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Introduction to Nano-Optics
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Outline
1. Introduction and motivations 
2. Localization vs. resolution
3. Nonlinear approach
4. Near field approach
5. Newcomers

– Short wavelength sources
– Superlenses
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Advances in optical microscopy
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Confocal Principle
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SPATIAL RESOLUTION VS.CHEMICAL INFORMATION

NEAR 
FIELD 

OPTICS?
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1880's: Rigorous Discussion of Resolution in Optical Microscopy

Rayleigh‘s
criterion

θ
d

signal

Vahid Sandoghdar
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1880's: Rigorous Discussion of 
Resolution in Optical Microscopy

• Conclusion:
– you cannot resolve two points 

closer than about ½ wavelength
–When imaging in the far field
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where we choose the axis of the lens to be the z-axis. Maxwell’s equations tell us that,

Since the propagating waves are limited

the maximum resolution in the image can never be greater than,
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Point spread function 
PSF

Fluorescence Imaging with One Nanometer Accuracy: Application to Molecular Motors. Acc. Chem. Res. 2005, 38, 
574-582. AHMET YILDIZ AND PAUL R. SELVIN

image of several individual Cy3-dyes 
immobilized onto glass coverslip. 

A “point” source yields 
a blurred image
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Localization vs. resolution

• Localization techniques
• Tracking
• 3D imaging
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Localization

Taking a picture of a point 
source
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Thompson, R. E.; Larson, D. R.;Webb, W. W. Precise nanometer localization analysis for 
individual fluorescent probes. Biophys. J.2002, 82(5), 2775-2783.

s : standard deviation of the Gaussian distribution = 1/2.2 of 
the PSF width, a is the pixel size, b is background and N is 
number of collected photons. 
first term: photon noise, 
second term: effect of finite pixel size of the detector, 
last term: effect of background. 

Limits
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Localization

Fluorescence Imaging with One Nanometer Accuracy: Application to Molecular Motors. Acc. Chem. Res. 2005, 38, 
574-582. AHMET YILDIZ AND PAUL R. SELVIN

Pixelated image of several individual 
Cy3-dyes immobilized onto glass 
coverslip. Dyes were imaged by using 
objectivetype TIR with 0.5-s 
integration time.
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(C) The dye lasted for 50 s and 
photobleached in a single step that 
indicates the image contains a single 
dye.

(B) The PSF circled in (A) has a width of 
287 nm, and the SNR of 32. A Gaussian 
curve-fit (solid blue line)yielded 1.3 nm 
precision in the center localization.

Acc. Chem. Res. 2005, 38, 574-582. AHMET YILDIZ AND PAUL R. SELVIN



11

O.E. Martínez        ICTP  2008 21

(D) The PSF center versus time graph. The sample was moved with a nanometric stage with 6.5 nm 
increments either at a constant rate or a Poisson-distributed rate. Red lines show the average position 
between each step. Steps are visually separable and are determined with 1 nm precision (Û), and the 
accuracy [difference between the measured step size via PSF fitting (Ì) and the expected step size 
(Ìex) based on the calibrated stage] is better than 1 nm.

Calibration

Acc. Chem. Res. 2005, 38, 574-582. 
AHMET YILDIZ AND PAUL R. SELVIN
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Hand-over-hand model vs Inchworm odel for myosin V. In the hand-over-hand model, the 
rear head passes by the front head, translating a total of 74 nm, while the front head stays 
stationary. Therefore, heads move alternating 74 and 0 nm steps. If the dye is on the light 
chain, it moves 37 - 2 x, followed by 37 + 2 xnm, where xis the distance between the dye 
and the center. In the inchworm model, the dye moves 37 nm regardless to where it is 
labeled.

Acc. Chem. Res. 2005, 38, 574-582. AHMET YILDIZ AND PAUL R. SELVIN
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Stepping traces of three different myosin V molecules displaying 74 nm steps, and histogram of a 
total of 32 myosin V’s taking 231 steps. Traces are for BR-labeled myosin V unless noted as Cy3.

Acc. Chem. Res. 2005, 38, 574-582. AHMET YILDIZ AND PAUL R. SELVIN
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Eric Betzig et al., 313 Science , 1642 (2006); 

photoactivated localization
microscopy (PALM)

The principle behind PALM. A sparse subset of PA-FP 
molecules that are attached to proteins of interest and then 
fixed within a cell are activated (A and B) with a brief laser 
pulse at λact = 405 nm and then imaged at λexc = 561 nm until 
most are bleached (C). This process is repeated many times 
(C and D) until the population of inactivated, unbleached 
molecules is depleted. Summing the molecular images 
across all frames results in a diffraction-limited image (E 
and F). However, if the location of each molecule is first 
determined by fitting the expected molecular image given by 
the PSF of the microscope [(G), center] to the actual 
molecular image [(G), left], the molecule can be plotted 
[(G), right] as a Gaussian that has a standard deviation equal 
to the uncertainty σx,y in the fitted position. Repeating with 
all molecules across all frames (A¶ through D¶) and 
summing the results yields a superresolution image (E¶ and 
F¶) in which resolution is dictated by the uncertainties sx,y
as well as by the density of localized molecules. Scale: 1x1 
µm in (F) and (F¶), 4x4 µm elsewhere.
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Eric Betzig et al., 313 Science , 1642 (2006); 

Comparative summed-molecule 
TIRF (A) and PALM (B) images 
of the same region within a 
cryoprepared thin section from a 
COS-7 cell expressing the 
lysosomal transmembrane protein 
CD63 tagged with the PA-FP 
Kaede. The larger boxed region 
in (B), when viewed at higher 
magnification (C) reveals smaller 
associated membranes that may 
represent interacting lysosomes
or late endosomes that are not 
resolvable by TIRF. In a region 
where the section is nearly 
orthogonal to the lysosomal
membrane, the most highly 
localized molecules fall on a line 
of width ~10 nm (inset). In an 
obliquely cut region [(D), from 
the smaller boxed region in (B)], 
the distribution of CD63 within 
the membrane plane can be 
discerned.
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Outline
1. Introduction and motivations 
2. Localization vs. resolution
3. Nonlinear approach
4. Near field approach
5. Newcomers

– Short wavelength sources
– Superlenses
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NONLINEAR OPTICS: NAIVE APROACH

...)()()()( 3)3(2)2()1( +++= tEtEtEtP χχχ

...)()()()( )3()2()1( +++= tPtPtPtP

LOSSLESS, DISPERSIONLESS

P is a source

See lecture Prof. Bertolotti
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Example: 2nd order term. Monochromatic wave.
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PROCESS ORDER -ωσ;ω1,ω2,...ωn

d.c.Kerr effect 3 -ω;0,0,ω
d.c.induced 2nd harmonic
generation

3 -2ω;0,ω,ω

3rd harmonic generation 3 -3ω;ω,ω,ω
4 wave mixing 3 -ω4;ω1,ω2,ω3

3rd order sum frequency
mixing

3 -ω3;ω1,ω2,ω2

3rd order difference
frequency mixing

3 -ω3;−ω1,ω2,ω2

Coherent anti-Stokes Raman
scattering

3 -ωAS;ωP,ωP,−ωS 

stimulated Raman and
Brillouin scattering

3 -ωS;ωP,−ωP,ωS 

Optical Kerr effect, intensity
dependent refractive index

3 -ω;ω,−ω,ω

2 photon absorption 3 -ω;−ω,ω,ω
N photon absorption 2N-1 -ω;−ω,...−ω,ω,...ω
Nth harmonic generation N -Nω;ω,...ω

See lecture
Prof. Rigneault
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µ µ
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Vol 440|13 April 2006|doi:10.1038/nature04592

STED microscopy reveals that synaptotagmin
remains clustered after synaptic vesicle exocytosis
Katrin I. Willig1*, Silvio O. Rizzoli2*, Volker Westphal1, 
Reinhard Jahn2 & Stefan W. Hell1

See lecture Prof. Westphal
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Nonliear nanopatterning

The nonlinearity can 
be anywhere
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THE SETUP

laser focus

polymerized resin unpolymerized resin

cover slip

motorized stage
Ti:Sa laser beamshutter
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ART FAIR
100µm

Confocal Image
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We can make fluorescent lithography on 
standard coverslips

The fluorescent structure are compatible 
with cell cultures

The can replace Si substrates reducing 
the price and production time by orders 
of magnitude
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How small can the pattern be?

laser focus

polymerized resin unpolymerized resin

cover slip

motorized stage
Ti:Sa laser beamshutter
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Height 
[nm]
3.3
0.7
0.2

topography
phase
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The polymer growth starts on the surface of the substrate

AFM Phase image AFM Topographic image

500 nm

1.5 mW 100 µm/s
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Confocal image

height < 20 nm
length = 100 µm

separation = 5 µm
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Nonlinearity= percolation
N=10 N=100

N=500 N=1500
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Low coverage

High coverage
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Outline
1. Introduction and motivations 
2. Localization vs. resolution
3. Nonlinear approach
4. Near field approach
5. Newcomers

– Short wavelength sources
– Superlenses
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Near field approach

• Are there limitations? 
• The plasmonic highway
• Imaging
• New enhancement geometries
• Is imaging the only motivation?
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Near Field

Now we want to see the components
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SAMPLE

d

For

F=1kHz

d=3mm

Yields

λ/d=100,000,000

Measure:Im(ε)



25

O.E. Martínez        ICTP  2008 49Vahid Sandoghdar

nanosource

detectordetector

nanodetector

The Basic Ideas

Goal: Measuring the nonpropagating fields that contain 
high spatial frequencies at the surface of the sample 

See lecture Prof. Subramaniam
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D. W. Pohl, 1991
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TIPS

Limited in 
size by the
skin depth
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Near field approach

• Are there limitations? 
• The plasmonic highway
• Imaging
• New enhancement geometries
• Is imaging the only motivation?
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Polarizability of a sphere:

m

m

( )( )
( ) 2
ε ω − ε

α ω ∝
ε ω + ε

m  ( ) 2ε ω = − ε    for

Resonance

mε

G. Mie, Ann. Phys. 25 (1908)

full electrodynamic 
calculation: Mie theory
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Optical properties of metal nanoparticles
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Scattering and Plasmon Resonances of Metal Particles

Dark-field image of silver nanoparticles
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Plasmon resonance of a single nanoparticle

Vahid Sandoghdar
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{ }+ ϕ+ −= =
2 2

ide
2

s ncat re c
2

fE r s sE 2rI sinE

oil
glass

scaErefE

R

incE r: Fresnel field reflectivity
π/2: Gouy phase/2

ϕ: scattering phase: ϕ= is s e

scales as D3

O.E. Martínez        ICTP  2008 56

500 550 600 650 700
-0.2

-0.1

0.0

λ [nm]

5 nm
-0.3

-0.2

-0.1

0.0 10 nm
-0.20
-0.15
-0.10
-0.05
0.00 20 nm
-0.5
0.0
0.5
1.0
1.5

60 nm

30 nm
0

10

20

30

15:12

12:10

5:5

2.5:2.5

no
rm

al
iz

ed
 in

te
ns

it y
 σ

30:30

Wavelength (nm)

K. Lindfors, T. Kalkbrenner, P. Stoller, & V. Sandoghdar, PRL 93, 037401-1 (2004).

Plasmon Spectra of Single Gold Nanoparticles
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dephasing mechanisms

• Emission of electrons occurs on a time scale
of 4-6 fs and is only observed for small
nanoparticles (< 1nm) which are interacting
with strong light fields.

• Landau-damping describes the generation of
electronhole-pairs . For low SPP energies
intraband- and for higher energies
interbandtransition are observed. For small
nanoparticles a 1/R-dependence of the
inverse dephasing time is predicted .

O.E. Martínez        ICTP  2008 58

dephasing mechanisms

• Surface scattering: when the free mean path 
of the electrons is of the same order of mag-
nitude as the nanoparticle diameter. Also, a 
1/Rdependence. 

• Chemical interface damping (CID): the
tunneling of the oscillating electrons into and
out of adsorbate or surface states. Because
of the surface-sensitivity, a 1/R-dependence
is predicted.
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dephasing mechanisms

• Radiation damping: an efect which is due to 
the emission of photons. It is proportional to 
the volume of the nanoparticles and 
dominates in large particles with R > 20 nm.

• Electron-electron-scattering: the dissipation of 
the SPP energy among the electrons which 
takes place after about 500 fs

• Electron-phonon-scattering. On a timescale 
of about 1 ps the energy is transferred from 
the hot electrons to the lattice of the ion 
cores].
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Measurement of the size dependent dephasing time of surface plasmon excitation in

gold nanoparticles C. Hendrich, F. Hubenthal, and F. Tr¨ager. Private commun.
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Near field approach

• Are there limitations? 
• The plasmonic highway
• Imaging
• New enhancement geometries
• Is imaging the only motivation?
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LASER

FAR-FIELD
DETECTOR

MODULATION 
SIGNAL

LOCKIN
AMPLIFIER

reference

METALLIC 
TIP

SAMPLE

β

STM CONTROL UNIT

DATA
ACQUISITION

Scattered light vs. 
distance

Approach curves

Scattered light while 
scanning

Ultrahigh resolution 
optical images

A.V.Bragas and O. E. Martínez, Optics Letters 25 (2000) pp. 

FIELD ENHANCED IMAGING
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GRAPHITE (HOPG)

Constant hight scan.           Optical Step response: 3nm

Tunneling current Optical image

O.E. Martínez        ICTP  2008 64
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Enhancement: sources
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Hot spots on gold

A.V.Bragas and O. E. Martínez, Optics Letters 25 (2000) pp. 
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Hot spots on gold
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Enhancement: how large?

Laser field enhancement at the Scanning Tunneling
Microscope junction measured by optical
rectification", A.V. Bragas, S.M. Landi and O.E. Martínez, 
Appl. Phys. Lett. 72 (1998) pp. 2075-2077
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1000 ≤ γ ≤ 2000

HOPG-Pt

nm1dnm5.0 <<

m
V10x7.3E

m
V10x4.7 7

loc
7 <<

Einc ≈ 4 x 104 V/m 

300 ≤ γ ≤ 600

mVv PtAu 4.013 ±=−

THE NUMBERS
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Estimated 50% energy delivered to the apex
Mode is dark: does not couple to radiation modes

ADIABATIC NANOFOCUSING

O.E. Martínez        ICTP  2008 78

TIPS



40

O.E. Martínez        ICTP  2008 79Lukas Novotny
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Near field approach

• Are there limitations? 
• The plasmonic highway
• Imaging
• New enhancement geometries
• Is imaging the only motivation?

O.E. Martínez        ICTP  2008 86

FIND THE 
REPRODUCIBLE 
STRUCTURE 
WITH GIANT 
ENHANCEMENT
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Other configurationsOther configurationsOther configurations
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Tips

SiO2 microspheres 170 nm.
Ag Nanoparticles 5 nm.

300 400 500 600 700

 

λ  [ nm ]

Extinction

See Poster A. Scarpettini
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λ = 633nm

Ag tips with Ag decorated SiO2 particles

Sample: HOPG, Detection: 2Ω

STM FESOM, 2Ω

λ = 633nm
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Near field approach

• Are there limitations? 
• The plasmonic highway
• Imaging
• New enhancement geometries
• Is imaging the only motivation?
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Incident

Scattering
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Scattering: DISTANCE AND ORIENTATION

Au
R = 20 nm

• Unlimited number of photons
• Unlimited rate of photons
• Biocompatible probe, 
• Comercially available
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EM Coupling
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Numerical methods
Nanoparticle arrangements

Numerical methodsNumerical methods
NanoparticleNanoparticle arrangementsarrangements
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Numerical methods
Nanoparticle arrangements
Numerical methodsNumerical methods
NanoparticleNanoparticle arrangementsarrangements

MMIE techniqueMMIE MMIE techniquetechnique DDA methodDDA DDA methodmethod

Allows any shape.

With the number of dipoles 
grows the computational 
resources

Precision is gained and less 
computation resources 
employed.

Limited to spherical particles
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Sonnichsen, C., Reinhard, B. M., et al. (2005). Nature Biotechnology 23(6): 741-745.
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Liu, G. L., Yin, Y., et al. (2006). Nature Nanotechnology 1(1): 47-52.
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Basic concept
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Gold dimer
Diameter: 10 nm.
λ: 532 nm.
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η
Dipolar
GMMie

Au
r = 20 nm

Beyond the dipolar approximation

GMMie: Multiparticle expansion based on Mie theory
(solved numerically) 
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Typical TIR image
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Results

532 532/473

With only one color you get about twice the number of points
(false positives and negatives)

50x50µm
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Fit of 30 images
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Results
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Fluorescence correlation 
spectroscopy at reduced volumes

• Brief introduction to FCS. Why reduced 
volumes?

• See poster Laura Estrada
• Se talk Prof. Lenne



54

O.E. Martínez        ICTP  2008 107

0 5 10 15 20 25 30 35
18.8

19.0

19.2

19.4

19.6

19.8

time (sec)

In
te

ns
ity

(k
cp

s)

t2

t3

t4

t5

t1

FCS

( ) ( ) ( ) ( )dVtrCrIrCEFQtI exc ,..∫
+∞

∞−

=
1E-5 1E-4 1E-3 0.01 0.1 1

0.000

0.002

0.004

0.006

0.008

0.010

0.012

 

 

G
(τ

)

τ(sec)

( ) ( ) ( )
2Ι
τtΙtΙ

τGnorm
+

=

τR

1
<N>

E. Gratton & L. Estrada
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Outline
1. Introduction and motivations 
2. Localization vs. resolution
3. Nonlinear approach
4. Near field approach
5. Newcomers

– Short wavelength sources
– Superlenses
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Y. Liu, et al.  Phys. Rev.  A, 
63, 033802 (2001). 

•Rep rate 4 Hz
•High energy per pulse [0.8 mJ] 
•High monochromaticity
•Average power  [3 mW] 

• High monochromaticity • High spatial coherence

J.J. Rocca, el al.  Phys. Rev. Lett. 73, 
2192 (1994).

∆λ/λ=5×10-5

• High fluence: mW
average power

Capillary discharge laser – 46.9 nm

cmcm
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M. C. Marconi, P. Wachulak, M. Capeluto, D. Patel, C. S. Menoni, J. J. Rocca,

NSF Engineering Research Center for Extreme Ultraviolet Science and Technology 
and 

Department of Electrical and Computer Engineering, Colorado State University
Fort Collins, CO 80523, USA 

Interferomeric lithography at SXR wavelengths

Source: 46.9 nm discharge pumped table top laser
Compact tool
Printing different motifs on PMMA and HSQ
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Capillary 
discharge 

laserExperiment 
chamber

Table top nano-patterning tool
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Table top Nanopatterning

Double exposure set up 
with a Lloyd’s mirror

Two successive exposures allows 
printing arrays of nanometer size 

features
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2 cD R≤

cos( )
cRx =
Θ

cb a l− ≤

• Spatial coherence:

Requirement: 

2sin( )
clx =

Θ

~ 0.5cR mm

Requirement: 

• Temporal coherence:

Radius of coherence:

Coherence length:

Printing area: coherence limitations

mlc µ
λ

λ 470
2

≈
∆

=
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Period 95nm, 
lines FWHM ~47nm
Scan size 7x7µm2

Period 140nm, 
pillars FWHM ~70nm
Scan size 10x10µm2

Pillars Lines

Table top Nanopatterning PMMA: large areas
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Patterning areas in excess 500 x 500 µm2

Low dose generates small holes

10 x 10 µm2
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Table top Nanopatterning PMMA: oval nanodots

Different rotation angles allows printing different motifs

500 nm

Elongated dots

α
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Table top Nanopatterning PMMA: High dose

Dose: 32 mJ cm-2
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Other applications: Full field zone plate microscope at 
λ=46.9 nm can image the surface of semiconductor chips.  

EUV laser Microscope

100 nm lines, 
800 nm spaces

250 nm lines 
and spaces

100 nm lines, 
800 nm spaces

250 nm lines 
and spaces

170 nm half period structure

1 µm

170 nm half 
period structure

5µm

170 nm half period structure

1 µm

170 nm half 
period structure

5µm

20 sec exposure EUV images of the surface of a 
semiconductor chip - ∆r=200 nm

Spatial resolution: 150 nm

REFLECTION MODETRANSMISSION MODE
20 sec exposure EUV image of 70 nm 

half period dense lines - ∆r =70 nm
Spatial resolution <70 nn
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NSF ERC for Extreme Ultraviolet Science & Technology 
and Department of Electrical and Computer Engineering, 

Colorado State University
wachulak@lamar.colostate.edu

Holographic Nano-Imaging Realized with
Compact Extreme Ultraviolet Lasers

M. C. Marconi, P. Wachulak, R. A. Bartels,
C. S. Menoni and J. J. Rocca

O.E. Martínez        ICTP  2008 120

EUV Holography

• Outer Diameter 50-80nm
• Length 10-20µm
• Purity > 95%
• Ash <1.5wt% 

Object :
Multi-Wall Carbon Nanotubes (manufacturer specs.):

www.cheaptubesinc.com

Experimental details:

• zp ~2.5 - 4 µm
• Laser-object distance zs =75cm
• Laser shots = 150
• Dose = 53mJ/cm2
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50-80 nm CNT
Optical image AFM image

Hologram Reconstructed  image

Line section 

49nm 45nm

• zp = 2.6 µm
• pixel size = 9.7nm
• scan size 10x10 µm2
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Reconstructed  image

Line section 30-50 nm CNT
AFM image

Hologram

45nm 38nm

• zp = 3.94 µm
• pixel size = 9.7nm

Hard to obtain good 
quality image with AFM

Carbon nano-tubes 
move as they are scan
with the AFM tip
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Resolution: EUV laser 
coherence parameters

Table with resolutions 
for…

Transversal 
coherence

Longitudinal 
coherence

Experimental
resolution

zp = 4 mm 337.8 nm 64.1 nm 381 nm
zp = 120 µm 30.4 nm 29.2 nm 164 nm
zp = ~2.5 µm - 4 µm 28.6 nm 28.6 nm ~ 48 nm

zp

Rcα

Area of 
coherence

zp

zp

∆

d
α

max 1 p

p c

z
NA

z l
 

= −   + 
max sin tan c

p

RNA a
z

  
=       

• transversal 
coherence

• longitudinal 
coherence

max

0.61
NA

λδ =

Rayleigh criterion
for resolution

Hologram scanning limitations: Real limitation 
to the resolution.

Coherence limitations:

( )
2

2

2/ ~ p
total samples

z
N N line

λ
δ
⋅ 

=  
 
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Conclusions
• sub-50 nm (wavelength) resolution in 
the recording and reconstruction of a 
holographic image obtained in the 
Gabor’s geometry with a table top EUV 
laser was demonstrated,

• to determine the optimum reconstruction 
parameters and assess the spatial 
resolution of the holographic recording we 
used a correlation analysis,
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•SXR table-top lensless imaging with sub 100nm resolution

Lens-less imaging: sub 100nm

object diffraction pattern reconstruction

1µm

Richard Sandberg, Ariel Paul, Daisy Raymondson, Margaret Murnane, Henry Kapteyn, 
Changyong Song, Janwei Miao, Przemyslaw Wachulak, Mario Marconi, Carmen Menoni, 

Jorge Rocca, Anne Sakdinawat
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Other SXR sources to come

B. A. Reagan, et al PHYSICAL REVIEW A 76, 013816 2007
Enhanced high-order harmonic generation from Xe, Kr, and Ar in 

a capillary discharge

High-order harmonic spectra on a log scale
with solid red and without dashed black the
discharge showing an extension of the HHG 
cutoff to photon energies of above275 eV in 6 
Torr of Ar with 11 mJ laser pulses. 
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Outline
1. Introduction and motivations 
2. Localization vs. resolution
3. Nonlinear approach
4. Near field approach
5. Newcomers

– Short wavelength sources
– Superlenses
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Metamaterials and Negative Refractive Index
D. R. Smith, J. B. Pendry, M. C. K. Wiltshire

6 AUGUST 2004 VOL 305 SCIENCE



65

O.E. Martínez        ICTP  2008 129

PLASMONS
Mark Stockman
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If

then

the transmission coefficient for each Fourier component results

The negative phase of the transmission coefficient is a result
of the negative refractive index. Thus traversing a thickness d 
of 1 n = . material cancels the phase acquired in traversing an
equal thickness of vacuum. Hence the focussing effect of the
new medium.
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What happens to the waves with very large k//?

If we want to use visible radiation to make an image of a 
very small object which is much smaller than the
wavelength of light, but that the distance between object
and image is also very small.
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Then:

and

hence



67

O.E. Martínez        ICTP  2008 133

Hence the transmission coefficient for P polarised waves of very
short wavelength depends only on ε and not at all on µ. With ε=-1, 
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A. Larkin and M. I. Stockman, Imperfect Perfect Lens, Nano Lett. (2005).
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A. Larkin and M. I. Stockman, Imperfect Perfect Lens, Nano Lett. (2005).

O.E. Martínez        ICTP  2008 138

mask

w/superlens

w/o superlens

Sub–Diffraction-Limited Optical
Imaging with a Silver Superlens
Nicholas Fang, et al.
22 APRIL 2005 VOL 308 SCIENCE
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Thomas Taubner, Dmitriy Korobkin, Yaroslav Urzhumov, Gennady Shvets, Rainer Hillenbrand. 
SCIENCE VOL 313 15 SEPTEMBER 2006

(A) Experimental setup. (B) Scanning 
electron micrograph (mirrored) of the 
object plane, showing holes in a 60-nm-
thick Au film. (C) Infrared amplitude in the 
image plane at λ=10.85 µm where 
superlensing is expected. (D) Infrared 
phase contrast (λ= 11.03 µm ). (E) Control 
image showing infrared amplitude at λ=
9.25 µm (no superlensing). (F) Fourier 
tranforms of line scans taken from 
amplitude images of a grating (~3 µm 
period, averaged over 26 scan lines), 
normalized to unity for zero frequency. 
High spatial frequencies (up to the 
grating’s fourth harmonic) are imaged by 
the superlens/s-SNOM system around λ=
10.84 µm wavelength.

Near-Field Microscopy Through 
a 880nm SiC Superlens
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LIMITATIONS

• Needs a near field probe to measure
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Far-Field Optical Superlens

Durant et al. Vol. 23, No. 11/November 2006/J. Opt. Soc. Am. B 2383

Transmitted properties of (a) a conventional superlens versus (b) a FSL. It is assumed that waves are radiated by an
object at z = z0. Incident evanescent waves are enhanced in transmission through a conventional superlens (a) and
still vanish quickly in the near-field zone, limiting the imaging ability of a superlens to the near field. In contrast, a 
FSL (b) both enhances and converts the original evanescent waves in propagating waves. In this latter case, incident
propagating waves are comparatively transmitted with low amplitude in the far field, and the main contribution to the
far-field angular spectrum is due to the incident evanescent waves. Using this property, the near- field angular 
spectrum can be retrieved from the measurement of the far-field angular spectrum.
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Zhaowei Liu et al NANO LETTERS 2007 Vol. 7, No. 2 403-408

(a) A FSL. (b) Far-field superlens optical microscope can be realized by insertion of a FSL between 
the specimen and objective of a regular optical microscope. (c) Subwavelength object with two line 
sources of 50 nm width separated by a 50 nm gap and its far-field image by FSL calculated for p-
polarized normally incident laser light at a wavelength of 377 nm. Calculation shows a unique 
subdiffraction-limited image can be obtained by FSL. A diffraction limited image from a 
conventional optical microscope (NA ) 1.5) is also shown as comparison.
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(a) Ideal OTF for FSL that enhances incident
evanescent waves within wavevector bands (nk0
< |k| < nk0 + kΛ where n is the refractive index of 
the surrounding media and k0 and kΛ are the light 
wavevector in vacuum and grating wavevector, 
respectively. This ideal OTF ensures a one-to-
one relationship between the measured far-field 
signal (k) and its evanescent origin (k2), therefore 
unique imaging retrieval. (b) Schematic of a 
silver FSL and a chromium object fabricated on a 
quartz substrate. The computationally optimized 
geometry of the FSL is a ) 35 nm, b ) d ) 55 nm, c 
) 100 nm, e ) 45 nm, and f ) 105 nm. (c) 
Calculated OTF of the optimized FSL under p-
polarized incident light with vacuum wavelength 
of 377 nm and grating wavevector kΛ ) 2.5k0. 
The dashed red and blue curves represent the 
enhanced evanescent waves. Solid curves 
represent the propagating waves shifted from the 
evanescent waves. No wavevector mixing occurs 
in the shaded range (2.8k0 < |k| < 4k0) that ensures
unique imaging resolution up to 4k0.

Zhaowei Liu et al NANO LETTERS 2007 Vol. 
7, No. 2 403-408
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Experimental imaging results of periodic subwavelength objects. (a) Far-field intensity profiles (averaged along fringes) 
of six nanowire array objects under p-polarized normal illumination at 377 nm. (b) Measured OTF of the silver FSL 
shows a selectively enhanced band that agrees well with the theoretical calculations (red solid curve). The calculation of a 
simple grating by replacing the silver slab with PMMA (blue solid curve) shows a very low OTF due to the absence of
evanescent wave enhancement. The upper and lower insets compare the computed field distribution after a subwavelength
object with FSL and with the simple grating without silver slab, respectively (the object with 120 nm period, i.e., k ~
3.14k0). A clear image can be seen from the FSL sample at the far field due to the strong evanescent enhancement via
silver slab, while no such image is obtained with a simple grating. (c,d) Measured far-field patterns (inset) and their
Fourier spectra for the 130 nm object under p and s polarization, respectively. As a control experiment, s polarization does
not undergo the surface plasmon mediated enhancement at the FSL, resulting in no characteristics of the object at far field.

Zhaowei Liu et al NANO LETTERS 2007 Vol. 7, No. 2 403-408
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Far-field imaging of a pair of nanowires. 
(a) Scanning electron microscopy image
of an object nanowire pair with 50 nm
wide slit and 70 nm gap inscribed by 
focused ion beam on a 40 nm thick Cr
film on the quartz substrate. (b) 
Diffraction-limited image from a 
conventional optical microscope cannot
resolve the two nanowires (NA ) 1.4, λ0 =
377 nm). (c) Reconstructed FSL images 
using s polarization is diffraction limited 
due to the lack of surface plasmon 
assisted evanescent enhancement. (d) FSL 
image combining both s and p 
polarizations that resolves the 
subdiffraction objects due to strong 
evanescent enhancement via surface 
plasmon excitation at FSL. The scale bars 
in (a), (b), (c), and (d) are 200 nm. (e) The 
averaged cross-section image profiles 
from (b), (c), and (d), respectively.

Zhaowei Liu et al NANO LETTERS 2007 Vol. 7, No. 2 403-408
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Hyperlens

Zubin Jacob et al 4 September 2006 / Vol. 14, No. 18 / OPTICS EXPRESS 8247

(a) Scattering of an incident plane wave by a target (yellow object) can be represented as scattering of various angular 
momentum modes (the regions of high intensity are shown in black and low intensity in white). Higher order modes are 
exponentially small at the center (b). This results from an upper bound on values of kθ and the formation of the caustic 
shown in red in (c).
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Zubin Jacob et al 4 September 2006 / Vol. 14, No. 18 / OPTICS EXPRESS 8247

Dispersion relation for isotropic medium (a) and for a material with εr < 0, εθ> 0 (b). Note that for a fixed 
frequency, the wave vector k can take on arbitrarily large values (within the effective medium approximation).

For example a plane wave

A bound appears for the radial component of k, that depends on m

If anisotropic dispersion with one negative component
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Proposed hyperlens construction

Possible realizations of metacylinders. Concentric metallic layers alternate with dielectric layers (a) or
radially symmetric “slices” alternate in composition between metallic and dielectric (b) to produce (εr < 0, 
εθ> 0) anisotropy. This results in a hyperbolic dispersion relation necessary for penetration of the field 
close to the center.

Zubin Jacob et al 4 September 2006 / Vol. 14, No. 18 / OPTICS EXPRESS 8247
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Hyesog Lee et al 26 November 2007 / Vol. 15, No. 24 / OPTICS EXPRESS 15886

(a) Hyperlens sample fabrication process flow. Through the etch hole on a Cr film (1),  isotropic wet etching makes
cylindrical groove in quartz (2). After Cr film is removed (3), multilayer hyperlens structure is fabricated using
alternate deposition of Ag and Al2O3 (4). A Cr film caps the hyperlens structure for object fabrication (5). (b) 
Imaging setup. Completed hyperlens/object sample is placed under objective with incident light at 365nm, 
conventional far field microscope with 100X oil immersion objective and UV sensitive CCD detector was used for
direct far field imaging.
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. Hyeperlens imaging results. (a) SEM image of 130nm line pair object on Cr film. Dark region is the hyperlens
and the bright region is the flat surface. (b) Image captured by optical microscope through hyperlensing shows 
130nm gap is clearly resolved. (c) Left: SEM image of tilted line pair object with indicated gap sizes. Middle: 
Image captured by optical microscope through hyperlensing. Right: Intensity profiles of the three indicated cross 
sections showing resolved 125nm gap (top).

Hyesog Lee et al 26 November 2007 / Vol. 15, No. 24 / OPTICS EXPRESS 15886
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Radiationless Electromagnetic Interference: Evanescent-Field 
Lenses and Perfect Focusing 

R. Merlin/ 12 July 2007 / Page 1 / 10.1126/science.

z0

zqi
q ef )( 0

0

κ )()(
0

ρρ qfM ×

If M has a pole at iL will produce a near field focus at 

z=L
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Fig. 2. Radiationless
nterference. (A) Schematic 
showing a subwavelength
plate, represented as a 
modulated array of linear 
current sources at z = 0 and 
the plane showing the 
focalline. L/l =3. (B) 
Contour plot of ln|Hy|
. (C) Contour plot of 
|Hy(z,y)/Hy(z,0)|2
The dashed white line
at z = L denotes the focal 
plane.
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Conclusions

• Nanoimaging with light is a mature field
• Applications to life sciences is just 

beginning
• Many more techniques should be expected
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