The transition probabilities and therefore intensity and 
selection rules are determined by integrals of the form

[ ]kn
XY n XY kdt, (4)∗α = ψ α ψ∫

where ψn and ψk are the time-dependent wave 
functions of the initial and the final states, αXY is one 
of the components of the polarizability tensor of the 
molecule referred to space-fixed axes and the 
integration is over all space. The simplification 
introduced by the polarizability theory is that [αXY]kn in 
eq.(4), and hence µkn, depend on knowledge of the 
initial and final states only. According to eq.(4), it is 
necessary to know the form of the wave functions ψn, 
ψk and the dependence of the polarizability on the 
molecular structure.
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The polarizability varies with the vibrational and 
rotational motions of a molecule. For vibrational
motions of infinitesimal amplitudes, the polarizability
can be represented by an expansion in terms of the 
3N-6 normal coordinates qi

3N 6
xy

xy xy j
ii 1

q higher terms (5)
q

−

=

∂α⎛ ⎞
α = α + +⎜ ⎟∂⎝ ⎠

∑

where the six components αxy are expressed in a 
molecule-fixed system (xyz).
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Whether a particular vibration is Raman-active or 
inactive can be determined by considering the 
changes in the polarizability as the vibrating molecule 
goes through its equilibrium position. Also, an 
estimate can be made of whether the motion results 
in a change in the magnitude of the derivative of the 
polarizability (associated with totally symmetric 
vibrations) or in the anisotropy of the derivative of the 
polarizability (usually associated with antisymmetric
vibrations). 
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If the higher-order terms in the polarizability (eq.5) or 
in the potential energy are considered, that is if 
anharmonicity is present, then overtone and 
combination frequencies can also occur (the second-
order Raman spectrum).

3N 6
xy

xy xy j
ii 1

q higher terms (5)
q

−

=

∂α⎛ ⎞
α = α + +⎜ ⎟∂⎝ ⎠

∑
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But these are usually very much weaker than the fundamentals. 
On the other hand, in some crystals, f.e. the alkali halides, the 
fundamental vibration (the first-order Raman spectrum) is 
forbidden by symmetry and only the very weak second-order 
spectrum is observed. 

Many types of vibrational bands can occur in the Raman effect 
(some of which may not occur in infra-red absorption) and their 
occurrence or nonoccurrence in the Raman spectrum may be 
used to determine the molecular symmetry or point group of 
molecules. 

All totally symmetric vibrations are Raman-active. 
Since all molecules have at last one totally symmetric 
vibrations, all molecules will exhibit a vibrational
Raman spectrum.
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For rotational motions, the polarizability is expressed 
in a space-fixed coordinate system (XYZ) in terms of 
the polarizability components along the xyz axes 
fixed in the molecule. For example

XY xy
xy

cos(x,X)cos(y,Y). (6)α = α∑
The rotational selection rules are determined by the 
matrix elements For the special case of the 
rigid nonlinear molecule the selection rules are ∆J = 
0, ±2. 

Moreover, transitions are only possible if the 
polarizability ellipsoid is anisotropic; this is a general 
condition for all molecules and holds for pure 
rotational transitions as well for vibration-rotational 
transitions.

r xy r dt.∗
′′ψ α ψ∫
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A very simple explanation of the Raman effect can be 
given on a classical base. 

Let us consider a simple diatomic molecule. If it is 
irradiated with monochromatic light of frequency ν, 
the electrons are periodically shifted and an electric 
moment is induced.
If 

0 cos2E E t= πν
the induced moment is

0 0 cos2M E t= α πν

where α0 is the polarizability that is a measure of the 
facility with which the charge distribution of the 
molecule can be deformed.
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Let us suppose that the molecule vibrates along the 
line joining the nuclei, with a frequency ν1. The 
polarizability will change as a function of the distance 
x between the nuclei and if x is small

0 1xα ≅ α + α

If the induced motion is harmonic

0 1cos2x x t= πν
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The induced moment of the vibrating molecule is
( )

{ }

0 1 0 1 0

0 0 1 0 0 1 1

cos2 cos2
1cos2 cos2 ( ) cos2 ( )
2

M E x t E t

E t x E t t

= α = α + α πν πν

= α πν + α π ν + ν + π ν − ν

The diffused light now consists of the Rayleigh 
radiation and two new frequencies ν ± ν1 that are the 
Raman frequencies.

In order that these frequencies exist it must be

1 0α ≠

In other words, the change of polarizability during a 
molecular vibration is responsible for the Raman 
effect.



21

This selection rule is very different from the one which 
governs an infrared absorption in which it is 
necessary that the vibration gives place to a change 
of the electric moment.

So the vibration of a mononuclear diatomic molecule 
as H2 can be observed in the Raman effect but not in 
the absorption, because the vibration can produce a 
change in the polarizability but not in the electric 
moment.

According to the classic electrodynamics, every 
motion in an atomic system which is connected with a 
change of its dipole moment brings to the emission or 
the absorption of radiation.
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The motions connected with a change of the dipole 
moment, and therefore that appear in the infrared, are 
called active.

In the asymmetric molecules all the vibration modes 
are connected with a change of the dipole moment.

In the symmetric molecules there can be vibrations 
during which the change of the dipole moment is 
exactly zero and therefore they are inactive in the 
infrared.
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For example in CO2, during the totally symmetric 
vibration ν1, the dipole moment remain zero as in the 
equilibrium position and therefore this vibration is 
inactive in the infrared. Instead the vibrations ν2 and 
ν3 are active.

Y X Y
ν1

ν2

ν3
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The same pattern of lines if found for any given 
substance no matter what exciting line is used. That 
is, the frequency shifts of the Raman lines, or their 
displacements in units cm-1, from any exciting line, 
are constant. These frequency shifts are found to 
equal the frequencies of rotational, vibrational and 
electronic transitions of the scattering molecules.

GENERAL PROPERTIES OF RAMAN 
SCATTERING

1( )c hch hcν = ∴ ν = =
λ λ λ

If is in cm-1 and hc =12.5.10-5 eV.cm we have hν
in eV (1eV = 1.6 × 10-19 joule).

1
λ
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Rotational transitions give rise to rotational lines in 
the spectra of gases close to the exciting line, usually 
within about 100 cm-1. 

At low resolution, these appear as a general 
broadening of the exciting line or as rotational wings. 

At high resolution, the individual rotational lines may 
be observed. 

These rotational wings sometimes persist with 
reduced intensity and extent even in liquids, where 
(excepting liquid hydrogen) free rotation is not found.
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Vibrational transitions give rise to vibrational bands 
in the spectra of gases, liquids and solids, in the 
frequency range 100 to about 4000 cm-1. For all 
molecules, in general, strong line-like Q branches   
(∆J = 0) are observed for those vibrations which 
produce changes in the magnitude of the polarizability
derivative, i.e., for the totally symmetric vibrations (v1). 
On the other hand, considerable broadening (in 
liquids, e.g., v2, v3, v4) or strong rotational wings (∆J = 
±1, ±2) are observed for those vibration which 
produce changes in the anisotropy of the polarizability
derivative. In some liquids and solids the Raman 
bands may be modified in frequency, intensity or 
breadth from those in the gas phase because of 
intermolecular forces.
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Much information is similar to that obtained by 
infrared spectroscopy and in part by microwave 
spectroscopy. However, according to the theory (and 
practice) the information obtained from Raman 
spectra complements that obtained from infra-red and 
microwave spectra. This valuable property arises 
from the basically different mechanisms which 
produce the spectra: 

the Raman effect occurs because of a change in 
magnitude or direction of the electronic polarizability
during the molecular motion, 

while infra-red and microwave absorption occur 
because of a change in magnitude or direction of the 
electric dipole moment during the motion.
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From measurements of the anti-Stokes lines the 
temperature distribution of samples can be 
determined. The intensity of these lines can, to a 
good approximation, be modeled via the occupation 
densities Nm of the vibronic states m with frequencies 
vm which are given by the Boltzmann distribution:

mhv / kT0 m

0

I( ) e . (1)
I( )

−ν + ν
∝

ν

/
0

mh kT
mN N e− ν=

therefore
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Raman scattering provides a rich variety of 
information on the structure and composition of 
matter, based on its vibrational fingerprints. The 
vibrational information, which usually occurs at IR 
frequencies, can be obtained by monitoring the 
frequency shifts between excitation and scattered 
light. As a scattering process, however, the Raman 
effect is exceedingly weak: Typical Raman cross 
sections per molecule range between 10-30 and 10-25

cm2, with the larger values occurring during resonant 
Raman conditions, when the frequency of light 
happens to match an electronic transition in the 
molecule. By comparison, fluorescence spectroscopy, 
based on the absorption and emission light, exploits 
effective cross sections between 10-17 cm2 and 10-16

cm2.
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Other methods that are gaining interest among 
researchers include two-photon techniques. 

By using two lower-energy photons during the 
scattering process, light can be shifted to longer 
wavelengths than is possible during one-photon 
scattering. The lower-energy incident photons 
penetrate many materials more deeply and 
simultaneously reduce the degradation of light-
sensitive samples. 

So far, most two-photon applications are based on 
fluorescence. Hyper-Raman scattering (HRS) is a 
potential tool for probing the chemistry of materials 
using two-photon scattering.
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In hyper-Raman scattering (HRS), two photons are 
simultaneously scattered from a molecule. The 
energies of the accompanying Raman signals are 
thus shifted relative to twice the energy of the 
excitation laser: hνHS = 2hνL - hνM and hνHaS = 2hνL + 
hνM; the subscripts HS and HaS refer to hyper-
Raman Stokes and anti-Stokes photons.
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Because two photon HRS follows different symmetry 
selection rules than one-photon RS, the spectral 
information obtained in each can be complementary. 

What’s more, the power of RS signals depends 
linearly on the laser’s excitation intensity, whereas 
HRS signals depend on the square of the intensity.
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Another important application field is based on 
surface-enhanced Raman spectroscopy (SERS).

Enhancement factors for the Raman signal of up to 
1020 were reported for molecules on cluster surfaces. 
This may enable single molecule detection via 
Raman spectroscopy with very high selectivity.

In 1974 Martin Fleischmann and co-workers reported 
an unexpectedly strong Raman signal from a 
monolayer of pyridine absorbed on an 
electrochemically roughened silver electrode.
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The excitation of surface plasmons explains the 
enhanced Raman signals. 

In the 30 years since its discovery and confirmation, 
surface-enhanced Raman scattering (SERS) has 
matured into a powerful spectroscopic method that 
exploits the interaction of light, molecules and metal 
nanostructures to boost Raman signals high enough 
– in some cases up to 14 orders of magnitude – that 
researchers can resolve the chemical structure of 
materials, even at the single-molecule level. 
Moreover, SERS has contributed to the development 
of plasmonics and the related field of near-field optics, 
which are revolutionizing optics and spectroscopy.
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In the vicinity of metal nanoclusters, field 
enhancement occurs because of the resonant 
interaction between the optical fields and surface 
plasmons in the metal. 

In essence, the light from a laser beam excites the 
surface plasmons, which are collective oscillations of 
conduction electrons. Those plasmons then radiate a 
dipolar field. The coherent interaction of the incoming 
electric field with the dipolar field leads to a 
redistribution of electric-field intensities in areas 
around the metal clusters. 
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A molecule nearby or absorbed on the metal feels an 
enhanced excitation intensity. So its Raman-
scattered field is enhanced in the same way that the 
incident laser fields is. Indeed, one can liken the 
metallic clusters to tiny antennas that enhance and 
transmit the Raman-scattered light.

The enhancement depends on the type of metal, its 
degree of roughness – the sizes and shapes of the 
clusters that form – and the frequency of the incident 
light. 

The original observation of SERS, in fact, was a 
fortunate accident that occurred because the laser 
frequency happened to fall in the plasmon resonance 
of nanometer-sized bumps on the rough silver 
electrodes.
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SERS enhancement is particularly strong when both 
laser and scattered fields are in resonance with the 
surface plasmons. The frequency shift between the 
laser and scattered light is usually small compared 
with the width of the plasmon resonance. Therefore, 
the laser and Raman-scattered fields increase by 
about the same amount, and the signal power scales 
roughly with the fourth power of the local optical-field 
enhancement.



38

For a Raman cross section of 10-29 cm2, large 
numbers of molecules are required to convert enough 
laser photons to Raman photons to achieve a usable 
signal. From 100 mW laser light focused to 1 µm2, a 
single molecule scatters only 10-4 photons per 
second. That means one would have to wait more 
than an hour for a single Raman photon. Before the 
advent of SERS, such estimates made single-
molecule Raman spectroscopy science fiction.
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By virtue of the extremely high enhancement factors 
obtainable in SERS, however, one can get insight into 
an individual molecule’s intrinsic vibrational properties 
and monitor its structural changes without resorting to 
ensemble averages. Indeed, the structure-sensitive 
detection of single molecules represents the ultimate 
limit in chemical analysis.
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SURFACE PLASMONS ON SMOOTH SURFACES

The electron charges on a metal boundary can 
perform coherent fluctuations which are called 
surface plasma oscillations. The frequency ω of these 
longitudinal oscillations is tied to its wave vector kx by 
a dispersion relation ω(kz). 
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Fig.1 The charges and the electromagnetic field of SPs propagating on a surface in the x direction are shown 
schematically. The exponential dependence of the field Ez is seen on the right. Hy shows the magnetic field in 
the y direction of this p-polarized wave.

These charge fluctuations, which can be localized in 
the z direction within the Thomas-Fermi screening 
length of about 1 Å, are accompanied by a mixed 
transversal and longitudinal electromagnetic field 
which disappears at (fig.1) and has its 
maximum in the surface z = 0, typical for surface 
waves. This explains their sensitivity to surface 
properties. 

z →∞
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The field is described by

( )[ ]0 x zE E exp i k x k z t (1)±= + ± −ω

with + for z≥0, - for z≤0, and with imaginary kz, which 
causes the exponential decay of the field Ez.

The wave vector kx lies parallel to the x direction; kx = 
2π/λp, where λp is the wavelength of the plasma 
oscillation.
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Maxwell’s equations yield the retarded dispersion 
relation for the plane surface of a semi-infinite metal 
with the dielectric function adjacent to a 
medium ε2 as air or vacuum:

( )1 1 1i ,′ ′′ε = ε + ε

1
2

z1 z2
0

1 2
2

2 2
1 x zi

2
2

zi i z

k kD 0 together with (2)

k k or (3)
c

k k , i 1,2.
c

= + =
ε ε

ω⎛ ⎞ε = +⎜ ⎟
⎝ ⎠

⎡ ⎤ω⎛ ⎞= ε − =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
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The wave vector kx is continuous through the 
interface. The dispersion relation (2) can be written as

1
2

1 2
x

1 2
k . (4)

c
⎛ ⎞ω ε ε

= ⎜ ⎟ε + ε⎝ ⎠

If we assume besides a real ω and ε2 that we 
obtain a complex with

11 ,′′ ′ε < ε

x x xk k ik′ ′′= +
1

2

3
2

1 2
x

1 2

1 2 1
x 2

1 2 1

k (5)
c

k . (6)
c 2( )

′⎛ ⎞ω ε ε′ = ⎜ ⎟′ε + ε⎝ ⎠

′ ′′⎛ ⎞ω ε ε ε′′ = ⎜ ⎟′ε + ε ′ε⎝ ⎠

For real k′x one needs ε′1 < 0 and which can be 
fulfilled in a metal also in a doped semiconductor near 
the eigen frequency; determined the internal 
absorption. In the following we write kx in general 
instead of k′z.

1 2 ,′ε > ε

2k′′
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The dispersion relation (see fig.2) approaches the 
light line at small kx, but remains larger than
so that the SPs cannot transform into light: it is a 
“nonradiative” SP.

2 / cε ω 2 / cε ω

Fig.2. The dispersion relation of nonradiative SPs (―), right of the light line ω = ckx; the retardation region 
extends from kx = 0 up to about kp = 2π/λp (λp plasma wavelength). The dashed line, right of ω = ckx, 
represents SPs on a metal surface coated with a dielectric film (ε2). Left of the light line, ω(kx) of the radiative
SPs starts at ωp (―). The slight modulation in the dashed dispersion curve comes from an eigen frequency in 
a monomolecular dye dilm deposited on a Langmuir-Blodgett film (ε2). 
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At large kx or
1 2 (7)′ε → −ε

the value of ω approaches
1

2
p

sp
2

(8)
1
ω⎡ ⎤

ω = ⎢ ⎥+ ε⎣ ⎦

for a free electron gas where ωp is the plasma 
frequency with n the bulk electron density. 

With increasing ε2, the value of ωsp is reduced.

At large kx the group velocity goes to zero as well as 
the phase velocity, so that the SP resembles a 
localized fluctuation of the electron plasma.

24 ne / m,π



47

The model used in the analysis is as follows: the 
Raman medium is taken as consisting of N harmonic 
oscillators per unit volume, each oscillator 
representing one molecule. The oscillators are 
independent of each other so that the ensemble of 
oscillators cannot support a wavemotion with a 
nonvanishing group velocity. Each oscillator is 
characterized by its position z (the analysis is one-
dimensional so that ∂/∂x = ∂/∂y = 0) and normal 
vibrational coordinate X(z,t).

STIMULATED RAMAN SCATTERING



48

The equation of motion for a single oscillator is then
2

2
v2

d X(z, t) dX F(z, t)X (1)
dt mdt

+ γ + ω =

where γ is the damping constant chosen so that the 
observed spontaneous Raman scattering linewidth is 
∆ν = γ/2π, ωv is the (undamped) resonance frequency, 
m is the mass and F(z,t) is the driving force.
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The driving term can be derived by considering the 
electromagnetic energy in the presence of the 
molecules. The electrostatic stored energy density is

21 E
2

E = ε

that, using

0 0 0
0

(1 ) 1 (2)N N X
X

⎧ ⎫⎡ ∂α ⎤⎛ ⎞ε = ε + α = ε + α +⎨ ⎬⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦⎩ ⎭
can be written as

2
0 0

0

1 1 E (3)
2

E N
X

⎧ ⎫⎡ ∂α ⎤⎛ ⎞= ε + α +⎨ ⎬⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦⎩ ⎭
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The force per unit volume of polarizable material is 
∂E/∂X that after dividing by N, gives the force per 
oscillator as

2
0

0

1( , ) E ( , ) (4)
2

F z t z t
X
∂α⎛ ⎞= ε ⎜ ⎟∂⎝ ⎠

where the bar indicates averaging over a few optical 
periods since the molecules cannot respond to 
optical frequencies. 

This shows that because of the nonvanishing
differential polarizability, (∂α/∂X)0, the molecular 
vibration can be driven by the electric field.
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Our next problem is to show how the field induced excitation of 
molecular vibration X(z,t) reacts back on the electromagnetic 
fields. 

The molecular vibration at ωv causes, according to (2), a 
modulation of the dielectric constant ε at ωv. This leads to 
phase modulation of any radiation field present thus creating 
sidebands separated by ωv. 

Stated differently, a modulation of ε at ωv, caused by molecular 
vibrations, can lead to energy exchange between 
electromagnetic fields separated in frequency by multiples of 
ωv, such as, for example, the laser (ωl) and the 

Stokes (ωs= ωl - ωv) fields.

0 0 0
0

(1 ) 1 (2)N N X
X

⎧ ⎫⎡ ∂α ⎤⎛ ⎞ε = ε + α = ε + α +⎨ ⎬⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦⎩ ⎭
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The total field is taken as the sum of the Stokes (ω1) 
and the laser field (ω2)

1 2
1 2

1 1E( , ) E ( ) E ( ) . . (5)
2 2

i t i tz t z e z e c cω ω= + +

so that
2 1( )2 *

2 1
1E ( , ) E ( )E ( ) . . (6)
4

i tz t z z e c cω −ω= +

Substituting (6) in (4) and then in the molecular 
equation of motion, (1) gives

( ) 2 1( )2 2 *0
2 1

0

1 ( ) E E (7)
2 8

i ti t
v i X z e e

m X
ω −ωω ε ∂α⎛ ⎞ω −ω + ωγ = ⎜ ⎟∂⎝ ⎠

where
1( , ) ( ) . . (8)
2

i tX z t X z e c cω= +

2
0

0

1( , ) E ( , ) (4)
2

F z t z t
X
∂α⎛ ⎞= ε ⎜ ⎟∂⎝ ⎠
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It follows from (7) that the molecular vibration is 
driven at a frequency ω = ω2 - ω1 with a complex 
amplitude

( ) ( )

*
0 2 1

22
2 1 2 1

( ) ( )
( ) (9)

4 v

E z E z
XX z

m i

∂α⎛ ⎞ε ⎜ ⎟∂⎝ ⎠=
⎡ ⎤ω − ω −ω + ω −ω γ⎣ ⎦

The polarization induced in the molecules by the field 
at ω1 is

0 0 0
0

( , ) ( , ) ( , ) ( , ) (10)P N z t E z t N X z t E z t
X

⎡ ∂α ⎤⎛ ⎞= ε α = ε α + ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
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Our concern here is with the nonlinear polarization 
term which is proportional to the product XE. Using 
(5) and (9) in (10) it becomes

( ) ( )

2 1

1 2

( )*
0 2 1

0 22
0 2 1 2 1

1 2

1( , ) . .
4 4

( ( ) ( ) . . (11)

i t

NL
v

i t i t

E E e
XP z t N c c

X m i

E z e E z e c c

ω −ω

ω ω

∂α⎧ ⎫⎛ ⎞ε ⎜ ⎟⎪ ⎪∂α ∂⎛ ⎞ ⎝ ⎠= ε +⎨ ⎬⎜ ⎟∂ ⎡ ⎤⎝ ⎠ ω − ω −ω + ω −ω γ⎪ ⎪⎣ ⎦
⎩ ⎭

× + +

If we multiply the two terms in (11) we get 
polarizations oscillating at 

ω1, ω2, 2ω1 - ω2 and 2ω2 - ω1. 

Let us concentrate first on the ω1 term.
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1 1 1( ) ( )1( , ) ( ) . . (12)
2

i t
NL NLP z t P z e c cω ω ω= +

where

( ) ( )
1

2
22

0 2
( ) 0

122
2 1 2 1

( ) ( ) (13)
8

NL
v

N E
XP z E z

m i
ω

∂α⎛ ⎞ε ⎜ ⎟∂⎝ ⎠=
⎡ ⎤ω − ω −ω − ω −ω γ⎣ ⎦

The coefficient relating an induced polarization to the inducing
field is the susceptibility. From (13) we can define a complex 
Raman nonlinear susceptibility through the relation

1 2( )
0 1 2 1( ) ( ) ( ) ( ) (14)NL RamanP z E z E zω = ε χ ω

( ) ( )

2

0
0

1 22
2 1 2 1

( ) (15)
8

Raman
v

N
X

m i

∂α⎛ ⎞ε ⎜ ⎟∂⎝ ⎠χ ω =
⎡ ⎤ω − ω −ω − ω −ω γ⎣ ⎦

so that
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More generally we can characterize the effect of 
induced molecular vibration by means of a fourth-
rank tensor

( ) ( ) ( ) ( ) ( ) (16)i j k l i j k l j k l
i jijkl k lP E E Eω =ω −ω +ω ω =ω −ω +ω ω ω ω= χ

so that (14) is but a special case where ωj = ωk = ω2,  
ωI = ωl = ω1. 

Returning to (15) we define

1 1 1( ) ( ) ( ) (17)Raman Raman Ramani′ ′′χ ω = χ ω − χ ω

where
( )[ ]

( )[ ]{ }

2

0 v 2 1
0

1 2 2
v v 2 1

( ) (18)
16 / 4

Raman

N
X

m

∂α⎛ ⎞ε ω − ω −ω⎜ ⎟∂⎝ ⎠′χ ω
ω ω − ω −ω + γ
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and

( )[ ]{ }

2

0
0

1 2 2
v v 2 1

( / 2)
( ) (19)

16 / 4
Raman

N
X

m

∂α⎛ ⎞−ε γ⎜ ⎟∂⎝ ⎠′′χ ω
ω ω − ω −ω + γ

where the approximation applies to the high Q case 
that is usually the case (typically ).

The nonlinear Raman susceptibility is thus Lorentzian
as its linear counterpart. It is plotted in fig.1.

vγ ω 2
v10−γ ≤ ω

Fig.1. The in-phase (χ′Raman) and quadrature (χ″Raman) components of the Raman nonlinear susceptibility as a 
function of the Stokes frequency, ω1. (ω1 increases from right to left).
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The presence of a Raman polarization (14) at ω1 can 
be accounted for by modifying the propagation 
constant as in (4) from k1 to

21
1 1 22

1
2

2
1 1 12

1

( )1
2

1 ( ( ) ( )) (20)
2

Raman

Raman Raman

k k E
n

Ek i
n

⎡ ⎤χ ω′ = + =⎢ ⎥
⎣ ⎦
⎡ ⎤

′ ′′= + χ ω − χ ω⎢ ⎥
⎢ ⎥⎣ ⎦

so that

1 1

2 2
( ) ( ) 2 1 2 1

1 12 2
1 1

( ) ( )( ) (0)exp 1 (21)
2 2
Raman RamanE EE z E ik z k z
n n

ω ω ⎡ ⎤⎛ ⎞′ ′′χ ω χ ω
= − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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The exponential gain coefficient is thus
21

1 2 12
1

( ) ( ) (22)
2 Raman
kg E
n

′′ω = − χ ω

and is positive since χ″Raman(ω1)<0. Using (19) g(ω1) 
is given as

[ ]{ }

2
2

1 0 2
0

1 22 2
1 v v 2 1

( ) (23)
32 ( / 4

k N E
Xg

n m

∂α⎛ ⎞ε γ⎜ ⎟∂⎝ ⎠ω =
ω ω − ω −ω + γ

[ ]
1 2

2
v 2 1

/ 2( ) (24)
( )

4

S v
v v v

γ π
=

γ⎛ ⎞− − + ⎜ ⎟π⎝ ⎠

By comparing (23) to (5) we can identify the 
normalized Raman lineshape as 

( )[ ]{ }

2

0
0

1 2 2
v v 2 1

( / 2 )
( ) ( 1 9 )

1 6 / 4
R a m a n

N
X

m

∂ α⎛ ⎞− ε γ⎜ ⎟∂⎝ ⎠′′χ ω
ω ω − ω − ω + γ
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The anti-Stokes radiation at               can be 
generated by Raman transitions originating in the 
excited (v = 1) vibrational state. To treat the problem 
electromagnetically, let us consider the ω3
polarization induced in the Raman medium due to an 
electric field

ANTI-STOKES SCATTERING

3 2 vω ω +ω

31 2
1 2 3

1( , ) ( ) ( ) ( ) . . (1)
2

i ti t i tE z t E z e E z e E z e c cωω ω⎡ ⎤= + + +⎣ ⎦

where ω3 - ω2 = ω2 - ω1.
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First we obtain a term due to the driving of the 
molecular vibration by the product This term is 
analogous to (11) and is derived in an identical 
manner. We can thus obtain the polarization by 
modifying (13) recalling that now E3 is the high 
frequency field and E2 the low one. 

We thus replace E2 by E3 and E1 by E2, ω2 - ω1 by ω3
- ω2. The result is

3 2.E E∗

( ) ( )
3

2
22

0 2
( ) 0

322
v 3 2 3 2

( ) ( ) (2)
8

NL

N E
XP z E z

m i
ω

∂α⎛ ⎞ε ⎜ ⎟∂⎝ ⎠=
⎡ ⎤ω − ω −ω + ω −ω γ⎣ ⎦

( ) ( )
1

2
22

0 2
( ) 0

122
2 1 2 1

( ) ( ) (13)
8

NL
v

N E
XP z E z

m i
ω

∂α⎛ ⎞ε ⎜ ⎟∂⎝ ⎠=
⎡ ⎤ω − ω −ω − ω −ω γ⎣ ⎦
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The important difference between (2) and (13) is the 
opposite sign of the imaginary term. This difference 
translates into an opposite sign of χ″(ω3) relative to 
χ″(ω1) 

( ){ }

2

0
0

3 2 2
v v 3 2

( / 2)
( ) (3)

16 / 4
Raman

N
X

m

∂α⎛ ⎞ε γ⎜ ⎟∂⎝ ⎠′′χ ω =
⎡ ⎤ω ω − ω −ω + γ⎣ ⎦

so that the gain constant exercised by the anti-Stokes 
wave (ω3) is

21
3 2 32

3
( ) ( ) 0 (4)

2 Raman
kg E
n

′′ω = − χ ω <

and the wave attenuates.

( ) ( )
1

2
22

0 2
( ) 0

122
2 1 2 1

( ) ( ) (13)
8

NL
v

N E
XP z E z

m i
ω

∂α⎛ ⎞ε ⎜ ⎟∂⎝ ⎠=
⎡ ⎤ω − ω −ω − ω −ω γ⎣ ⎦
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We thus reach the conclusion that if one were to 
introduce anti-Stokes (ω3 = ω2 + ωv) radiation into a 
Raman active medium in the presence of an ω2 wave 
and in the absence of Stokes (ω1 = ω2 - ωv) radiation, 
it would attenuate.

There exists, however, another source of polarization 
at ω3. It is obtained by taking the term in (11).

( )[ ]3( )
2 2 1 2 1exp 2 (5)NLP E E E i tω ∗∝ ω −ω

This term does not involve E3 and can be viewed as 
the upper sideband [(ω2 + (ω2 + ω1)] due to a 
modulation of the dielectric constant “seen” by ω2 at 
the driven molecular frequency (ω2 - ω1). This term 
acts as a source radiation at ω3.  
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If we insert the spatial dependence into the 
polarization of (5) we find that

3 2 1( ) (2 )
2 2 1( ) e (6)i k k r

NLP z E E Eω − − ⋅∗∝

This term will generate a field at ω3 with a spatial 
dependence such that3

3
ik rE e− ⋅

3 2 12 (7)k k k= −
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Anti-Stokes radiation will thus be emitted in any 
direction k3, that satisfies (7). 

The resulting direction, k3, of the emitted anti-Stokes 
beam is shown in fig.2. (It should be recalled that in 
an isotropic medium the magnitudes of k1, k2 and k3
are determined by their respective frequencies and 
are where ni is the index of refraction at ωI
and is determined by the intersection of the k1 locus 
and that of k3.

/ ,i i ik n c= ω

Fig.2. A construction for finding the direction of propagation, k3, of the anti-Stokes radiation.

3 2 12 (7)k k k= −
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This is the reason why anti-Stokes radiation is emitted 
in the form of a conical shell with a half-apex angle β
about the laser propagation direction. 

The “real-life” situation in stimulated Raman emission 
is considerably more complicated than that portrayed 
above. 

In addition to the existence of higher-order Stokes and 
anti-Stokes radiation that was mentioned earlier, it is 
found that, as an example, the direction of the emitted 
anti-Stokes radiation derivates because of “trapping”
from that predicted by (7).
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Inverse Raman spectroscopy (IRS) is obtained if the 
depletion of a weak probe light signal in the linear 
intensity range at the frequency of the SRS pump 
transition is measured while a strong laser is tuned 
across the Stokes frequency of the matter as 
schematically shown in fig.3.

Fig.3. Inverse Raman spectroscopy (IRS) with measurement of the depletion of a weak probe signal at the 
frequency of the SRS pump as a function of the frequency of a strong and tunable laser at the Stokes 
wavelength.

vprobe vpump

OTHER TYPES OF RAMAN SCATTERING
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Another spectroscopy possibility is the measurement 
of the amplification via the gain coefficient gprobe of a 
week tunable probe signal with the light frequency 
around the Raman Stokes signal  while strong laser 
pumping with a suitable frequency for this Stokes 
signal (see fig.4). This method is called stimulated 
gain spectroscopy (SRGS).

Fig.4. Stimulated Raman gain spectroscopy (SRGS) measuring the amplification for determining the gain gprobe
of a weak tunable probe signal around the SRS Stokes frequency under strong pumping.

vprobevpump

gprobe =f(vprobe)
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The combination of simultaneous stimulated Stokes 
and anti-Stokes Raman scattering leads to the 
interaction of four photons in the matter. In coherent 
anti-Stokes Raman scattering (CARS) two strong 
laser beams with frequencies vinc and vSRS,S are 
applied (see fig.5) and the Raman anti-Stokes signal 
is studied.

Fig.5. Coherent anti-Stokes Raman scattering (CARS) pumping with two laser beams with frequencies vinc
and vSRS,S, obtaining the anti-Stokes Raman light with vSRS,aS. For strong signals phase matching has to be 
achieved.

E″

E′

E0

E0+Evib

νvib

νinc νincνSRS,S νSRS,aS

CARS



70

Phase matching is achieved if the momenta of the 
four involved photons are conserved and thus the 
wave vectors of the incident laser light kinc and of the 
Raman Stokes light kSRS,s and the anti-Stokes light 
kSRS,as have to fulfill the angle condition of fig. 6.

Fig.6. Phase matching of the incident laser light and the generated Stokes and anti-Stokes Raman light in 
CARS experiments.

ϕCARS,inc

ϕCARS,probe
kinc

kinc

kSRS,s

kSRS,as
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Therefore, the two incident laser beams have to be 
enclosed in the angle ϕCARS,inc and the anti-Stokes 
Raman light beam can be observed at the angle 
ϕCARS,probe to the laser with kinc in the forward 
direction.

ϕCARS,inc

ϕCARS,probe
kinc

kinc

kSRS,s

kSRS,as
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Thus CARS allows highly sensitive measurements of 
the anti-Stokes Raman signal in a spatial direction 
with no background light. The two strong pump lasers 
will populate the excited anti-Stokes Raman scattering 
will occur. The scattering intensity ICARS,aS is 
proportional to:

2 2
CARS,As inc SRS,S matI I I N (2)∝

with the pump laser intensities Iinc of the incident and 
ISRS,S of the light and particle density Nmat. Even 
continuously operating (cw) laser can be used and 
then very high spectral resolution is possible.
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The scattering efficiency can be increased by many 
orders of magnitude if the pump laser energy 
matches the electronic transitions of the material 
(resonant CARS). In this case, the virtual Raman 
levels of the energy schemes above will be real 
energy states of the matter. 

Absorption will take place and thus the interaction 
length and/or concentration are limited by the 
maximum optical absorption of approximately 
σpumpNL<1.
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If the CARS scattering angles are too small for safe 
splitting of the different signals the BOX CARS
technique can be used. The incident laser beam is 
therefore split into two beams which are applied at the 
single ϕBOX CARS as shown in fig.7.

Fig.7. BOX CARS angle conditions for phase matching allowing good spatial separation of the different 
signals.

x

y

kinc kinc

kSRS,S kSRS,aS

ϕSRS,aS= ϕSRS,probe

ϕBOX-CARS/2
ϕBOX-CARS/2

ϕSRS,s
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Assuming as in fig.7 the two pump laser beams with 
frequency vinc are applied at the angle ϕBOX CARS
symmetrically in the xz plane each making the angle 
ϕBOX CARS/2 each with the z axis the third laser beam 
with frequency vSRS,S = vinc – vvib can be applied in the 
yz plane at the angle ϕSRS,S with the z axis. The 
resulting angle ϕSRS,aS for detecting the newly 
generated anti-Stokes Raman light with frequency 
vSRS,aS can be calculated from:

( )SRS,aS
vib inc / c

BOXCARS vib inc
SRS

1arccos
1 v

v2cos 1 cos . (3)
2 c

⎧
ϕ = ⎨ + λ⎩

ϕ ⎫⎡ ⎤⎛ ⎞ λ⎛ ⎞⋅ − + ϕ ⎬⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠⎝ ⎠⎣ ⎦⎭
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The three beams with their different directions have 
to overlap in the sample. Other geometrical 
arrangements as in fig.7 are possible. Therefore, this 
technique allows a wide range of different 
experimental setups for analytical and spectroscopic 
investigations.
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A linear system is defined as one which has a 
response proportional to external influence and has a 
well-known property, i.e. if influences, F1, F2 …., Fn 
are applied simultaneously, the response produced is 
the sum of the responses that would be produced if 
the influence were applied separately.
A nonlinear system is one in which the response is 
not strictly proportional to the influence and the 
transfer of energy from one influence to another can 
occur.

Linear and Nonlinear Systems
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If the influences are periodic in time, the response of 
a nonlinear system can contain frequencies different 
from those present in the influences. However, the 
point to emphasize here is that, as well as the 
generation of new frequencies, nonlinear optics 
provides the ability to control light with light and so to 
transfer information directly from one beam to 
another without the need to resort to electronics.

Traditionally, nonlinear optics has been described 
phenomenologically in terms of the effect of an 
electric field on the polarization within a material.
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Electromagnetic processes are described by 
Maxwell’s equations which constitute a set of linear 
equations. In SI units:

t
0

t

∇ ⋅ = ρ
∂

∇ × = −
∂

∇ ⋅ =
∂∇ × = +
∂

D
BE

B
DH J

where E and B are the electric and magnetic fields. 
The displacement fields D and H arise from the 
external charge and conduction current densities ρ
and J. In most cases of interest in nonlinear optics, ρ
= 0 and J = 0.

MAXWELL EQUATIONS

div

rot
t

div 0

rot
t

= ρ
∂

= −
∂

=
∂= +
∂

D
BE

B
DH J
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‘Constitutive relations’ connect the charge and 
current distributions within the medium and the 
displacement fields to the electric and magnetic 
fields. 

0= + ε = ε = µD P E E B H

where P is the induced polarization in the medium 
resulting from the field E, ε is defined as a dielectric 
constant and ε0 is the permittivity of free space    
(8.85 × 10-12 F m-1 in MKS units). Optical materials 
are mostly non magnetic µ = µr µ0 = µ0.
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LINEAR THEORY

Usually one assumes a linear response of a 
dielectric material to an external field

0= ε χP E

Where P is the vector representing the electric dipole 
moment per unit volume induced by the external 
electric field E, ε0 is vacuum permittivity and χ is a 
quantity characteristics of the considered material 
with no dimensions, called electric susceptibility.
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In general χ is a tensor

0

χ χ χ

= ε χ χ χ

χ χ χ

xx xy xzx x

y yx yy yz y

z zx zy zz z

P E
P E

P E

The symmetry properties of the material indicate 
which ones of the χij coefficients are zero.

Alternatively ε ε ε

= ε ε ε

ε ε ε

xx xy xzx x

y yx yy yz y

z zx zy zz z

D E
D E

D E
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HOMOGENEOUS MATERIALS
ε not depending on space

div div

Brot rot
t t

div 0 div 0

rot rot
t t

ρε = ρ =
ε

∂ ∂
= − ⇒ = −

∂ ∂
= =

∂ε ∂ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = µ +⎜ ⎟ ⎜ ⎟⎜ ⎟µ ε ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

E E

BE E

B B

B E Ej B j

If 
div 0 div 0

rot rot
t t

= =
∂ ∂

= − = µε
∂ ∂

E B
B EE B

0 0ρ = =j
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WAVE EQUATION

2rot rot grad div

rot
t

= −∇ +
∂

= −
∂
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2 x x x

2 2 2
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∂ ∂ ∂
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Starting from Maxwell’s Eqs {
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∂ ∂
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Experimentally the refractive index is a function of 
wavelength (frequency)

r rn( ) ( ) ( ) 1 ( )λ = ε λ ε λ = + χ λ

This phenomenon is called DISPERSION.

DISPERSION

Nucleus: ~2000 electron mass, i.e., infinite mass

The polarization in a material medium can be 
explained considering the electrons tied to the atoms 
as harmonic oscillators.
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DISPERSION
i t

0mx x kx eE e+ + = −�� � ωβ (one-dimensional model)

From the solution:
i t

0
2 2
0

2
0

eE ex
mm( i )

k
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−
= =

− +

=

ω βγ
ω ω ωγ

ω

the induced moment is calculated:
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2

02 2
0

i tep ex E e
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xE
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For N oscillators per volume unit, the polarization is: 

( )
tieE

im
eNpNP ω

ωγωω 022
0

2

+−
⋅

=⋅=

Calling 
2

2 2
0

i t
0 0

0

e atomic polarizability
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NP N E E E E e

= ≡
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= = = =ω

α
ω ω γω

αα ε χ χ
ε

where χ is the electric susceptibility.
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0

2
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= + = +⎜ ⎟

⎝ ⎠
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If the second term is lower than 1 (as it happens in 
gases):

2

2 2
0 0

Nen 1
2 m( i )

≅ +
− +ε ω ω γω

In the expression n comes out to be a complex 
number. 

2
2

2 2
0 0

Nen 1
m( i )

= +
− +ε ω ω γω
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ABSORPTION
The term iγω is responsible for absorption. The 
complex index can be written as

( ) ( )
2 2 2 2

0
2 22 2 2 2 2 2 2 2

0 0 0 0

Ne ( ) Nen n ik 1 i
2 m 2 m

−
= − = + −

⎡ ⎤ ⎡ ⎤− + − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

�� ω ω γω

ε ω ω γ ω ε ω ω γ ω

If we consider a plane wave 

[ ]E Aexp i( t kz)= −ωwhere

2k n n
c

= = =
ω πω µε

λ
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The last exponential represents a term of attenuation. 
The attenuation coefficient may be defined from: 

2 z
(0)

1 dI I(z) E I e
I dz

−− = = = αα

By comparison with the previous equation
4 k= �πα
λ

2 n 2 kE Aexp i t z exp z
⎛ ⎞⎡ ⎤⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠

��π πω
λ λ

2 n 2 kE Aexp i t z exp z
⎛ ⎞⎡ ⎤⎛ ⎞= − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠

��π πω
λ λ

we see that, substituting the complex refractive 
index, one has 2k (n ik)= − ��π

λ

which gives
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It can be noticed that a small value of   leads to an 
elevated attenuation. 

10.0001 and 0.5 gives 25 cm .−= λ = µ α =�k m

k�
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Substance 
 

n (for yellow light) 
 

rε   

(static value) 

Air (1 atm) 1.0002926 1.0002925 

CO (1 atm) 1.00045 1.0005 

Polistyren 1.59 1.6 

Glass 1.5  ÷  1.7 2  ÷  3 

Fused quartz 1.46 1.94 

Water 1.33 9 

Ethanol 1.36 5 

 

Table I

Values of n and εr
for some materials

n as a function of λ for 
some materials 
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At resonance (ω = ω0) 

the slope of     is negative  anomalous dispersion�n

 

 
Absolute refraction index at 20°C for the line D of Sodium (λ=5890 Å) 

 

Solids 
 

n  
 

 
Liquids 

 
n 

 
Gas n 

Canadian 
balsam 1.528 Acetone 1.359 Carbon dioxide 1.000448 

Calcite 1.658 Water 1.333 Air  1.000292 

Dispersive 
Crown  1.520 Ethanol 1.361 Nitrogen 1.000296 

Heavy Flint  1.650 Benzene 1.502 Helium 1.000036 

Amorphous 
quartz 1.458 Etere etilico 2.352 Hydrogen 1.000132 

Heavy glass 1.970 Solfuro di 
Carbonio 1.627 Oxygen 1.000271 

 

normal dispersion1>�n for 0ω < ω

-0.5

0

0.5

1.0

-3.0 -1.5 0 1.5 3.0

- 1

ω−ω0
(a

.u
.)

k�
n�
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METALS
In a metal the electrons are free and they do not 
oscillate around the atoms. Therefore k = 0 and    
ω0 = 0.
In the equation for n2 it is sufficient to put ω0 = 0.

2
2

2
0

Nen 1 N density of electrons
m( i )

= − ≡
−ε ω γω

If γ << ω
2

p2
2n 1

ω
≈ −

ω

2
2

p
0

Ne
m

ω =
ε

Frequency of plasma

For Al, Cu, Au, Ag    N ~ 1023 cm-3 and ωP~ 2.1016 s-1.
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For  n is real and the waves propagate freely.

For n is pure imaginary and the field is 
exponentially attenuated with the distance from the 
surface. Therefore the radiation is reflected from the 
surface.

Therefore, for visible radiation and infrared ω < ωP
and n is imaginary. In general, n is complex because 
there is γ:

�

( )
( )
( ) ( ) ( )

( ) ( )

2 2 2
2

2 2 2 2
0 0 0

2 2 2 2

1

p p

iNe Ne Nen i
m i i m m

i

ω + γ
− = = + γ =

ωε ω − γ ω + γ ωε ω + γ ωε ω + γ

ω ω γ
+

ωω + γ ω + γ

P>ω ω

Pω<ω
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PROPAGATION IN ANISOTROPIC MEDIA
An anisotropic medium is characterized by a 
dielectric tensor

xx xy xzx x

y yx yy yz y

z zx zy zz z

D E
D E

D E

=

ε ε ε

ε ε ε

ε ε ε

The dielectric tensor is symmetric ij ji=ε ε

It is possible to rotate the axis to find a system of axis 
(main axis) for which

2
xx x x x

2
y y y 0 y y

2
z z z zz

n 0 0D 0 0 E E
D 0 0 E 0 n 0 E

D 0 0 E E0 0 n

= =
ε

ε ε

ε
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A plane wave propagating along f.e. the direction z 
(Ez = 0) can have two phase velocities depending on 
its polarization.

Therefore, in any propagating direction there are two 
refractive indices n1 and n2 that correspond to two 
different phase and group velocities.

The displacement vectors D1 and D2 are orthogonal
between them. To obtain n1, n2, D1, D2, E1, E2, H1
and H2 the method of the ellipsoid of indices is used.
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ELLIPSOID OF INDICES

The ellipsoid of indices is

2 2 2 2 2 2

2 2 2
rx ry rz x y z

x y z x y z1
n n n

+ + = = + +
ε ε ε

To obtain the values of n1 and n2 for a particular 
direction of propagation r the plane passing through 
the origin of the ellipsoid perpendicular to r is 
considered. The intersection of this plane with the 
ellipsoid of indices gives an ellipse. The two main 
axis of the ellipse correspond to 2n1 and 2n2
respectively.
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The corresponding D1 and D2 are parallel to the main 
axis of the ellipse. The vector      is given byE

[ ]2
0n ( )= − ⋅D E s s Eε

To see this, let us consider a monochromatic plane 
wave

i(n t) i(n t)
0 0

i(n t) i(n t)
0 0

(1) e e (3)

(2) e e (4)

− −

− −

= =

= =

k r k r

k r k r

E E D D

H H B B

i i

i i

ω ω

ω ω

and the Maxwell equations for an homogeneous 
dielectric magnetically isotropic (B = µ0 H)

(5) div 0 rot (7)
t

(6) div 0 rot (8)
t

∂
= = −

∂
∂

= = −
∂

HD E

DH H

µ



26

Substituting (3) into (5)
x y zi n(k x k y k z) i(n )

xe i n k e etc. therefore
x

div 0 in

⎡ ⎤+ +⎣ ⎦∂
=

∂
= = ⋅

k r

D k D

i

And, similarly, substituting (2) into (6) i n 0⋅ =k H
Therefore D and H must be orthogonal to k. 
Inserting (2) and (3) in (8)   i n i× = −k H Dω

Therefore form the term indicated in the figure.  , ,D H k

D
G

H
G

S
G

E
G

k
G
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Inserting (1) and (2) in (7) 0i n i× =k E Hω µ

therefore H must be orthogonal to the plane E, k
and E must stay in the plane D, k. Also the Poynting
vector lies in the plane D, k. If the medium is 
electrically isotropic D and E would be parallel and 
also k and S would be parallel. In the anisotropic 
medium D and E form an angle and the wave 
propagation and the direction of the energy 
propagation are not in the same direction.

= ×S E H

D
G

H
G

S
G

E
G

k
G
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i n i× = −k H DωFrom 

one may see that the modulus of H is:
DH (1)

n k
=

ω

If E⊥ is the component of E orthogonal to k, from 

0i n i× =k E Hω µ

we have 0E H
n k⊥ =

ω µ

That, taking into account (1), gives
2

0
2 2 2

0

1E
n k n⊥ = =D Dω µ

ε
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If s is the unit vector of k we can write

2
0

1( )
n

− ⋅ =E s E s D
ε

where            is the component of E parallel to k.  s ⋅E
Therefore 

( ) E .⊥− ⋅ =E s E s
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DETERMINATION OF THE POLARIZATION

Let us consider a wave propagating f.e. in the 
direction z. If its electric field is parallel to the 
direction x, it induces only a polarization Px

x 0 xx x x 0 x xx 0 xP E D E ( 1) E= = − = −ε χ ε ε ε

which is determined by εxx, that is a refraction index 
nx.

On the contrary, if the wave is polarized with the 
electric field that vibrates along y, it finds a refractive 
index ny.
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Every non polarized wave propagating in the direction 
z can be decomposed into two components with 
polarization parallel to directions x and y. These two 
components travel in the crystal with different 
velocities (different n).

The uniaxial crystals are characterized by a main axis 
(conventionally the axis z) along which the dielectric 
constant is εzz, but perpendicularly to which the 
dielectric constant does not depend on the direction 
(that is εxx = εyy). Therefore these crystals have only 
two main refractive indices.
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The direction z is unique because the propagation 
velocity is independent from the polarization. It is 
called optical axis. The difference between nx(=ny) 
and nz is a measure of the birefringence which is 
called positive or negative depending on nz – nx > 0 or 
lower than 0. 

Crystals with lower symmetry have two optical axis 
and they are called bi-axial. For them nx ≠ ny ≠ nz.
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UNIAXIAL CRYSTALS
2 2 2

2 2 2
x y z

x y z 1
n n n

+ + =

This equation represents an ellipsoid with semi axis 
nx, ny, nz. For a uniaxial crystal nx = ny ≠ nz and the 
ellipsoid has circular symmetry around the axis z, as 
shown in the figure.

The index nx(=ny) is indicated as the ordinary
refractive index n0 and nz is called extraordinary index 
ne. The ellipsoid is rewritten

2 2 2

2 2 2
0 0 e

x y z 1
n n n

+ + =
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The normal plane to r intercepts the ellipsoid in an 
ellipse (outlined in the figure). The two permitted 
directions of polarization are parallel to the axis of this 
ellipse and therefore they correspond to OP and OQ.

If a light beam propagates 
in a direction r that forms an 
angle ϑ with the optical axis 
(z), because of the circular 
symmetry we can choose 
the axis y coincident with 
the projection of r on the 
plane xy.
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The two polarized waves along these directions have 
refractive indices given by OP = n0 and OQ = ne(ϑ). In 
the case of the extraordinary wave, the plane of 
polarization varies with ϑ and so does the refractive 
index.

With reference to the figure which shows the 
intersection of the ellipsoid of the indices with the 
plane yz

o y

r

Q

θ

z

y

z

θ

0n
en ( )θ

en
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2 2 2
e en ( ) z y and z n ( )sin= + =ϑ ϑ ϑ

Substituting in the equation of the ellipse
2 2

2 2
0 e

y z 1
n n

+ =

we have 2 2

2 2 2
e 0 e

1 cos sin
n ( ) n n

= +
ϑ ϑ

ϑ

Therefore for ϑ = 0°, that is for propagation along the 
optical axis, ne(0°) = n0, while for ϑ = 90°, ne (90°) = ne.

θ
o y

r

Q z

y

z

θ

0n
en ( )θ

en
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The two polarizations which can be propagated 
correspond to the maximum and minimum refractive 
index given by the ellipsoid of indices (for positive 
crystals ne > n0, for negative crystals ne < n0). For the 
propagation parallel to the optical axis (direction z) 
there is no birefringence, because the section of the 
ellipsoid perpendicular to the direction z is a circle.

For a propagation perpendicular to the optical axis, 
i.e. in the direction x, the birefringence will be 
maximum and the allowed polarization will be parallel 
to the axis y with index n0 and parallel to axis z with 
index ne.

o y

r

Q

θ

z

y

z

θ

0n
en ( )θ

en
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REFLECTION AND REFRACTION OF PLANE WAVES

We now study the phenomenon of the refraction of a 
monochromatic plane wave at the plane surface of 
separation between an isotropic medium and an 
anisotropic one. Let us indicate with ki the wave vector 
of the incident field, with ϑi the corresponding angle of 
incidence and with ni the refractive index of the 
isotropic medium. Let us call π the pane of separation 
between the two media. The situation is shown in the 
figure, in which the figure plane coincides with the 
incidence plane.

ISO

ANISO

k

iϑ
ik

ϑ

π

ni
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To find the refracted wave, the boundary conditions on 
π have to be imposed. Because these conditions must 
be satisfied in every point of π and at every time, it is 
necessary that the phase distributions produced by 
the incident and the refracted wave be equal, that is 

(1)⋅ − = ⋅ −k r k ri in t n tω ω

for every point r belonging to π. We have indicated 
with k and n the wave vector and the refractive index 
for the refracted wave, respectively. Since the phase 
distribution of the incident wave is, at every time, 
independent from the coordinate orthogonal to the 
plane in fig. 1, the same must be true for the refracted 
wave.
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Therefore k must stay in the incidence plane. If ϑ is 
the angle between k and the normal to π and taking 
an abscissa ξ along p, eq.(1) becomes

sin sin (2)− = −i i in k t nk tξ ϑ ω ξ ϑ ω
that is

sin sin (3)=i in nϑ ϑ

having taken into account that ki and k have the same 
length. As we can see, relation (3) is the same law of 
Snell-Cartesio valid for the refraction between two 
isotropic media.

ISO

ANISO

k

iϑ
ik

ϑ

π

ni
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However there are two great differences. The first 
is that in the second member of (3) both n and ϑ
are incognita. In fact we know that n depends on 
the direction of k, indeed for every direction of k in 
general two values of n exist to which two possible 
directions for D (orthogonal to k) are associated. 
Therefore (3) alone, it is not sufficient to find the 
refracted waves. 
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The second difference is that, as we saw before, 
the Poynting vector S can be non collinear to k.
Therefore if, according to the concepts of geometric 
optics, we associate the directions of the light rays 
to those in which the energy propagates, that is to 
the directions of S, the law of Snell-Cartesio, which 
is true for the wave vectors, cannot be valid for the 
rays.
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The disagreement with the law of Snell-Cartesio can 
regard another aspect too. We know that S must be 
found in the plane of k and D. In general, this plane 
does not coincide with the incidence plane. 
Therefore, the rays may not belong to the incidence 
plane, in contrast with what is predicted by the law of 
Snell-Cartesio.



44

Since (3), alone, does not characterize the refracted 
waves, we must add to it the law that expresses the 
relation between n and ϑ. A possible procedure is the 
following. We draw in the incidence plane the vector 
niχi, where χi is the unit vector of the incidence wave, 
so that it ends in a point, we say O, of the surface of 
separation between two media (see fig.2). 

O
A

A′
iϑ

1ϑ

2ϑ1P

2P

1 1n χ

2 2n χ

1c

2c

Fig. 2

isotropic medium

anisotropic medium
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The projection OA of niχI on this surface, has the 
length nisinϑI and therefore it equals the first member 
of (3). Let us consider now, in the semi space of the 
anisotropic medium, the surface built as follows. Along 
every direction outgoing from O we mark the two 
points whose distance from O equals the possible 
values for the refractive index met by a plane wave 
having the wave vector along the direction line. We 
call surface of indices (not to be confused with the 
ellipsoid of indices) the two surfaces so obtained.

O
A

A′
iϑ

1ϑ

2ϑ1P

2P
2 2n χ

1c

2c



46

Let us suppose that c1 and c2, in fig.2, are the 
intersection curves between this surface and the 
incidence plane. Now we take the point A′, symmetric 
of A compared with O and we trace the perpendicular 
to A′ to the plane of separation between the two 
media. This straight line meets the surface of indices 
in two points P1 and P2. The segments OP1 and OP2
give the directions of the two refracted plane waves. 

O
A

A′
iϑ

1ϑ

2ϑ1P

2P
2 2n χ

1c

2c
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To see this, let us call n1 and n2 the refractive indices 
given by the lengths OP1 and OP2 and call ϑ1 and ϑ2
the angles formed by OP1 and OP2 with the normal to 
the plane of separation. We observe that the 
projections of OP1 and OP2 on the plane, which are 
n1sinϑ1 and n2sinϑ2, both are equal to OA′ whose 
length is, for construction, equal to n1sinϑ1. 
Therefore, the waves that in the isotropic medium 
proceed along the unit vectors χ1 and χ2 of OP1 and 
OP2 satisfy eq.(3). 

O
A

A′
iϑ

1ϑ

2ϑ1P

2P
2 2n χ

1c

2c
sin sin . (3)i in n=ϑ ϑ
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NONLINEAR SUSCEPTIBILITY

Dipole moment per unit volume or polarization in 
the linear case

The general form of polarization in a nonlinear 
medium is 

jijii EPP χ+= 0

"++++= lkj
)(

ijklkj
)(

ijkj
)(

ijii EEEχEEχEχPP 3210
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JUSTIFICATION OF THE PRESENCE OF A 
NONLINEAR RESPONSE

If the force exercised by the electric field 
of the wave becomes comparable with 
the Coulomb’s force between the electron 
and the nucleus, the oscillator is 
perturbed (anharmonic oscillator) and, 
at the lower level of the perturbation, we 
can write:

2 2
0x(t) x(t) x(t) Dx (t) (e / m)E(t) (4)+ σ + ω + = −�� �

x
E
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The solution of eq.(4) can express as the sum of two 
terms (1) (2)x(t) x (t) x (t) (5)= +

in which x(1)(t) is obtained solving eq.(4) without the 
anharmonic term, whereas x(2)(t) is considered a 
small correction of the solution at the first order x(1)(t) 
and is obtained utilizing x(1)(t) in the anharmonic term

2(2) (2) 2 (2) (1)
0

eE(t)x (t) x (t) x (t) D x (t) . (6)
m

⎡ ⎤+ σ + ω = − − ⎣ ⎦�� �

In this way, considering the case in which the forcing 
electric field is formed by the sum of two fields at 
different frequencies

1 2j t j t
1 1 2 2 1 2

1E(t) E cos t E cos t E e E e c.c. (7)
2

− ω − ω⎡ ⎤= ω + ω = + +⎣ ⎦
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We have the solution at the first order

1 2j t j t(1) (1) (1)
1 2

1x (t) x ( )e x ( )e c.c. (8)
2

− ω − ω⎡ ⎤= ω + ω +⎣ ⎦

and subsequently the solution at the second order, 
solving eq.(6) with the use of (8) is

( ) ( ) ( ) ( )

( ) ( )

1 2 1 2

1 2

j t j t(2) (2) (2)
1 2 1 2

j2 t j2 t(2) (2)
1 2

1x (t) [x e x e
2
x 2 e x 2 e c.c] (9)

− ω +ω − ω −ω

− ω − ω

= ω + ω + ω − ω +

+ ω + ω +

in which

( ) ( ) ( ) ( ) ( )

( ) ( )

2
(2) 1 2

1 2 2 2 2 2 22
0 1 1 0 2 2 0 1 2 1 2

2 2
(2) k

k 22 2 2 2
0 k k 0 k k

1 D(e / m) E Ex
2 j j j

1 D(e / m) Ex (2 ) ; k 1,2. (10)
2 j 4 j

ω ± ω = − ⋅
⎡ ⎤ω − ω + σω ω − ω + σω ω − ω ± ω + σ ω ± ω⎣ ⎦

⋅
ω = − =

ω − ω + σω ω − ω + σω
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Therefore the solution of the second order brings to 
the generation of oscillations at a frequency 
different from the ones of the forcing field. In 
particular, it is possible to have frequencies equal to 
the sum or to the difference of the field frequencies 
or to the double (second harmonic). Moreover, we 
emphasize that the previous formulas remain valid 
also if just a single forcing field ω is present. In this 
case x(2)(t) will be the sum of a second harmonic 
term (2ω) with a null pulsation term (term of optical 
rectification). 
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Now, remembering the expression for the medium 
polarization, we can write 

(1) (2)P(t) Ne x (t) x (t) (11)⎡ ⎤= − +⎣ ⎦
where N is the number of dipoles for volume unit; that 
is

L NLP(t) P (t) P (t) (12)= +

Which, compared with (10)

(1)
L 0

(2)
NL

P E

P E E. (13)

= ε χ

= χ ⋅

( ) ( ) ( ) ( ) ( )

( ) ( )

2
(2) 1 2

1 2 2 2 2 2 22
0 1 1 0 2 2 0 1 2 1 2

2 2
(2) k

k 22 2 2 2
0 k k 0 k k

1 D(e / m) E Ex
2 j j j

1 D(e / m) Ex (2 ) ; k 1,2. (10)
2 j 4 j

ω ± ω = − ⋅
⎡ ⎤ω − ω + σω ω − ω + σω ω − ω ± ω + σ ω ± ω⎣ ⎦

⋅
ω = − =

ω − ω + σω ω − ω + σω

permits to write
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SECOND HARMONIC PRODUCTION
The nonlinear properties in the optical region have 
been demonstrated for the first time in 1961 by 
Franken et al. during an experiment of second 
harmonic generation. Sending red light of a ruby 
laser (λ = 6.943 Å) onto a crystal of quartz, they 
observed ultraviolet light. 
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To describe the phenomenon, it is necessary to 
observe that in many crystal materials the nonlinear 
polarization depends on the direction of 
propagation, on the polarization of the electric field 
and on the orientation of the optical axis of the 
crystal. Since in such materials the vectors P and E
are not necessarily parallel, the coefficient χ is a 
tensor. The second order polarization can be written 
as (2)

ijk j ki
j,k

P d E E (14)= ∑

where i, j, k represent the coordinates x, y, z. The 
main part of the coefficients dijk, however, are usually 
zero and so only a few of them must be considered.
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Only the non-centrosymmetric crystals can have a 
non null tensor dijk. In facts, let us consider an 
isotropic crystal. In this case dijk is independent from 
the direction and therefore it is constant. If now we 
invert the direction of the electric field, also the 
polarization must change sign, that is 

(2) (2)
ijk j k ijk j ki iP d ( E )( E ) d E E P .− = − − = = +∑ ∑

It is clear that, not being able to be , dijk
must be null. 

Moreover, in materials for which d ≠ 0, since no 
physical meaning cannot be assigned to an 
exchange of Ej with Ek, it must be dijk = dikj.

(2) (2)
i iP P− = +
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Now if we consider the Maxwell equations writing

0D E P (15)= ε +
we have

0
D E Prot B j j
t t t

Brot E . (16)
t

∂ ∂ ∂
= µ + µ = µ + µε + µ

∂ ∂ ∂
∂

= −
∂

The polarization can be written as the sum of a linear 
term plus a nonlinear one

0 L NLP E P (17)= ε χ +

where, in case of materials with second order 
nonlinearity is, f.e. 

( )NL ijk j kiP d E E . (18)= ∑



58

So eq.(16) can be written, assuming j = 0

NLPErot B (19)
t t

∂∂ε
= µ + µ

∂ ∂

from which
22

2 NL
2 2

PEE . (20)
t t

∂∂
∇ = µε + µ

∂ ∂

If we consider the unidimensional case of propagation 
along a direction z, we have

22 2
NL ii i

2 2 2
(P )E E . (21)

z t t
∂∂ ∂

= µε + µ
∂ ∂ ∂
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Let us consider now three monochromatic fields with 
frequencies ω1, ω2, ω3 using the complex notation

( )

( )

( )

1 1z1

2 2z2

3 3z3

j t k( )
1ii

j t k( )
2kk

j t k( )
3 jj

1E (z, t) E (z)e c.c.
2
1E (z, t) E (z)e c.c.
2
1E (z, t) E (z)e c.c. (22)
2

ω −ω

ω −ω

ω −ω

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

where the indices i, j, k represent the components x 
or y.

The polarization at frequency ω1 = ω3 - ω2, for 
example, from (18) and from (22) results

( ) ( )[ ]3 2 3 21 j t k k z( )
ijk 3 j 2ki

j,k

1P d E (z)E (z)e c.c. (23)
2

ω −ω − −ω ∗= +∑
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Substituting eqs.(22) into (21) for the component E1i, 
it is necessary to calculate

( )[ ]
1( )2 2

1i 1 12 2
E 1 E (z)e t k z c.c. . (24)

2z z

ω∂ ∂
= ω − +

∂ ∂

If we assume
2

1i 1i
1 2

dE d Ek (25)
dz dz

�

we have
( )1

1 1

( )2
j t k z2 1ii

1 1i 12
E 1 dE (z)k E (z) 2 jk e c.c. (26)

2 dzz

ω
ω −∂ ⎡ ⎤= − + +⎢ ⎥∂ ⎣ ⎦

with similar expressions for
2 3

( )2 ( )2
j k
2 2

E Eand .
z z

ω ω∂ ∂
∂ ∂
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Finally, substituting (26) and (23) into (21) we have

( )3 2 1j k k k z01i 1
ijk 3 j 2k

1

dE (z) j d E E e c.c. (27)
dz 2

− − −∗µω
= − +

ε ∑

and in analogous way

( )

( )

1 3 2

1 2 3

j k k k z02k 2
ijk 1i 3j

2

3j j k k k z3 0
ijk 1i 2k

3

dE j d E E e c.c.
dz 2

dE
j d E E e c.c.. (28)

dz 2

∗
− − +∗

− + −

µω= +
ε

ω µ
= − +

ε

∑

∑

The second harmonic generation is obtained 
immediately from (27) and (28) for the case of ω1 = ω2
and  ω3 = 2ω1. Therefore it is enough consider only, 
f.e., (27) and the last one of (28).
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To further simplify the analysis we can assume that 
the power lost by the frequency ω1 (fundamental) is 
negligible, and therefore

1idE 0. (29)
dz

�

So it is sufficient to consider just the last one of (28)

3j j k z0
jik 1i 1k

dE
j d E E e (30)

dz
∆ ⋅µ

= − ω
ε ∑

where 3
1 2

ω
ω = ω =

and ( j) (i) (k)
3 1 1k k k k . (31)∆ = − −

( )

( )

1 3 2

1 2 3

j k k k z02k 2
ijk 1i 3 j

2

3j j k k k z3 0
ijk 1i 2k

3

dE j d E E e c.c.
dz 2

dE
j d E E e c.c.. (28)

dz 2

∗
− − +∗

− + −

µω
= +

ε

ω µ
= − +

ε

∑

∑
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In eq.(31)    is the constant of propagation of the 
beam at ω1 polarized in the direction i. The solution of 
(30) for E3j(0) = 0 for a crystal of length L is

(i)
1k

j k L
0

3 j jik 1i 1k
e 1E (L) j d E E

j k

∆ ⋅µ −= − ω
ε ∆∑

or
( )

( )

22 22 20
3 j jik 1i 1k 2

sen k L / 2
I(L) E (L) d E E L . (32)

k L / 2
∆ ⋅µ

= = ω
ε ∆ ⋅

∑
According to (32) a requirement for an efficient 
second harmonic generation is that ∆k = 0, that is 
from (31) with ω3 = 2ω, ω1 = ω2 = ω

( )2 ( )k 2k . (33)ω ω=

( j) (i) (k)
3 1 1k k k k . (31)∆ = − −
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If ∆k ≠ 0, the second harmonic wave generated at a 
generic plane z1 which propagates until another 
plane z2 is not in phase with that generated in z2. 
This generates an interference described by the 
factor ( )

( )

2

2
sen k L / 2

k L / 2
∆ ⋅

∆ ⋅

in (32).

The condition (33) is never practically satisfied 
because, due to dispersion, the refractive index 
depends on ω.

( )
( )

22 22 20
3 j jik 1i 1k 2

sen k L / 2
I(L) E (L) d E E L . (32)

k L / 2
∆ ⋅µ

= = ω
ε ∆ ⋅

∑

( )2 ( )k 2k . (33)ω ω=
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Therefore, we have

( )(2 ) ( ) (2 ) ( )2k k 2k n n (34)
c

ω ω ω ωω
∆ = − = −

being
( )

( ) nk (35)
c

ω
ω ω

=

and therefore
k 0.∆ ≠
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However, it is possible to make ∆k = 0 (phase-
matching condition) using various skills; the most 
used of which takes advantage from the natural 
birefringence of the anisotropic crystals. From (34) we 
can see that ∆k = 0 implies 

(2 ) ( )n n (36)ω ω�

so that the refractive indices of second harmonic and 
of fundamental frequency have to be equal.

In the materials with normal dispersion, the index of 
the ordinary and extraordinary wave along a direction 
increase with ω, as it is shown in the table.

( )(2 ) ( ) (2 ) ( )2k k 2k n n (34)
c

ω ω ω ωω
∆ = − = −
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1,4503081,4600442,0000

1,4514951,4645551,9000

1,4526361,4688341,8000

1,4537351,4728901,7000

1,4547971,4767291,6000

1,4558291,4803631,5000

1,4568381,4838031,4000

1,4578381,4870641,3000

1,4588451,4901691,2000

1,4598841,4931471,1000

1,4609931,4960441,0000

1,4622341,4989300,9000

1,4637081,5019240,8000

1,4656011,5052350,7000

1,4682671,5092740,6000

1,4724861,51449280,5000

1,4802441,5244810,4000

1,4981531,5455700,3000

1,5639131,6226300,2000

λ, µm                                              Index
no (ordinary beam)                      ns (extraordinary beam)
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This makes it possible to satisfy eq.(36) when both 
the beams are of the same kind (that is both 
extraordinary or ordinary). Or (36) can be satisfied, in 
some cases, using an ordinary and an extraordinary 
wave.

In order to illustrate this point we can consider the 
dependence of the refractive index of the 
extraordinary wave in a uniaxial crystal, from the 
angle ϑ between the direction of propagation  and the 
optical axis (z) of the crystal. 

2 2

2 2 2
s 0 s

1 cos sen . (37)
n ( ) n n

ϑ ϑ
= +

ϑ
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If an angle ϑn exists for which
In this case if the fundamental beam (frequency ω) is 
propagated along ϑn as a ordinary beam, the second 
harmonic beam will be generated along the same 
direction as an extraordinary beam. This situation is 
shown in the figure.

(2 ) ( )
s 0n nω ω< (2 ) ( )

s n 0n ( ) n .ω ωϑ =
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The angle ϑn is determined by the intersection 
between the sphere (shown as a circle in the figure) 
which corresponds to the index surface of the 
ordinary beam to ω with the index ellipsoid of the 
extraordinary beam. The angle ϑn, for negative 
uniaxial crystals (that is for crystals for which
is given by

(2 ) ( )
s 0n nω ω<

2 2
n n
2 2 2(2 ) (2 ) ( )

0 s 0

cos sen 1 (38)
n n nω ω ω

ϑ ϑ
+ =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
that is

2 2( ) (2 )
0 02

2 2(2 ) (2 )
s 0

n n
sen . (39)

n n

− −ω ω

− −ω ω

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦ϑ =
⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦
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According to (32), if we deviate from the matching 
condition, for a fixed length L of the nonlinear crystal, 
we have a reduction of the second harmonic power 
generated by the factor

( )
( )

2(2 )

(2 ) 2
max

sen k L / 2P . (40)
P k L / 2

ω

ω
∆ ⋅

=
∆ ⋅
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This relation can be easily verified varying the angle  
σ = ϑ - ϑn between the direction of index matching 
and the propagation direction.

A diagram of the second harmonic power according 
to σ is shown in the figure (where the theoretical 
curve sen2 x/x2 is also shown).
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Nonlinear Optical Interactions

• The E-field of a laser beam

• 2nd order nonlinear polarization 

C.C.)(~
+= − tiEetE ω

)C.C.(2)(~ 22)2(*)2()2( ++= − tieEEEtP ωχχ

ω
ω

ω2
)2(χ
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2nd Order Nonlinearities 

• The incident optical field

• Nonlinear polarization contains the following terms

..)(~
21

21 CCeEeEtE titi ++= −− ωω

(2) 2
1 1

(2) 2
2 2

(2)
1 2 1 2

(2) *
1 2 1 2

(2 )                    (SHG)

(2 )                    (SHG)

( ) 2         (SFG) summ frequency generation

( ) 2         (DFG) difference frequency generation

(0)

P E

P E

P E E

P E E

P

ω χ

ω χ

ω ω χ

ω ω χ

=

=

+ =

− =

= (2) * *
1 1 2 22 ( )   (OR)E E E Eχ +



75

1ω

2ω
)2(χ

1ω

2ω
213 ωωω +=

Sum Frequency Generation

1ω
3ω

2ω
Application:
Tunable radiation in the 
UV Spectral region.

Application:
Tunable radiation in the 
UV Spectral region.
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1ω

2ω
)2(χ

2ω

1ω
213 ωωω −=

Difference Frequency Generation

1ω
3ω

2ω
Application:
The low frequency 
photon,      amplifies in 
the presence of high 
frequency beam      . This 
is known as parametric 
amplification.

Application:
The low frequency 
photon,      amplifies in 
the presence of high 
frequency beam      . This 
is known as parametric 
amplification.

2ω

1ω
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Phase Matching 

ω
)2(χ

ω2

•Since the optical (NLO) media are dispersive,
The fundamental and the harmonic signals have
different propagation speeds inside the media. 

•The harmonic signals generated at different points 
interfere destructively with each other. 

•Since the optical (NLO) media are dispersive,
The fundamental and the harmonic signals have
different propagation speeds inside the media. 

•The harmonic signals generated at different points 
interfere destructively with each other. 
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Third Order Nonlinearities

When the general form of the incident electric field is in the 
following form,

The third order polarization will have 22 components

tititi eEeEeEtE 321
321)(~ ωωω −−− ++=

3,2,1,,),2(),2(

)(),(,3,

=−+

−+++

kjijiji

kjikjiii

ωωωω

ωωωωωωωω
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The Intensity Dependent 
Refractive Index 

• The incident optical field

• Third order nonlinear polarization

C.C.)()(~ += − tieEtE ωω

)(|)(|)(3)( 2)3()3( ωωωωωωχω EEP −+==
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)(|)(|)(3)()( 2)3()1(TOT ωωωωωωχωχω EEEP −+=+=

The total polarization can be written as

One can define an effective susceptibility 

)3(2)1(
eff |)(|4 χωπχχ E+=

The refractive index can be defined as usual

eff
2 41 πχ+=n
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By definition

where

20 |)(|
2

ω
π
EcnI =

20 |)(|
2

ω
π
EcnI =

Innn 20 +=

)3(
2
0

2

2
12 χπ
cn

n =
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Intensity dependentlargelargePhotorefractive Effect

10-310-410-6Thermal effects

10-810-810-10Saturated Atomic
Absorption

10-910-1210-14Electrostriction

10-1210-1210-14Molecular Orientation

10-1510-1410-16Electronic Polarization

Response time (sec)(esu)n2 (cm2/W)Mechanism )3(
1111χ

Typical values of nonlinear refractive index
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20 ns0.04GaAs/GaAlAs
(MQW)

Very fast(1-100)×10-14Optical glass

30 ps10-8CdSxSe1-x doped 
glass

20 ns6.5×10-4GaAs (bulk room 
temperature)

2  Ps1.9×10-12CO2

1.2×10-17Air

Response 
timeχ(3)Material

Third order nonlinear susceptibility of some material




