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The Raman effect has its origin in

which occur during the light scattering
process. When a light quantum with any frequency v,
(wavelength A,) and energy hv, Iinteracts with a
molecule in its ground state n or in any of its excited
stationary states k (fig.1) the energy of the system is
increased to hv, + E_ or hv, + E,.
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Fig.1l. An energy level diagram representing the quantum theory of Raman and Reyleigh scattering. The solid
arrows indicate the molecular transitions while the broken arrows represent virtual transitions. The resultihg
spectrum is shown at the bottom.




If the molecule possesses a stationary state with the
energy hvy + E, or hy, + E,, the incident light
quantum is absorbed raising the molecule to this
excited state. After a certain time, a quantum can be

with the same frequency v, or a changed
frequency, depending on whether the molecule
returns to its original state or to a different state. This

process is called

hvg=hv,-AE hv,s=hv,tAE

A AE

Stokes Anti-Stokes
Fluorescence




If the molecule returns to its original state, no energy
has been taken from the light quantum nor has
energy been given to it. Therefore, the frequency of
the quantum remains unchanged and we have

Rayleigh




If the molecule goes over to another stationary state,
it has either taken energy from the light quantum or
given up part of its energy and the frequency of the
light quantum is changed. As a consequence, t
frequencies vy — v, and vy + v, appear in t
scattered light and we have the

hvs=hv,-AE hv_ s=hv,+AE

A=
Anti-Stokes

anti-Stokes Rayleigh

Vo
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Figure 18.2 The spectrum of the Stokes radiation
scaltersd by benzene. The line on the extreme left 1s
the {greatly attenuatedy exciting Hge line at
22 938 cm~' (4358 A) which is the strongest ling 1n the
visible emussion spectium of Hg. The numbers on top
give the downward shift in frequepcy {in cm '} thus
corresponding to the vibrational frequencies, They
are preceded by letiers (ndicating the parent Hg line.
The f-992 hne is due 10 the f line of He at 22,995

2Im



heue = oy — ) Rt ag
= hitw, + w)

e o l

v =0

{d)
—— —FﬂrI'-'-l-‘H"-' S S—— —— T"'—
Fivg = Aiio, — )

hm] l:il_

Figure 18.3 {4) A Stokes scaltering in which a laser photon ut w i3
absorbed while ¢ Stokes {w — w.) photon is created along with a vibranonz!
(r=1) guantun. (b) An anti-Stokes scuttering in which a laser photon ul w,
and a vibrational (w,’ quanium are absorbed, while a photon at o, 4 w, is
created. (0) A process in which the presence of laser radmgon 4t s
stimulates the absorption of Stokes photons at wy — w,. thit is. the ruverse
ol L.




The intensity of scattered light at v, = v, IS given by
I(VO r Vnk) — NI(VO)h(VO - Vnk)Ank’ (1)

where the transition probability A, for a molecular
transition n < k during the scattering process is
defined as

\ 4
Anti-
Stokes

c is the velocity of light, h is Planck’s constant, r
represents any one level of a complete set of
electronic levels, M, is the matrix element of the
transition n < r, E is the electric field of the light
wave, N is the number of molecules in the initial state

and I(v,) the intensity of the incident radiation. !




For k = n these equations apply to Rayleigh
scattering.

The angular dependence of the scattered light
intensity is given by 1(0) = I(vy)(1+ cos?0)/2 where 6
IS the angle between the incident and scattered light.




Equations (2) and (3) show that the probability for a
Raman transition from a state n to a state k is
determined by the sum over all states r of products of
transition moments from the state n to some other
state r and from the state r to the state k. Thus it can
be seen that the Raman selection rules differ from the
rules governing absorption and emission of dipole

radiation: the former depend on the product of
transition moments M_. M, and the latter depend only
on the transition moments M_. or M.,




The explicit Raman selection rule is that only levels
having eigenfunctions of the same symmetry can
combine with one another.




In the scattering formula for molecules in their
ground electronic states under certain conditions
(which are generally always fulfilled in experiments),
the induced dipole moment ., in eq.(3) can be
replaced by

where E Is the electric field vector of the light wave
and a Is the molecular polarizability tensor.




The transition probabilities and therefore intensity and
selection rules are determined by integrals of the form

[ oy ]kn = j\lfzaxv\l’kdt’ (4)

where v, and y, are the time-dependent wave
functions of the initial and the final states, oy is one
of the components of the polarizability tensor of the
molecule referred to space-fixed axes and the

Integration is over all space. The simplification
iIntroduced by the polarizability theory is that [oy/J<" in
eqg.(4), and hence ,,, depend on knowledge of the
Initial and final states only. According to eq.(4), it is
necessary to know the form of the wave functions v,
v, and the dependence of the polarizability on the
molecular structure.
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The polarizability varies with the vibrational and
rotational motions of a molecule. For vibrational
motions of infinitesimal amplitudes, the polarizability
can be represented by an expansion in terms of the
3N-6 normal coordinates q;

3N=6/ 3¢,
Olyy = Olyy + Z
-

ijqj + higher terms  (5)
aq;

where the six components a,, are expressed in a
molecule-fixed system (xyz).




Whether a particular vibration is Raman-active or
Inactive can be determined by considering the
changes in the polarizability as the vibrating molecule
goes through its equilibrium position. Also, an
estimate can be made of whether the motion results
In a change in the magnitude of the derivative of the
polarizability (associated with totally symmetric

vibrations) or in the anisotropy of the derivative of the
polarizability (usually associated with antisymmetric
vibrations).




If the higher-order terms in the polarizability (eq.5) or
In the potential energy are considered, that is if
anharmonicity Is present, then overtone and
combination frequencies can also occur (the second-

order Raman spectrum).

3N_6(80L

ijqj + higher terms  (5)
|

(Xxy — O(,Xy + Z]; aq




But these are usually very much weaker than the fundamentals.
On the other hand, in some crystals, f.e. the alkali halides, the
(the first-order Raman spectrum) is
by symmetry and only the very weak second-order

spectrum is observed.

Many types of vibrational bands can occur in the Raman effect
(some of which may not occur in infra-red absorption) and their
occurrence or nonoccurrence in the Raman spectrum may be
used to determine the molecular symmetry or point group of
molecules.

All totally symmetric vibrations are Raman-active.
Since all molecules have at last one totally symmetric
vibrations, all molecules will exhibit a vibrational
Raman spectrum.




For , the polarizabllity is expressed
In @ space-fixed coordinate system (XYZ) in terms of
the polarizability components along the xyz axes
fixed in the molecule. For example
Oy = D 0Ly COS(X, X)cos(y,Y).  (6)
Xy

The rotational selection rules are determined by the
NENDEEIEINERIE For the special case of the

rigid nonlinear molecule the selection rules are AJ =
0, £2.

Moreover, transitions are only possible if the
polarizability ellipsoid is , this Is a general
condition for all molecules and holds for pure
rotational transitions as well for vibration-rotational

transitions. ”




A very simple explanation of the Raman effect can be
given on a classical base.

Let us consider a simple diatomic molecule. If it is
irradiated with monochromatic light of frequency v,

the electrons are periodically shifted and an electric
moment is induced.

i E = Ejcos2nvt

the induced moment is

M = oayE,cos2nvt

where o IS the polarizability that is a measure of the
facility with which the charge distribution of the
molecule can be deformed.

18




Let us suppose that the molecule vibrates along the
line joining the nuclei, with a frequency v,. The
polarizability will change as a function of the distance
X between the nuclei and if x is small

0oL = Olg + 0Ly X

If the iInduced motion is harmonic

X = X, C0S2mvqt




The induced moment of the vibrating molecule is

M = aE = (o + 0oy X, C0s27mv,t ) E, cos 2mvt

= ayE,cos2nvt + %oclxo Eq{cos2m(v + vy )t +cos2n(v — v;)t}

The diffused light now consists of the Rayleigh

radiation and two new frequencies v * v, that are the
Raman frequencies.

In order that these frequencies exist it must be
oy #0

In other words, the change of polarizability during a

molecular vibration is responsible for the Raman
effect.




This selection rule is very different from the one which
governs an Infrared absorption in which it is
necessary that the vibration gives place to a change
of the electric moment.

According to the classic electrodynamics, every
motion in an atomic system which is connected with a
change of its dipole moment brings to the emission or
the absorption of radiation.




The motions connected with a change of the dipole
moment, and therefore that appear in the infrared, are
called

In the all the vibration modes
are connected with a change of the dipole moment.

In the there can be vibrations

during which the change of the dipole moment is
exactly zero and therefore they are inactive in the
iInfrared.




For example in CO,, during the totally symmetric
vibration v, the dipole moment remain zero as in the
equilibrium position and therefore this vibration is
Inactive in the infrared. Instead the vibrations v, and

v4 are active.




That

IS, the frequency shifts of the Raman lines, or their
displacements in units cm!, from any exciting line,
are constant. These frequency shifts are found to

equal the frequencies of rotational, vibrational and
electronic transitions of the scattering molecules.

If is incm™!' and hc =12.5.10° eV.cmwe have hv
in eV (1eV = 1.6 x 10-19 joule).




give rise to rotational lines In
the spectra of gases close to the exciting line, usually
within about 100 cm-1.

At high resolution, the individual rotational lines may

be observed.




give rise to vibrational bands
In the spectra of gases, liquids and solids, in the
frequency range 100 to about 4000 cm-'. For all
molecules, in general, strong line-like Q branches
(AJ = 0) are observed for those vibrations which
produce changes in the magnitude of the polarizability
derivative, I.e., for the totally symmetric vibrations (v,).
On the other hand, considerable broadening (in

liquids, e.g., V,, Vs, V,) or strong rotational wings (AJ =
+1, +2) are observed for those vibration which
produce changes in the anisotropy of the polarizability
derivative. In some liquids and solids the Raman
bands may be modified in frequency, intensity or
breadth from those Iin the gas phase because of
Intermolecular forces. -




Much Information is similar to that obtained by
Infrared spectroscopy and in part by microwave
spectroscopy.

. This valuable property arises
from the Dbasically different mechanisms which

produce the spectra:

J

while infra-red and microwave absorption occur
because of a change in magnitude or direction of the
electric dipole moment during the motion. 27




From measurements of the anti-Stokes lines the
temperature distribution of samples can be
determined. The intensity of these lines can, to a
good approximation, be modeled via the occupation
densities N, of the vibronic states m with frequencies
v, Which are given by the Boltzmann distribution:

—hv,, KT

therefore

I(VO + Vm) oc e—th/kT. (1)

1(vo)




Raman scattering provides a rich variety of
Information on the structure and composition of
matter, based on its vibrational fingerprints. The
vibrational information, which usually occurs at IR
frequencies, can be obtained by monitoring the
frequency shifts between excitation and scattered
light. As a scattering process, however, the Raman
effect Is . Typical Raman cross

sections per molecule range between 10-30 and 10-2°
cm?, with the larger values occurring during resonant
Raman conditions, when the frequency of light
happens to match an electronic transition in the
molecule. By comparison, fluorescence spectroscopy,
based on the absorption and emission light, exploits
effective cross sections between 10-77 cm? and 10-16

cm2. -




Other methods that are gaining interest among
researchers include

By using two lower-energy photons during the
scattering process, light can be shifted to longer
wavelengths than Is possible during one-photon
scattering. The Ilower-energy incident photons
penetrate  many materials more deeply and

simultaneously reduce the degradation of light-
sensitive samples.

So far, most two-photon applications are based on
fluorescence. IS a
potential tool for probing the chemistry of materials
using two-photon scattering.




In , two photons are
simultaneously scattered from a molecule. The
energies of the accompanying Raman signals are
thus shifted relative to twice the energy of the
excitation laser: hvyg = 2hv, - hv,, and hv, s = 2hv, +
hvy; the subscripts HS and HaS refer to hyper-
Raman Stokes and anti-Stokes photons.

A 4 A
Anti-Stokes Hyper-Raman scattering




Because two photon HRS follows different symmetry
selection rules than one-photon RS, the spectral
Information obtained in each can be complementary.




Another important application field is based on

Enhancement factors for the Raman signal of up to
10%° were reported for molecules on cluster surfaces.
This may enable single molecule detection via
Raman spectroscopy with very high selectivity.




In the 30 years since its discovery and confirmation,
surface-enhanced Raman scattering (SERS) has
matured into a powerful spectroscopic method that
exploits the interaction of light, molecules and metal
nanostructures to boost Raman signals high enough

— In some cases up to of magnitude — that
researchers can resolve the chemical structure of
materials, even at the single-molecule level.
Moreover, SERS has contributed to the development
of plasmonics and the related field of near-field optics,
which are revolutionizing optics and spectroscopy.




In essence, the light from a laser beam excites the
surface plasmons, which are collective oscillations of
conduction electrons. Those plasmons then radiate a

dipolar field. The coherent interaction of the incoming
electric field with the dipolar field leads to a
redistribution of electric-field intensities in areas
around the metal clusters.




A molecule nearby or absorbed on the metal feels an
enhanced excitation intensity. So its Raman-
scattered field is enhanced in the same way that the
Incident laser fields is. Indeed, one can liken the
metallic clusters to tiny antennas that enhance and
transmit the Raman-scattered light.

The enhancement depends on the type of metal, its
degree of roughness — the sizes and shapes of the
clusters that form — and the frequency of the incident
light.




SERS enhancement is particularly strong when both
laser and scattered fields are in resonance with the
surface plasmons. The frequency shift between the
laser and scattered light is usually small compared
with the width of the plasmon resonance. Therefore,
the laser and Raman-scattered fields increase by
about the same amount, and the signal power scales

roughly with the fourth power of the local optical-field
enhancement.




For a Raman cross section of 102 cm?, large
numbers of molecules are required to convert enough
laser photons to Raman photons to achieve a usable
signal. From 100 mW laser light focused to 1 um?, a
single molecule scatters only 10+ photons per
second. That means one would have to wait more
than an hour for a single Raman photon. Before the

advent of SERS, such estimates made single-
molecule Raman spectroscopy science fiction.




By virtue of the extremely high enhancement factors
obtainable in SERS, however, one can get insight into
an individual molecule’s intrinsic vibrational properties
and monitor its structural changes without resorting to
ensemble averages. Indeed, the structure-sensitive
detection of single molecules represents the ultimate
limit in chemical analysis.




The electron charges on a metal boundary can
perform coherent fluctuations which are called
surface plasma oscillations. The frequency o of these
longitudinal oscillations is tied to its wave vector k, by
a dispersion relation o(k,).




These charge fluctuations, which can be localized in
the z direction within the Thomas-Fermi screening
length of about 1 A, are accompanied by a mixed
transversal and longitudinal electromagnetic field
which disappears at (fig.1) and has its
maximum In the surface z = 0, typical for surface
waves. This explains their sensitivity to surface

properties.

digtectric

Fig.1 The charges and the electromagnetic field of SPs propagating on a surface in the x direction are shown
schematically. The exponential dependence of the field E, is seen on the right. H, shows the magnetic field in
the y direction of this p-polarized wave.




The field is described by

E=Ejexp[+i(kxtk,z—wt)] (D)

with + for z=0, - for z<0, and with K,, which
causes the exponential decay of the field E,.

The wave vector k, lies parallel to the x direction; k, =

2n/h,, Where A, is the wavelength of the plasma
oscillation.

digtectric
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Maxwell's equations yield the retarded dispersion
relation for the plane surface of a semi-infinite metal
with the dielectric function | | adjacent to a

medium ¢, as air or vacuum:

(2)

(3)

E digtectric
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The wave vector k, is continuous through the
iInterface. The dispersion relation (2) can be written as

If we assume besides a real o and ¢, that Z&SE48 we
obtain a complex with

jlz

For real k', one needs ¢, < 0 and which can be
fulfilled in a metal also in a doped semiconductor near
the eigen frequency; determined the internal
absorption. In the following we write k, in general
instead of k’.,. *




The dispersion relation (see fig.2) approaches the
light line at small k,, but remains larger than
so that the SPs cannot transform into light: it is a

“nonradiative” SP.

Fig.2. The dispersion relation of nonradiative SPs (—), right of the light line o = ck,; the retardation region
extends from k, = 0 up to about k, = 2n/A, (A, plasma wavelength). The dashed line, right of o = ck,,
represents SPs on a metal surface coated with a dielectric film (g,). Left of the light line, w(k,) of the radiative
SPs starts at o, (—). The slight modulation in the dashed dispersion curve comes from an eigen frequency in
a monomolecular dye dilm deposited on a Langmuir-Blodgett film (g,). 45




At large k, or

€ — —¢&, (7)

the value of m approaches

% " (8)
(D —
Pl1+e,

for a free electron gas where ®, is the plasma
frequency-\ with n the bulk electron density.

With increasing ¢,, the value of g, is reduced.




STIMULATED RAMAN SCATTERING

The model used in the analysis is as follows: the
Raman medium is taken as consisting of N harm
oscillators per unit volume, each o
representing one molecule. The oscil
independent of each other so that th
oscillators cannot support a wa
nonvanishing group velocity.
characterized by its positio
dimensional so that 6/0
vibrational coordinate




The equation of motion for a single oscillator is then

where vy is the damping constant chosen
observed spontaneous Raman scatteri
Av =v/27n, o, is the (undamped) res
m is the mass and F(z,t) is the dri



The driving term can be derived by considering the
electromagnetic energy in the presence of the
molecules. The electrostatic stored energy density |

that, using

can be written as



The force per unit volume of polarizable material is
oE/oX that after dividing by N, gives the force per
oscillator as

where the bar indicates averagin
periods since the molecule
optical frequencies.

This shows that
differential polari
vibration can



Our next problem is to show how the field induced excitation of
molecular vibration X(z,t) reacts back on the electromagnetic
fields.

The molecular vibration at ®, causes, according to
modulation of the dielectric constant ¢ at o,. This
phase modulation of any radiation field present
sidebands separated by w,.

Stated differently, a modulation of € at ®
vibrations, can lead to ener
electromagnetic fields separated |
®,, such as, for example, the |

Stokes



The total field is taken as the sum of the Stokes (®,)
and the laser field (o)

so that

Substituting (6) in (4) and then |
equation of motion, (1) gives

() =%80 (2—;‘)0 Bzt (@)

where



It follows from (7) that the molecular vibration is
driven at a frequency ® = o, - o, with a complex
amplitude

The polarization induced in the
at o4 Is



Our concern here is with the nonlinear polarization
term which is proportional to the product XE. Using
(5) and (9) in (10) it becomes

If we multiply the two terms in (11) we get
polarizations oscillating at

®q, My, 204 - ®, aNd 20, - ®4.

Let us concentrate first on the o, term.



where

The coefficient relating an induced polarizati
field is the susceptibility. From (13) we
Raman nonlinear susceptibility throu

so that



More generally we can characterize the effect of
induced molecular vibration by means of a fourth-
rank tensor

so that (14) is but a special case where .
W = O = 0.

Returning to (15) we define

where



and

where the approximation applies to the hig
y <o, that is usually the case (typically y <1C

The nonlinear Raman susceptibility |
as its linear counterpart. It is plo

) and quadrature (x"s.man) COMponents of the Raman nonlinear susceptibility as a
okes frequency, o,. (o, increases from right to left). 57

X Raman



The presence of a Raman polarization (14) at o, can
be accounted for by modifying the propagatio
constant as in (4) from k, to




The exponential gain coefficient is thus

and is positive since y"riman(®4)<0. Using (19
IS given as

By comparing (23) t
normalized Raman i



ANTI-STOKES SCATTERING

: can be

originating in the

. To treat the problem

S consider the o,

e Raman medium due to an




an Iidentical
 polarization by
ow E; is the high

)lacCe E2 by E3 and E1 by E2, (1)2 ol (1)1 by (1)3
2 result is




relative to

oo\ 2
8(2)N() E,|
oX Jo

8m[a)€ — (o, —031)2 —i(m,—o)y

} Ei(z) (13

constant exercised by the anti-Stokes

and the wave



We thus reach the conclusion that if one were
introduce anti-Stokes (o; = o, + ®,) radiation ir
Raman active medium in the presence of a
and in the absence of Stokes (o, = o, -
it would attenuate.

There exists, however, another ¢
at o,. It is obtained by taking

)t involve E; and can be viewed as
leband [(w, + (o, + ®)] due to a

of the dielectric constant “seen” by o, at
/en molecular frequency (o, - ®,). This term
5 as a source radiation at ;.
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If we Insert the spatial dependence int
polarization of (5) we find that

This term will generate a fi
dependence E,e ™" such t



Anti-Stokes radiation will thus be emitted in any
direction k5, that satisfies (7).

The resulting direction, ks, of the emitted &
beam is shown in fig.2. (It should be rec

struction for finding the direction of propagation, k,, of the anti-Stokes radiation.



This is the reason why anti-Stokes radiation is emitte
in the form of a conical shell with a half-apex an
about the laser propagation direction.

The “real-life” situation in stimulated Ra
Is considerably more complicated th
above.

In addition to the existence
anti-Stokes radiation tha
found that, as an ex
anti-Stokes radiati
from that predi



OTHER TYPES OF RAMAN SCAT
s obtained if the
signal in the linear
lency of the SRS pump
lle a strong laser is tuned

Fig.3. Inverse Raman spectroscopy (IRS) with measurement of the depletion of a weak probe signal at the
frequency of the SRS pump as a function of the frequency of a strong and tunable laser at the Stokes

wavelength. 67




easurement

icient g,.,e Of @

he light frequency

gnal while strong laser
requency for this Stokes

gain spectroscop

gprobe =f(vprobe)

Fig.4. Stimulated Raman gain spectroscopy (SRGS) measuring the amplification for determining the gain g,
of a weak tunable probe signal around the SRS Stokes frequency under strong pumping. 68




CARS

stimulated Stokes

2ring leads to the

iell[¢elpleiteln =i IN the matter. In coherent
erlng (CARS) two strong

and Vsrss are

Fig.5. Coherent anti-Stokes Raman scattering (CARS) pumping with two laser beams with frequencies v,
and Vees s, OBtaining the anti-Stokes Raman light with vgz¢ .. For strong signals phase matching has to be
achieved. 69
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enta of t
xd and thus t
light k.. and of t

d the anti-Stokes light
gle condition of fig. 6.

' (PCARS,probe

F1g.6. Phase matching of the incident laser light and the generated Stokes and anti-Stokes Raman light in
CARS experiments.




have to be

1 the anti-Stokes
served at the angle
Ki.. In the forward
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spatial direction

0 strong pump lasers
>tokes Raman scattering
ng intensity Icprsas 1S

pump laser intensities |, of the incident and

of the light and particle density N,_.. Even

ontinuously operating (cw) laser can be used and
then very high spectral resolution is possible.




ased by many

p laser energy

ons of the material
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emes above will be real

ake place and thus the interaction

Or concentration are limited by the
optical absorption of approximately
L<1.




small for safe

PBox-cARS/2
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(PSRS,aS= (PSRS,probe

Fig.7. BOX CARS angle conditions for phase matching allowing good spatial separation of the different
signals.
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Linear and Nonlinear Systems

A linear system is defined as one which has a
response proportional to external influence and has a
well-known property, i.e. if influences, F1, F2 ...., Fn
are applied simultaneously, the response produced is
the sum of the responses that would be produced if
the influence were applied separately.

A nonlinear system is one in which the response is
not strictly proportional to the influence and the
transfer of energy from one influence to another can
occur.



If the Influences are periodic in time, the response of
a nonlinear system can contain frequencies different
from those present in the influences. However, the
point to emphasize here is that, as well as the
generation of new frequencies, nonlinear optics
provides the ability to control light with light and so to
transfer information directly from one beam to
another without the need to resort to electronics.

Traditionally, nonlinear optics has been described
phenomenologically in terms of the effect of an
electric field on the polarization within a material.




MAXWELL EQUATIONS
Electromagnetic processes are described by
Maxwell’'s equations which constitute a set of linear
equations. In Sl units:

V-D=p divD=p

VxE:—a—B rotE:—@
ot ot

V-B=0 divB=0

VxH:a—DJrJ rotH:@+J
ot ot

where E and B are the electric and magnetic fields.
The displacement fields D and H arise from the
external charge and conduction current densities p

and J. In most cases of interest in nonlinear optics, p
=0and J=0.
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‘Constitutive relations” connect the charge and
current distributions within the medium and the
displacement fields to the electric and magnetic
fields.

where P is the induced polarization in the medium
resulting from the field E, ¢ is defined as a dielectric
constant and ¢, is the permittivity of free space
(8.85 x 10-'2 F m-! in MKS units). Optical materials
are mostly non magnetic p =y, gy = Mo



LINEAR THEORY

Usually one assumes a linear response of a
dielectric material to an external field

Where P is the vector representing the electric dipole
moment per unit volume induced by the external
electric field E, g, is vacuum permittivity and y is a
quantity characteristics of the considered material
with no dimensions, called electric susceptibility.




In general y is a tensor

Bc Lxx Xxy Lxz Ex
})y =&y ny ny Xyz Ey
Bl =z Xy Az|E:

The symmetry properties of the material indicate
which ones of the y; coefficients are zero.

Alternatively pl le. e ¢
XX xy Xz

Ex
Dy =18 Sy &y Ey

D g o s _\|E

z zX zy zz ||z




HOMOGENEOUS MATERIALS
¢ not depending on space

diveE = p divE="P
e
rotE:—g—B = roth—é—B
ot ot
divB=0 divB=0
B . ocE . ocE
t| = = J+— tB= —
b (uj (” et j P “(H ot j
If p=0 J=0
divE=0 divB=0
rotE:—@ rotB:usg

ot ot



WAVE EQUATION

Starting from Maxwell's Egs {divE=0
rotE =5
rotrot E = —V°E + grad divE ot
=—§rotB {divB=0divB=0
= oD
rotB=pg—
~V°E +graddivE = —py — J00 08 8 D { ot
ot ot
V°E = 82EX—I—aZEX aZEX |+ l _
ox*  oy?
2 2 2 et C _
8Ey+8Ey+8Ej ﬁ : —_
2 2 J+ . .
ox* oyt o refractive index
0°E, O°E, O°E,
+ + Kk .
ox°  oy*  o0z° n=1Jer
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Experimentally the refractive index is a function of
wavelength (frequency)

N(A) =& () g (L) =1+x(2)

This phenomenon is called DISPERSION.

The polarization Iin a material medium can be

explained considering the electrons tied to the atoms
as harmonic oscillators.

Nucleus: ~2000 electron mass, i.e., infinite mass

11



DISPERSION

mX + BX + kx = —eEe'”  (one-dimensional model)

Damping Restoring Driving
Force Force

From the solution: |

WAAAAAX XX AN
UOUOUUOO0O0)

the induced moment is calculated: E '

@ O
e—]
>

2
e

p=—ex= > 5 . Eoe’“)t
m(mo —® +iooy)

12



For N oscillators per volume unit, the polarization is:

N - 82 ot
P=N-p= ————1£o€
m(a)o - +za)7/)
2
: o= = = atomic polarizability
Calling m(wf — o° +iyo)
9 P=N0[E=EO)(E E:Eoeiwt Z:M
€0

where vy Is the electric susceptibility.

Eo&; :50(1+;():50(1+M]
N o n:\/;r

n’ =1+ y=1+——
€0

13



2
n=1+ AL

goM(5 — o + iyw)

If the second term is lower than 1 (as it happens in

gases):

In the expression n comes out to be a complex
number.

14



ABSORPTION

The term Iyo iIs responsible for absorption. The
complex index can be written as

n=fi-ik=1+ st o) = g/

ZEOm[(a)g — o )2 +72w2} ZEOm[(a)g — o )2 + 7/20)1

If we consider a plane wave

where E = Aexp|i(ot —kz)]

k =N /Ll =—N=——NN 05, 15 0 15 30
C A

15



we see that, substituting the complex refractive

Index, one has y
k = 277[(?1 —ik)

which gives E :Aexp{i(a)t—zlinzﬂexp(—z%kzj

The last exponential represents a term of attenuation.
The attenuation coefficient may be defined from:

_idi
| dz
By comparison with the previous equation

I(z) = |Ef = 1,08~

16



It can be noticed that a small value of leads to an

elevated attenuation. K

k =0.0001 and A =0.5um gives o=25cm™".

10T

L ___n_1 ]
051 ]
L s \ ]
| s \ ]
// \
- 4
_ -
\ -7 |
\ P ]
\ ,
\ Ve

05 ' '
-30 -1.5 0 15 30

(a.u)

Both 7 and & are functions of the frequency.
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Nen

Substance n (for yellow light) .
(static value)
Air (1 atm) 1.0002926 1.0002925
CO (1 atm) 1.00045 1.0005
Polistyren 1.59 1.6
Glass 1.5 + 1.7 2 +3
Fused quartz 1.46 1.94
Water 1.33 9
Ethanol 1.36 5

n as a function of A for
some materials

1.7 §

1.6

B

14

Table |

Values of n and ¢,
for some materials

3x1015

4 6x10" sx10t 3x10* v (Hz)

s =ama

flint pesante

flint leggero |

uarzo cristallino
crown al borosilicato |

quarzo vetroso
L L

0

200

400 600 800 _ 1000 (nm)

18



i>1 for o<m

At resonance (o = o)

normal dispersion

the slope of 7 Is negative anomalous dispersion

Absolute refraction index at 20°C for the line D of Sodium (,=5890 A)

Solids n Liquids n Gas n
Canadian 1.528 Acetone 1.359 | Carbondioxide |  1.000448
balsam
Calcite 1.658 Water 1.333 Air 1.000292
Dispersive 1520 Ethanol 1.361 Nitrogen 1.000296
Crown
Heavy Flint 1.650 Benzene 1.502 Helium 1.000036
Amorphous 1.458 Etere etilico 2.352 Hydrogen 1.000132
quartz
Solfuro di
Heavy glass 1.970 Carbonio 1.627 Oxygen 1.000271

107
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METALS

In a metal the electrons are free and they do not
oscillate around the atoms. Therefore k = 0 and
0, = 0.

In the equation for n? it is sufficient to put @, = 0.

2 N62 i
n-=1- N = density of electrons

é‘om(a)2 — lyw)

Ify << ®

N 2
- o 2 e Frequency of plasma
p
g,M

For Al, Cu, Au, Ag N ~ 102 cm and wp~ 2.101° s,

20




For o>wo, nis real and the waves propagate freely.

For o<wp, n Is pure imaginary and the field is
exponentially attenuated with the distance from the
surface. Therefore the radiation is reflected from the
surface.

Therefore, for visible radiation and infrared o < wp
and n is imaginary. In general, n is complex because
there is v:

Ne* (0+iy) Ne* . Ne*

1-n%= = + =
wegm(®—iy) (o +iy) (Dgom(ooz + yz) ! mgom(mz + yz)

) @

(m2+y2) (@2+y2)6

21



PROPAGATION IN ANISOTROPIC MEDIA

An anisotropic medium is characterized by a
dielectric tensor

Dy| [6xx €xy €xz||Ey
Dy|=16yx &y éyz| [y
D, |&, Ey €1 =
The dielectric tensor is symmetric Ei = &

1] Ji
It is possible to rotate the axis to find a system of axis
(main axis) for which

D, | ls 00|E ny 0 0||E
D,|=0 &, O||E,|=45l0 n; 0| |E
Dz OOSZ Ez OOI’I? Ez

22



A plane wave propagating along f.e. the direction z
(E, = 0) can have two phase velocities depending on
its polarization.

Therefore, in any propagating direction there are two
refractive indices n, and n, that correspond to two
different phase and group velocities.

The displacement vectors D, and D, are orthogonal
between them. To obtain n,, n,, D, D,, E;, E,, H,
and H, the method of the ellipsoid of indices is used.

23



ELLIPSOID OF INDICES

The ellipsoid of indices is

z-axis (optical axis)

x2 y? 72 x2 y? 72
t—+t—=l==+>5+—
Ex &y £z ny ny n;

X-axis

To obtain the values of n, and n, for a particular
direction of propagation r the plane passing through
the origin of the ellipsoid perpendicular to r is
considered. The intersection of this plane with the
ellipsoid of indices gives an ellipse. The two main
axis of the ellipse correspond to 2n, and 2n,

respectively.

24



The corresponding D, and D, are parallel to the main
axis of the ellipse. The vector E is given by

D =n°g[E—s(s-E)]

To see this, let us consider a monochromatic plane
wave

(1) E . EO ei(ﬂk’f—a)t) D — DO ei(ﬂk’f—a)t) (3)
(2) H . HO ei(ﬂk’f—a)t) B — BO ei(ﬂk’f—a)t) (4)

and the Maxwell equations for an homogeneous
dielectric magnetically isotropic (B = py H)

(5) divD=0 [OLE = —u% (7)

(6) divH=0 rotH = L (8)

ot
25



Substituting (3) into (5)
ﬂei[n(kxx+kyy+kzz)]
O X
divD=0=ink-D

And, similarly, substituting (2) into (6) = _

Therefore D and H must be orthogonal to k.

Inserting (2) and (3) in (8) =» _

Therefore D, H, k form the term indicated in the figure.

=ink,e' ™" etc. therefore

26



Inserting (1) and (2) in (7) = _

therefore H must be orthogonal to the plane E, k
and E must stay in the plane D, k. Also the Poynting
vector BEIERE lies in the plane D, k. If the medium is
electrically isotropic D and E would be parallel and
also k and S would be parallel. In the anisotropic
medium D and E form an angle and the wave
propagation and the direction of the energy
propagation are not in the same direction.

27



From inkxH=—iwD

one may see that the modulus of H is:
w D

H=2- )

If E | is the component of E orthogonal to k, from

 f
we have E, =—"H
nk
: : : 0° U 1
That, taking into account (1), gives E, = Zkg D=——D
n goN

28



If s Is the unit vector of k we can write

1

£on°

E—(s-E)s= D

where S-E is the component of E parallel to k.

Therefore
E-(s-E)s=E, .

29



DETERMINATION OF THE POLARIZATION

Let us consider a wave propagating f.e. in the
direction z. If its electric field is parallel to the
direction x, it induces only a polarization P,

I:)x - gOZxxEx = Dx _EOEX = (gxx _1)‘90Ex

which is determined by ¢, that is a refraction index
n

X"

On the contrary, if the wave is polarized with the

electric field that vibrates along vy, it finds a refractive
index n,.

30



Every non polarized wave propagating in the direction
z can be decomposed into two components with
polarization parallel to directions x and y. These two
components travel in the crystal with different
velocities (different n).

The uniaxial crystals are characterized by a main axis
(conventionally the axis z) along which the dielectric
constant is ¢,,, but perpendicularly to which the
dielectric constant does not depend on the direction
(that is ¢,, = ¢,). Therefore these crystals have only
two main refractive indices.
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The direction z is unique because the propagation
velocity is independent from the polarization. It is
called optical axis. The difference between n,(=n,)
and n, is a measure of the birefringence which is
called positive or negative depending on n, —n, > 0 or
lower than 0.

Crystals with lower symmetry have two optical axis
and they are called bi-axial. For them n, # n, # n,.

32



UNIAXIAL CRYSTALS

2 y2 2

> T 2:1
n n n

X y 4

This equation represents an ellipsoid with semi axis
n,, ny, n,. For a uniaxial crystal n, = n, # n, and the
ellipsoid has circular symmetry around the axis z, as
shown in the figure.

The index n,(=n,) is indicated as the ordinary
refractive index ny and n, is called extraordinary index
n.. The ellipsoid is rewritten

2 y2 ;2

+—=+—=1
nZ n? n?
0 0 e
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If a light beam propagates P
In a direction r that forms an | ;
angle S with the optical axis ;
(z), because of the circular
symmetry we can choose
the axis y coincident with
the projection of r on the
plane xy.

X-8Xi5

The normal plane to r intercepts the ellipsoid in an
ellipse (outlined in the figure). The two permitted
directions of polarization are parallel to the axis of this
ellipse and therefore they correspond to OP and OQ.

34



The two polarized waves along these directions have
refractive indices given by OP = ny and OQ = n(39). In
the case of the extraordinary wave, the plane of

polarization varies with 3 and so does the refractive
index.

With reference to the figure which shows the
Intersection of the ellipsoid of the indices with the

plane yz [
9\, r

35



nZ($)=z"+y* and z=n,(9)sinI

Substituting in the equation of the ellipse 2%t 2=

Therefore for 3 = 0°, that is for propagation along the
optical axis, n,(0°) = n,, while for S = 90°, n, (90°) = n...
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The two polarizations which can be propagated
correspond to the maximum and minimum refractive
iIndex given by the ellipsoid of indices (for positive
crystals n, > n,, for negative crystals n, < n;). For the
propagation parallel to the optical axis (direction z)
there is no birefringence, because the section of the
ellipsoid perpendicular to the direction z is a circle.

For a propagation perpendicular to the optical axis,
l.e. in the direction x, the birefringence will be
maximum and the allowed polarization will be parallel
to the axis y with index n, and parallel to axis z with
index n, /“\e\ r

Q
ne(6)

6

y 0 & y
\/ 37




REFLECTION AND REFRACTION OF PLANE WAVES

We now study the phenomenon of the refraction of a
monochromatic plane wave at the plane surface of
separation between an isotropic medium and an
anisotropic one. Let us indicate with k; the wave vector
of the incident field, with 3, the corresponding angle of
incidence and with n;, the refractive index of the
iIsotropic medium. Let us call © the pane of separation
between the two media. The situation is shown In the
figure, in which the figure plane coincides with the
Incidence plane.

ISO k-
ANISO
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To find the refracted wave, the boundary conditions on
n have to be imposed. Because these conditions must
be satisfied in every point of & and at every time, it is
necessary that the phase distributions produced by
the incident and the refracted wave be equal, that is

nkK;, r—wt=nk-r—ot (1)

for every point r belonging to n. We have indicated
with k and n the wave vector and the refractive index
for the refracted wave, respectively. Since the phase
distribution of the incident wave is, at every time,
Independent from the coordinate orthogonal to the

plane in fig. 1, the same must be true for the refracted

wave. -



Therefore k must stay in the incidence plane. If 3 is
the angle between k and the normal to n and taking
an abscissa ¢ along p, eq.(1) becomes

n.k.&sinG, — ot = nk&sin G — wt (2)

that is
n,SinG. =nsin g (3)

having taken into account that k; and k have the same
length. As we can see, relation (3) is the same law of

Snell-Cartesio valid for the refraction between two
Isotropic media.

n

9
ISO k.

| T
ANISO
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However there are two great differences. The first
Is that in the second member of (3) both n and 3
are incognita. In fact we know that n depends on
the direction of k, indeed for every direction of k in
general two values of n exist to which two possible
directions for D (orthogonal to k) are associated.
Therefore (3) alone, it is not sufficient to find the
refracted waves.
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The second difference is that, as we saw before,
the Poynting vector S can be non collinear to k.
Therefore if, according to the concepts of geometric
optics, we associate the directions of the light rays
to those in which the energy propagates, that is to
the directions of S, the law of Snell-Cartesio, which
Is true for the wave vectors, cannot be valid for the
rays.

42



The disagreement with the law of Snell-Cartesio can
regard another aspect too. We know that S must be
found in the plane of k and D. In general, this plane
does not coincide with the Incidence plane.
Therefore, the rays may not belong to the incidence

plane, in contrast with what is predicted by the law of
Snell-Cartesio.
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Since (3), alone, does not characterize the refracted
waves, we must add to it the law that expresses the
relation between n and 3. A possible procedure is the
following. We draw in the incidence plane the vector
ny;, where y, is the unit vector of the incidence wave,
so that it ends in a point, we say O, of the surface of
separation between two media (see fig.2).

N1

isotropic medium

anisotropic medium

Fig. 2 44



The projection OA of ny, on this surface, has the
length n;sinY, and therefore it equals the first member
of (3). Let us consider now, in the semi space of the
anisotropic medium, the surface built as follows. Along
every direction outgoing from O we mark the two
points whose distance from O equals the possible
values for the refractive index met by a plane wave
having the wave vector along the direction line. We
call surface of indices (not to be confused with the
ellipsoid of indices) the two surfaces so obtained.
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Let us suppose that ¢, and c,, in fig.2, are the
Intersection curves between this surface and the
iIncidence plane. Now we take the point A’, symmetric
of A compared with O and we trace the perpendicular
to A’ to the plane of separation between the two
media. This straight line meets the surface of indices
In two points P, and P,. The segments OP, and OP,
give the directions of the two refracted plane waves.
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To see this, let us call n, and n, the refractive indices
given by the lengths OP, and OP, and call 5, and S,
the angles formed by OP, and OP,, with the normal to
the plane of separation. We observe that the
projections of OP, and OP, on the plane, which are
n,sing,; and n,sing,, both are equal to OA'" whose
length is, for construction, equal to n,sin3d,.
Therefore, the waves that in the isotropic medium

proceed along the unit vectors ¢, and y, of OP, and
OP,, satisfy eq.(3).

n.sin g =nsing.  (3)
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NONLINEAR SUSCEPTIBILITY

Dipole moment per unit volume or polarization in
the linear case

. 0
PF=P +y,F

l

The general form of polarization in a nonlinear
medium is

i :Pl-o-l-)(;.l)Ej +X;'/§)EjEk+Xz§'l§l)EjEkEl+“'
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JUSTIFICATION OF THE PRESENCE OF A

T T v
LDOODOOOOOOOOL

le—]
X

NONLINEAR RESPONSE

If the force exercised by the electric field

of the wave becomes comparable with
the Coulomb’s force between the electron
and the nucleus, the oscillator is
perturbed (anharmonic oscillator) and,
at the lower level of the perturbation, we
can write:

(1) + oX(t) + 05X (t) + Dx? (t) = —(e/ m)E(t) (4)
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The solution of eq.(4) can express as the sum of two
e O CIOFSCIO N

in which x()(t) is obtained solving eq.(4) without the
anharmonic term, whereas x@)(t) is considered a
small correction of the solution at the first order x(1)(t)
and is obtained utilizing x()(t) in the anharmonic term

) (1) + ox @ (1) + 03x P (1) = —%(t) -D [xm (t)]2 . (6)

In this way, considering the case in which the forcing
electric field is formed by the sum of two fields at

different frequencies

E(t) = E,cosmt + E, cosm,t = %[Ele—jcolt +E ety c.c.] (7)
S0



We have the solution at the first order
ﬂ”a)=%{x®@myfhﬂ+xﬂkmgeﬂ%P+ca] (8)
and subsequently the solution at the second order,
solving eq.(6) with the use of (8) is
x 2 (t) = %[X(Z) (o) + ®, )e_j((’)ﬁ(”Z)t +x® (o, -, )e_j(ml_%)t +
+x? (20, ) e+ xB) (20, )67 1 cc]  (9)
In which
1 D(e/m)? | E.E,

X (o = 0,)

2 ((DS — 0% + jcy(ol)((og — 05+ jG(DZ) |:(DS — (o + o, )2 + jo (o, o, )}

2 2
x® (20, ) = -+ ble/m)”- E k=12 (10)
2 ((DS —of + chok) ((,og — 4o + jG(Dk)
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Therefore the solution of the second order brings to
the generation of oscillations at a frequency
different from the ones of the forcing field. In
particular, it is possible to have frequencies equal to
the sum or to the difference of the field frequencies
or to the double (second harmonic). Moreover, we
emphasize that the previous formulas remain valid
also if just a single forcing field o is present. In this
case x)(t) will be the sum of a second harmonic
term (2w) with a null pulsation term (term of optical
rectification).
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Now, remembering the expression for the medium
polarization, we can write

P(t) = —Ne[x(l)(t) +x® (t)] (12)
where N is the number of dipoles for volume unit; that
® P(t) = PL (1) + Py, (1) (12)

Which, compared with (10)

D(e/m)? E,E
X(Z)((Dli(DZ):_E 2 2 2 2 ' 2 | 122.
(‘Do 0 +JG®1)(®0 032+JG(’32) [600 (0 £@;)" + jo (o tw,)

L 1

2 2
x® (20, ) = -+ ble/m)”-Ej k=12 (10)
2 (cog — o + jcscok) ((og — 4o + jcoak)
permits to write
P = Sox(l)E

Py =%?E-E. (13) s




SECOND HARMONIC PRODUCTION
The nonlinear properties in the optical region have
been demonstrated for the first time in 1961 by
Franken et al. during an experiment of second
harmonic generation. Sending red light of a ruby

laser (A, = 6.943 A) onto a crystal of quartz, they
observed ultraviolet light.-

JOLUME 7, NUMBER 4 PHYSICAL REVIEW LETTERS August 15, 1961

GENERATION OF OPTICAL HARMONICS*

P. A, Franken, A. E. Hill, C. W, Peters, and G. Weinreich
Harrison M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan

Laser a rubino 34715 A
i

Prisma & lensi
di collirmazione
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To describe the phenomenon, it iIs necessary to
observe that in many crystal materials the nonlinear
polarization depends on the direction of
propagation, on the polarization of the electric field
and on the orientation of the optical axis of the
crystal. Since in such materials the vectors P and E
are not necessarily parallel, the coefficient y is a
tensor. The second order polarization can be written

asS
),k

where i, |, k represent the coordinates X, y, z. The
main part of the coefficients dy,, however, are usually
zero and so only a few of them must be considered.
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Only the non-centrosymmetric crystals can have a
non null tensor dy. In facts, let us consider an
isotropic crystal. In this case dy, is independent from
the direction and therefore it is constant. If now we
invert the direction of the electric field, also the
polarization must change sign, that is

_Pi(Z) = Zdijk(_Ej)(_Ek) :ZdijkEjEk = +Pi(2)'

It is clear that, not being able to be —Pi(z) = +Pi(2) , ik
must be null.

Moreover, in materials for which d # 0, since no
physical meaning cannot be assigned to an
exchange of E; with E,, it must be d;; = d;.
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Now if we consider the Maxwell equations writing

D=¢g,E+P (15)
we have
rotB =pj+ D _ ]+ ue §+ oF
M “at 2 Moat “at
rotE:—@. (16)
ot

The polarization can be written as the sum of a linear
term plus a nonlinear one

where, In case of materials with second order
nonlinearity is, f.e.

(Pa); =D diiEEy. (18)
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S0 eq.(16) can be written, assuming j =0

oeE  OP\

rotB=u——+ 19
Il (19)
from which
0°E  0°P
VE=pue——+u—NL 20
vl o i " (20)

If we consider the unidimensional case of propagation
along a direction z, we have

0°E, zugain _I_HGZ(PNL)i.
oz° ot? ot?

(21)
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Let us consider now three monochromatic fields with
frequencies o,, ®,, ®; using the complex notation

EC) (2,1) = 2| By (2)e ) e

2
E(©) (7,1) = % E @) s ]
® 1r it
E 3)(z,t):§_E3j(z)e’( o k32)+c.c.] (22)
where the indices |, |, k represent the components x

ory.

The polarization at frequency ®, = ®; - ®,, for
example, from (18) and from (22) results

ploy) Zd,JkE?,J(z)EZK(z)eJ[% el oo (23)
Jk 59



Substituting eqgs.(22) into (21) for the component E;,
It is necessary to calculate

o°El™) 1 57
072 2072
If we assume

—|Eji(2)e(at—kiz)+cc].  (24)

2
dcllzzli k, > ddzEzli (25)
we have
52E(™) 1 . AdE:(2) | etk
azlz :_Z{l(fEli () +2jk, clllz( )}ej( h2) e (26)

with similar expressions for

2 (o)) OR
0°E] R
> and R
0Z 0Z 50




Finally, substituting (26) and (23) into (21) we have

dE,;(2) _ _jﬂ @ZdijkESjE;ke‘j(kfkfkl)z +C.C. (27)
dz 2\ g

and in analogous way

dES _ jo, [Mg * al(Ki—kyt+k; )z
= d. E.E.e " T2 4 e,
dz 9 £, Z Ijk =1i—=3j

dE;; - —j(k,+k,—k)z

d—;J:_J 23 tz > diiEjiEqe fatkoks)z L cc. (28)
The second harmonic generation is obtained
iImmediately from (27) and (28) for the case of o, = o,

and o; = 2m,. Therefore it is enough consider only,
f.e., (27) and the last one of (28).
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To further simplify the analysis we can assume that

the power lost by the frequency o, (fundamental) is
negligible, and therefore dE,

= 0. 29
i (29)
So it is sufficient to consider just the last one of (28)
dE;, jo, |u b —i(k—ky+k,)z
dzz - 22 8;)ZdijkEliEgje (aksto)z 4 ¢c
dE.; :
| R @ZdijkE“EZke_‘(k”kZ_kS)Z +cc..  (28)
dz 2
dE
—3J — _J(D\/izdjlkEllElkeJAk ‘ (30)
where (n:(olz—3

2
and Ak = k§) — k() — k(K. (31)
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In eq.(31) k" is the constant of propagation of the
beam at o, polarized in the direction i. The solution of
(30) for E5(0) = O for a crystal of length L is

. fu |
E3j(|—) = _J(D\/EzdjikEli = iAk
2 €N *(Ak-L/2)
(Ak-L/2)°
According to (32) a requirement for an efficient

second harmonic generation is that Ak = 0O, that is
from (31) with ®; = 20, 0, = ©, = ®

Ak = k§ — k(M — k{9, (31)

or

(32)

I(I—) ‘E3J(L)‘ Z‘ZdjlkEllElk‘

(20) = 2 (@), (33)
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If Ak # 0, the second harmonic wave generated at a
generic plane z, which propagates until another
plane z, is not in phase with that generated in z..
This generates an interference described by the

factor  sen?(Ak-L/2)
(Ak-L/2)°

en” (Ak-L/2)

N (32) I(L) = ‘E3J(L)‘ Z‘ZdjlkEllElk‘ LZS (Ak. L/Z) (32)

The condition (33) IS never practically satisfied
because, due to dispersion, the refractive index

depends on o.

k(2¢) = ok (@), (33)
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Therefore, we have

being

and therefore
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However, it is possible to make Ak = 0 (phase-
matching condition) using various skills; the most
used of which takes advantage from the natural
birefringence of the anisotropic crystals. From (34) we
can see that Ak = 0 implies

n(20) - (@) (36) |Ak =Kk -2k = %‘”(n@@) -n©@)  (34)

so that the refractive indices of second harmonic and
of fundamental frequency have to be equal.

In the materials with normal dispersion, the index of
the ordinary and extraordinary wave along a direction
Increase with o, as it is shown in the table.
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A, um Index
n, (ordinary beam) n, (extraordinary beam)

0,2000 1,622630 1,563913
0,3000 1,545570 1,498153
0,4000 1,524481 1,480244
0,5000 1,5144928 1,472486
0,6000 1,509274 1,468267
0,7000 1,505235 1,465601
0,8000 1,501924 1,463708
0,9000 1,498930 1,462234
1,0000 1,496044 1,460993
1,1000 1,493147 1,459884
1,2000 1,490169 1,458845
1,3000 1,487064 1,457838
1,4000 1,483803 1,456838
1,5000 1,480363 1,455829
1,6000 1,476729 1,454797
1,7000 1,472890 1,453735
1,8000 1,468834 1,452636
1,9000 1,464555 1,451495
2,0000 1,460044 1,450308
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This makes it possible to satisfy eq.(36) when both
the beams are of the same kind (that is both
extraordinary or ordinary). Or (36) can be satisfied, in
some cases, using an ordinary and an extraordinary
wave.

In order to illustrate this point we can consider the
dependence of the refractive index of the
extraordinary wave in a uniaxial crystal, from the
angle 3 between the direction of propagation and the
optical axis (z) of the crystal.

1  cos’9 sen’9
=t ———. (37)
ng (9) Ng Ng
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If n® <n{ an angle 9, exists for whichn{**(8,) =n{.
In this case if the fundamental beam (frequency o) is
propagated along 39,, as a ordinary beam, the second
harmonic beam will be generated along the same
direction as an extraordinary beam. This situation is
shown in the figure.
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The angle 3, is determined by the intersection
between the sphere (shown as a circle in the figure)
which corresponds to the index surface of the
ordinary beam to o with the index ellipsoid of the
extraordinary beam. The angle 9, for negative
uniaxial crystals (that is for crystals for which n{*® <n{®
IS given by

2 2
CoS” 9, L Sen 9, 1 (38)

] [ ] [T

that is
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According to (32), if we deviate from the matching
condition, for a fixed length L of the nonlinear crystal,
we have a reduction of the second harmonic power
generated by the factor

P sen®(Ak-L/2)
P (Ak-L/2)°

(40)
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This relation can be easily verified varying the angle
c = 9 - 9, between the direction of index matching
and the propagation direction.

A diagram of the second harmonic power according
to o is shown in the figure (where the theoretical
curve sen?x/x2is also shown).
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Nonlinear Optical Interactions

» The E-field of a laser beam

« 2" order nonlinear polarization

20

m—
m—)

0,
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2nd Order Nonlinearities

* The incident optical field

* Nonlinear polarization contains the following terms
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Sum Frequency Generation

Tunable radiation in the
UV Spectral region
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Difference Frequency Generation

aw, @,

I i
The low frequenf:y _ w,
photon, amplifies in 0 I
the presence of high y 7
frequency beam . This 3

IS known as parametric
amplification.
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Phase Matching

*Since the optical (NLO) media are dispersive,
The fundamental and the harmonic signals have
different propagation speeds inside the media.

*The harmonic signals generated at different points
interfere destructively with each other.
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Third Order Nonlinearities

When the general form of the incident electric field is in the
following form,

The third order polarization will have 22 components
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The Intensity Dependent
Refractive Index

* The incident optical field

* Third order nonlinear polarization




The total polarization can be written as

One can define an effective susceptibility

The refractive index can be defined as usual
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By definition

where




Typical values of nonlinear refractive index

Mechanism n, (cm2/W) (esu) Response time (sec)

Electronic Polarization

Molecular Orientation

Electrostriction

Saturated Atomic
Absorption

Thermal effects

Photorefractive Effect
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Third order nonlinear susceptibility of some material

Response
time

Material X(3)

CO,

GaAs (bulk room
temperature)
CdS,Se,_, doped
glass

GaAs/GaAlAs
(MQW)

Optical glass
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