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Light Microscopy

Excitation

Detection

Emission

Laser

NA = n sin

Numerical aperture

2sinn

22.0d
2

NA2
22.1r

Typical NA ~ 0.5 – 1.4

(immersion  objective)
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Excitation

Light microscopy: excitation field
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Light microscopy: emission field

From J.M. Raimond, 

electromagnetism & relativity’s 

lesson (2000)

erki
r

pk
E exp

sin

4

1 0

2

0

Far-field radiation 

pattern of a single 

z-oriented

Hertzian dipole

Far-field approximation (r >> ):

Contrast mechanism dependent
-Fluorescence 1P, 2P

-SHG (TWM), THG, CARS (FWM)
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Light emission in incoherent processes

• Incoherent emission => each dipole 

emits light with a randomrandom phase.

•The total intensity equals the sum of

individual intensities.

?Equivalent

dipole

……to an assembly to an assembly 

of dipoles.of dipoles.

From a single From a single 

dipoledipole……

For an incoherent process: Fluorescence
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Light emission in coherent process 

• Coherent emission => the

phase of each dipole is fixed by 

a phase relation.

•Locally, the total field is the 

sum of the fields emitted by 

each dipole (interference).

•The intensity is the square 

modulus of the total field

Adapted from J.X. Cheng and al., 

Biophys. J. 83, 502 (2002)

For a coherent process: SHG (TWM), THG, CARS (FWM)

Radiation pattern

depends on 

the phase relationship 

between emitters !
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Fluorescence contrast
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Fluorescence microscopy:

Advantages: Drawbacks:

Chemical specificity Staining step before observation

Very good SNR ratio Staining induced cell’s potential malfunctioning

Photobleaching
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Nonlinear contrast

(cf Mario Bertolotti tutorial on nonlinear optics)

(1) (2) (3)

0

(1) (2) (3)

0

( ) ( : : : ...)

( ...)i ij j ijk j k ijkl j k lP E E E E E E

P E E E E E E

Einstein notation

Introduction / mixing of frequencies

Need to be strong

Linear optics

Non linear tensor

Symmetry dependant

Non linear optics requires strong optical field

-Hydogen atom,

- Sun on earth: 103 V.m-1 , linear optics regime

- 10kW laser focused on a 10 m spot: 108 V.m-1, non linear optics regime

- Non linear microscopy needs to focus the incident fields!!

11 1 -11

2

0

5.10 .  ; Bohr radius a=5.10 m
4

at

e
E V m

a
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NLO contrasts in microscopy

Débarre et al., Opt. Lett. 30, 2134 (2005)
Muscle tissue (SHG)

(Webb lab)

3
2

SHG microscopy THG microscopy

(1) () )

0

2 3( :( . ):) ( . .:E E E EEP E

SHG and THG microscopy

Advantages: Drawbacks:

Useless staining Non-Centrosymmetric media required (SHG)

No photobleaching No chemical specificity
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The challenge: a chemical selectivity without staining

2-propanol molecule

CH3-CH(OH)-CH3

C

O

R

Modeling:

Assembly of oscillators with 

mode frequency R and

mode energy h R.

Specificity:

R specific to each 

vibrational mode.
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Detecting vibrational levels: IR absorption microscopy

R

IR excitation

IR absorption spectrum

Source: http://www.aist.go.jp

Excitation

volume 10

-

100µm

1/ =3300 cm-1

=100 THz

=3 m

1/ =1000 cm-1

=30 THz

=10 m

Main drawback:

bad spatial resolution
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Detecting vibrational levels: Raman scattering basics (1)

R

V=1

V=0

p s

Stokes scattering

Vibrational level

Anti-Stokes scattering

Fundamental level

p as

R

Spontaneous Raman scattering
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Raman scattering basics (2)

R

Raman spectrum (Stokes)
Optical excitation

p frequency

Main drawback:

Long acquiring time

Excitation

volume
~1µm

Source: http://www.aist.go.jp

p- R

p+ R

R=10-14
F

Anti-Stokes
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Coherent anti-Stokes Raman Scattering

- Can we excite a specific molecular bond efficiently?

- Can we make an image at a sub-cellular level?

Coherent Anti-Stokes Raman Scattering

Microscopy

CARSCARS

=
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Bouncing the springs



CARS microscopy: from principles to applicationsCARS microscopy: from principles to applications

The CARS Hammer

PPump wave

Anti-Stokes

AS= P+ R

R

Stokes S= P- R

P- S= P-( P- R)= R
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Coherent anti-Stokes Raman scattering: Energy view

Coherent anti-Stokes 

Raman scattering (CARS)

V=1

V=0R

p

s s

p as

CARS=106
R=10-8

F (in microscopy)
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Coherent anti-Stokes Raman scattering: (3) view

(1) (2) (3)

0 :( ) ( : ...):P E E E E EE

Four waves mixing
(3) ( )

= (3) (2 P S P P S )

f

v

P

P

S
P P S
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CARS / Raman Scattering

Laser p

Spontaneous RAMAN

Stokes s

AntiStokes as

Stokes s

AntiStokes as

R R

wavelength

frequency
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CARS microscopy: What do you need?

S

P

High sensitivity detectors
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A first experimental set-up

p = 730 nm

Pulse width 3 ps
BC: beam combiner

BS: beam splitter

C: condenser (NA=0.5)

F: filter

L: lens

Forward

CARS

detector
NA 1.2

Epi

CARS

detector

p

s

as

Ep

Sample

Objective C

Es

LE
LF

F

BC

BS

as

p 780 - 920 nm

Pulse width 3 ps

x

zy

F
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CARS microscopy: let’s do a first experiment on GUV

Deuterated lipids

C-D bond Raman spectrum
Electroformation

Giant unilamellar vesicles (GUV):
diameter: 5 -100 µm
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CARS microscopy: a first experiment on GUV

F-CARS images of GUV (Giant Unilamellar vesicle ) DMPC[D54]

F-CARS GUV (DMPC-D54): 

(60×60) pixels, 1ms/pixel.

Pump 730nm, Stokes 862nm: Power 800µW : rep rate: 4MHz
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CARS: Resonant and non Resonant contribution

Two contributions to CARS 

generation

Resonant contribution (Resonant contribution ( RR
(3)(3)))

(vibrational origin)

V=1

V=0

ps as

R

p

Nonresonant contribution Nonresonant contribution (( NRNR
(3)(3)))

(electronic response of the medium)

R
V=1

V=0

s

as

p

p

Presence of molecules with oscillating vibrational mode R

Enhancement of the signal at frequency as
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(3) (3)

( ) 2

tR
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R p s R t p t

AA

i i

R
)3(

Far from two photons absorption

f

e

p

s

as

v
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2as p p s p s
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f

v
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CARS: Resonant and non Resonant contribution
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Spectral behaviour of the (3) tensor: (3)
R and (3)

NR

(3) (3) *

2 2
(3) (3)

, : , : , : ,

( ) ( )

as as p p p p s s

as as

P r E r E r E r

I P

CARS as a third-order nonlinear process:

constant&realis:tindependenspectrallyresponseElectronic

:lineRamanisolatedanFor

:partstwointoiondecomposit

(3)

(3)

NR

Rsp

R

NRR

i

a

)(

)3(

)3()3()3(

Raman line 

half-width

Oscillator

strength

Vibrational

frequency

(3) spectral behaviour



CARS microscopy: from principles to applicationsCARS microscopy: from principles to applications

Spectral behaviour of the (3) tensor: Interference term

Potma et al., J. Raman Spectr. 34, 642 (2003)

CARS resonance lineshape

)3()3(

2)3(2)3(

2)3()3(

Re2
NRR

NRRCARS

NRRCARS

I

I

Homodyne terms

Heterodyne terms
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Raman / CARS spectra

Source: http://www.aist.go.jp

Polystyrene spontaneous 

Raman spectrum Polystyrene CARS spectrum
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Experimental evidence
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Gachet et al., Optics 

Express 15, 10408

(2007)

Bead experimental 1D scans
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Resonant contribution

can be expressed as a complex number:

Modulus: Phase:

Circle in the complex plane:
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(3) in the complex plane
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(3) drives the CARS antiStokes field

(3) (3) *

(3)

, : , : , : ,

( )

as as p p p p s s

as as

P r E r E r E r

P E

The amplitude and phase of (3) drives the amplitude and phase of EAS
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CARS step by step

Induced polarization
(3) (3) *, : , : , : ,as as p p p p s sP r E r E r E r
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CARS step by step

1. Pump & Stokes fields

2. Induced nonlinear polarization

3. Dipolar emission

4. Summation over far-fields 

emitted in a particular direction

)r(Es

Stokes

laser
Pump

laser

)r(E p

ssppppasas rErErErP ,:,:,:, *)3()3(

Medium Exciting fields

Induced nonlinear 

polarization
)r(P )3(

erki
r

pk
E exp

sin

4

1 0

2

0

Far-field approximation

fields

rticular direction

)r(s
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)))r))rr(rr((p((ss ))
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larizationerer

E
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CARS field in direct and reciprocal spaces

Electric field EAS in

the reciprocal space 

(kx,ky)

Electric field EAS in the 

direct space (x,y,z)

)r(E
Coherent summation!

)k(E

Coherent summation!

Induced

polarizationInduced

polarization
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Far-field CARS radiation patterns in direct space

F-CARS

E-CARS

ps

a
s

a
s

z

x

Gachet et al., Proc. SPIE (2006)
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F-CARS emission

more directive 

than the excitation beam

along one direction

Far-field CARS 

radiation patterns in k 

space
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F-CARS / E-CARS radiation

F-CARS

E-CARS

x 200

E/F

Volkmer et al. PRL (2001)

Gachet et al., Proc. SPIE (2006)

Djaker et al., Appl. Opt. 45, 7005 (2006)
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Epi-detected CARS: a way to visualize small objects

A. Volkmer, J. Phys. D: Appl. Phys. 38, R59 (2005)

A. Volkmer, id.

Excitation

volume

Solvent

Forward

Epi

Epi detection

Forward detection

Small

object
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Phase matching in NLO (SHG example)

Cf lecture NLO Mario Bertolotti
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*2)3( )()()( SSPPAS

NL EEP

Phase matching in CARS
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CARS phase matching: intuitive approach

Epi-CARS

Fwd-CARS

ps

a
s

a
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z

x

kas,Fwd

kp kp
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z

Fwd-CARS
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-kskas,Epi

Phase-matching & CARS generation
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F-CARS / E-CARS radiation

2µm bead

F-CARS

E-CARS

x 200

cl

4

as
cl

100nm bead

Gachet et al., Proc. SPIE (2006)

Djaker et al., Appl. Opt. 45, 7005 (2006) 
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CARS instrumentation
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A first experimental set-up

p = 730 nm

Pulse width 3 ps
BC: beam combiner

BS: beam splitter

C: condenser (NA=0.5)

F: filter

L: lens

Forward

CARS

detector
NA 1.2

Epi

CARS

detector

p

s

as

Ep

Sample

Objective C

Es

LE
LF

F

BC

BS

as

p 780 - 920 nm

Pulse width 3 ps

x

zy

F
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How to choose pulses temporal length?

J.-X. Cheng et al., J. Phys. Chem. B 108, 827 (2004)

The dilemma:

•• Long pulsesLong pulses::

++ good spectral selectivity

- poor CARS generation efficiency

••Short pulsesShort pulses:

+ efficient CARS generation

- low spectral resolution

Solutions:

• To spectrally match the studied Raman line ps range
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Laser Synchronization 

M

Saphir

Titane

839

nm

Saphir

Titane

740

nm

Délai (ps)

Correlation

Cross-
correlation

CARS signal

FD: filtre dichroïque, M: miroir

- Fast photodiodes

-/ Autocorrelator (SHG)

-/ 2P detector

- CARS signal

Synchro electronic

Potma Opt Lett 27 (2002)
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Nd:Vd VERDI 10W

MIRA

Saphir

Titane

(Master)

MIRA

Saphir

Titane

(Slave)

Pulse

Select

Pulse

Select

Synchro

Lock

APD

PZT stage

XYZ

Sample

Microscope

Objective NA1.2

Dichroic

FilterM

BC

M

M

M

Delay

( /2)+Glan

P+ S AS

PZT

Filters

Monochromator

Telescope

APD

Filters

Collection objective

NA 0.5

E-CARS

F-CARS

M BS

APDAPD

PS

AS

Retroreflector

BC: beam combiner

M : Miroir

PZT : Piezo

APD : Avalanche Photodiode

Setup scheme pico/pico
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Two oscillators: pico / pico setup

F-CARS

E-CARS

S

P

AS

Sample

MHz

KHz

SynchroLock System

MHz

KHz
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Two oscillators pico / femto = Multiplex CARS

Pump: 10 ps

Stokes: 80 fs

10 ps

0.8 ps

Muller J. Phys. Chem B 106 2002
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Multiplex CARS

Identification of the Thermodynamic State of Lipids in Multi-lamellar Membranes

Gel phase DSPC

1128 cm-1

Liquid phase DOPC

1087 cm-1

1128 cm-1
1087 cm-1

From Müller, J. Phys. Chem. B. (2002)
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1 oscillator femto + PCF

Kano et al. APL86 (2005)
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What is an OPO (Optical Parametric Oscillator)

Recent advances in Optical Parametric Oscillators

Berlin

Parametric generation (2) ( ).

Idler

f

e

Signal

Parametric amplification (2) ( ).

Signal

Idler
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One oscillator + One OPO pico/pico

Pump ps 532nm

Signal

Idler

>1350 cm-1

>700 cm-1
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Sensitivity improvement: FM CARS
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Sensitivity improvement: H(eterodyne) CARS

Potma Opt. Lett. 31 (2006): LO generated in DMSO

Enable to recover real and imaginary part of (3)

Lipid resonance 2845cm-1

Raman

Off resonance
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H(eterodyne) CARS with OPO!

Jurna Opt. Expr 15 (2007)
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HCARS with interfaces
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1. Field symmetry permits to use non 

resonant CARS as a local oscillator

2. Raman spectrum recovery and 

heterodyne detection
Gachet et al., PRL (submitted)
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Single pulse CARS

Dudovich, Oron, Sylberberg Nature 418 (2002)

Other scheme with a control of the probe beam: Oron PRL 89 2002

Can excite only a vibration with

CH2Br2 (CH2Cl)2

Number of oscillation across the SLM
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CARS Application: a stain free microscopy

Scanning

directions

Advantages:

1. Fluorescent staining useless.

2. Chemical selectivity of the contrast.

3. Intrinsic 3D imaging.

p

as

s

as

Forward

detected signal

(F-CARS)

Backward

detected signal

(E-CARS)

Sample

x

y

z

Microscope

objective

E-CARS F-CARS

Fish gills

Courtesy Julian Moger

Exeter- UK

(2008)
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Imaging lipids in cell

NIH 3T3 cells in interphase. Aliphatic C-H stretching 2970 cm-1

Pump 14054 cm-1(711nm) and the Stokes 11184 cm-1(894nm). P: 40mW; S: 20mW

Cheng et al Biophys. J. 83, 502 (2002)

N.Djaker et al,  Medecine & science – (2006)
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3D sectioning capability of CARS 

Three dimensional

distribution of lipids in epithelial cells.

CH2 stretching vibration (2845 cm-1).

Lipid granules and plasma membranes. 

http://bernstein.harvard.edu/research/cars.html
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Raman Spectrum of the cell 

Potma, E.O. et al. Optics and Photonics News, 2004, 15

CH3 (protein)CH2 (lipid)

Amide I 
(protein)Phosphate

(ADN)

500 15001000 2500 35002000 3000 4000

Raman frequency (cm-1)

PO2
-symmetric stretching

vibrational frequency at 1090 cm-1

Lipid droplets in 3T3 cells (Xie group)

CARS image
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From Potma PNAS 98, 1577 (2001)

OH strech 3300 cm-1

OD strech 2800 cm-1

living D. discoideum cells

3300 cm-1 OH strech

H2O
H2OD2O

Permeability of the plasma membrane Pd=2.2 m/s

Dw=5 m2/s (10%-20% of the cell diameter)

Dw>500 m2/s (central cell region)

t=0

H2O

D2O

Dw

Exceptionally low Dw due to the presence of densely packed actin

filaments in this region that provide an additional barrier in the 

process of water diffusion.

P S

Imaging H2O in cell
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F-CARS back reflected in scattering tissue

Microscope

objective

Sample

z

Excitation

Back-scattered

photonsCARS imaging in 

scattering media

Evans et al., PNAS 102, 16807 (2005)
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Imaging Tissue

Coherent anti-Stokes Raman scattering imaging of

adipocytes (red) and second harmonic generation

imaging of collagen fibrils (green)

to evaluate the impact of obesity on mammary

gland and tumor stromal composition.

Le et al., Molecular Imaging 6 (2007)

Experimental Setup and in vivo E-CARS images. (A) Experimental

setup for combined E-CARS and SHG imaging of a live mouse. (B) E-CARS

image of parallel myelinated axons in the sciatic nerve and the surrounding

fat cells. Scale bar = 25 µm.

Huff, Cheng, J of Microscopy 225 (2007)
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Imaging the skin: Rat skin

Depth: 0 µm

Depth 15 µm

Stratum corneum

Adipocytes of the dermis

Non resonant
E-CARS rat Skin. CH strech 2845cm-1

(200×200) pixels - 1ms/pixel.

Pump 730nm, Stokes 920nm: Power 800µW, rep rate: 4MHz 

0 m

15 m 15 m

Marseille
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E-CARS Stratum Corneum with depth.

R=2829cm-1 (C-H bond)

(200×200) pixels - 1ms/pixel.

Pump 730nm, Stokes 920nm: Power 800µW, rep rate: 4MHz 

1

mm

1

cm

Corneocytes

Imaging the skin: Stratum Corneum
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A polarization sensitive technique

Djaker et al., Médecine / Science 22, 853 (2006)

Forthcoming

Investigation in 

polarization CARS 

microscopy

F-CARS GUV (DMPC-D54):

(60×60) pixels, 1ms/pixel.

Pump 730nm, Stokes 860nm: Power 800µW : rep rate: 4MHz
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Conclusion

1. CARS addresses molecular intrinsic vibrational transition and does not require staining 
with fluorophore or radioactivity.

2. CARS is a coherent process which builds an anti-Stokes wave on a large number of
molecular bonds. This coherent process permits to obtain a signal orders of magnitude 
larger than spontaneous Raman scattering. Small laser powers (1mw) can be used 
which are compatible with biological samples.

3. CARS is selective of a certain molecular bond (by adjusting the detuning between laser 
and Stokes beam) (spectral selectivity)

4. CARS is a non linear process which takes place only at the focal point of the 
microscope objective (diffraction limited) . Therefore no confocal pinhole is needed to 
obtain 3D imaging of biological samples.

5. Working in IR limits the absorption and diffusion of bio- tissue. Images as deep as 
0.3mm can be obtained in living tissues.

6. CARS is an elastic process which does not store energy into the system. It is therefore
insensible to photobleaching.

7. Finally, CARS is not affected by endogenous fluorescence because the anti-Stokes
signal is at lower wavelength than the pump lasers.
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CARS

Single Particle

Detection

FCS

Dynamic Multiple

Optical Tweezers

NanostructuresMicro-stereolithography
Laser nanoscissors

Dynamic organization 

of living cells and tissues

http://www.fresnel.fr/mosaic

Pulse shaping

imaging


