

1932-8

Winter College on Micro and Nano Photonics for Life Sciences

11 - 22 February 2008

Molecular Engineering of Cellular Environments:Cell Adhesion to Nano-Digital Surfaces (part I & II)

> Joachim Spatz Max-Planck-Institute for Metals Research Department of New Materials and Biosystems Stuttgart Germany

The Extracellular Matrix

C. Ploetz et al. J. Struct. Biol., 106 (1991) 73-81

Matrix Information

- Micro- and Nano- Topography
- Viscoelasticity
- Chemical Nano-Composition

D.J. Müller et al. J. Struc. Biol. 2004, 148, 268 P. Fratzl: Current Opinion in Colloid and Interface Science 8 (2003) 32–39 K. Meller et al. Cell Tissue Res (1997) 288:111–118

Length Scales in Cell Sciences

PART I – Nanometer Length Scale PART II – Micrometer Length Scale

Controlled Clustering of Receptors Provides Functionality in Cell Biology

vary d

Nanolithography < 10 nm ↔ Block Copolymer Micelle Nanolithography

Block Copolymer Micelle Nanolithography

restricted to solid inorganic surfaces

20 nm Au-dot pattern

Macromolecules 1995 Advanced Materials 1995 Chemistry European J. 1995 Advanced Materials 1996 Langmuir 2000 Advanced Materials 2002 Advanced Funct. Mat. 2003

Micellar Block Copolymer Resist Lithography

Adv. Func. Mat. 2003

Dr. Roman Glass, MPI-MF / Uni-HD

"Micro" Nanostructures

Dr. Roman Glass, MPI-MF / Uni-HD

Dr. F.-M. Kamm, University of Ulm

JACS 2001

Anti-Reflective Interfaces / Micro-Optics

Moth Eye

Optical Lense

Cooperation with ZEISS

Theo Lohmüller, MPI-MF & Uni-HD

Anti-Reflective Interfaces / Micro-Optics

Theo Lohmüller, MPI-MF & Uni-HD

Anti-Reflective Interfaces / Micro-Optics

Visible-Light Reflection

Assays with electrochemical detection

- Incubation with antigen (sample)
- wash
- incubation with enzyme labeled detection antibody
- wash
- add substrate
- measurement
- Enzyme converts redox-inactive molecule to redox active mediator
- Repeated oxidation / reduction will increase signal: redox - cycling

Redox cycling: why nano-electrodes?

- Requires small anode / cathode spacing <1µm
- State of the art: amplification factor of ≈ 10
- Difficult & expensive fabrication limits applicability in diagnostics

The NanoBioPore concept

- Multiple micro- or nanopores, laterally connected
- Electrode spacing defined by insulator thickness
 - Micro-structure technology based on *self-assembly* process

REDOX-CYCLING IN PORES

in collaboration with M. Stelzle, **NMI Reutlingen**, W. Schuhmann, **Bielefeld** S. Linke, **HL Planar**, C. Kottig, **EVOTEC**

... also applied as filters with pore diameter smaller 30 nm

Theo Lohmüller

Redoxcycling in Nanopores

Signal amplification by redoxcycling in nanopores demonstrated! Redox couple: $Ru[NH_3]_6CI_3$

Challenge

to position and group single proteins by single chemical binding sites into different geometries on rigid platforms and to investigate their cooperative function.

Cell Spreading on 58 nm pattern

Cell Spreading on 73 nm pattern

Dr. Ada Cavalcanti-Adam, Dr. Marco Arnold, MPI-MF / Uni-HD

73 nm RGD pattern

100 nm RGD pattern

cell : REF52 wt

3h movie 1000 x real time

pattern distance : ~ 100nm

50 µm I

> 100 nm RGD pattern

Cell : REF wt

3h movie

1000 x real time

pattern distance : >100nm

Dr. Ada Cavalcanti-Adam, Dr. Marco Arnold

50 µm

Dr. Marco Arnold, , Dr. Ada Cavalcanti-Adam, MPI-MF / Uni-HD

Nanoparticle Distance Gradient

Vera Jakubick, Dr. Marco Arnold, MPI-MF / UNI HD

Molecularly Defined RGD-Peptide Gradient

Dr. Marco Arnold, Vera Jakubick, MPI-MF / UNI HD

~3 nm difference between cellular back and front upon signal integration for 24 hours

Vera Jakubick, Dr. Marco Arnold, MPI-MF / UNI HD

Programming Cell Function

Benny Geiger, Weizmann Institute of Science

Dr. Ada Cavalcanti-Adam, MPI-MF / Uni-HD

Integrin Cluster Activation Control by Nanopattern

MECHANOSENSITIVITY

Dr. Ralf Kemkemer, Simon Jungbauer

MECHANOSENSITIVITY

Biphasic Time Response

Dr. Ralf Kemkemer, Simon Jungbauer

High-Throughput Screens for Identifying Cell Specific Material Parameters

PART II – Micrometer Length Scale

SKIN

Mimicking Protein Filament Networks in vitro:

Initiative of the VolkswagenStiftung Viola Vogel (ETHZ), Mike Sheetz (CU), Benny Geiger (WIS), Joachim Spatz (MPI-MF)

Mechanotunable Fibronectin with Switchable Biological Activities

Viola Vogel (ETHZ) in, e.g. PNAS 2001 Harold Erickson (Duke University) in, e.g. J. Muscle Res. Cell Mobility 2002

How to Form Fibronectin Matrix in vitro

Aggregation of Fibronectin or Collagene at the Air-Water-Interface

The Extracellular Matrix (FN) – in vitro

Suspended Fibronectin Films with different Structure

Suspended <u>BSA</u> Films with different Structure

Scanning Electron Microscopy Displays the Formation of Fibronectin Fibers

Suspended Air-Liquid Interface

Scanning Electron Microscopy Displays the Formation of Fibronectin Fibers

Different Fibronectin Fibre Conformation – Different Biological Activity

in vitro

in vivo Fibers produced by cells

THE EXTRACELLULAR MATRIX

Mechanotunable Protein Networks with Switchable Biological Activities - FIBRONECTIN

Mimicking the Actin-Filament System

<u>cellular actin filament network</u> \longleftrightarrow <u>synthetic actin filament network</u>

Si(100) or Polymer (PDMS)

Chicken Heart Cells

Biomimetics of the Actin Cortex

before filamin

after filamin

ChemPhysChem 2003

Filament Bending Modulus and Persistance Length of F-Actin in a 2-Dim Network

$$\mathbf{E}_{\mathrm{b}} = \frac{1}{2} \, \mathbf{\kappa} \cdot \int_{0}^{1} \left(\frac{\partial^{2} \mathbf{y}}{\partial \mathbf{x}^{2}} \right)^{2} \mathrm{d}\mathbf{x}$$

For each mode this equals the thermal energy *kT*/2

Persistance length $I_p = \kappa/kT = 15.3 \ \mu m \ (\kappa = 6.3 \ 10^{-26} \ Nm^2)$

Transport in 2-dim. Actin Networks

Trajectory of Myosin V coated bead V ~ 330 \pm 50 nm/sec

Active Diffusion

∆Force > 100 pN

Dynamic Holographic Tweezers

Many hands in an optical microscope

J. E. Curtis et al. Opt. Comm. 207, 169 (2002).

Bio Research \leftrightarrow Materials Research

Applied Physical Chemistry Prof. Dr. M. Grunze, Dr. W. Eck

Physical Chemistry Prof. Dr. J. Wolfrum, Prof. Dr. M. Sauer

Dep. of Developmental Neurobiology Prof. Dr. G.E. Pollerberg, Dr. K. Thelen

RWTH Aachen Prof. Dr. M. Möller

TU München Prof. Dr. E. Sackmann, Alexander Roth Prof. Dr. H. Kessler, Claudia Dahmen

Ulm University PD Dr. med. Th. Seufferlein

financial support

Alfried Krupp von Bohlen und Halbach Stiftung German-Israel-Foundation (GIF) Fonds der Chemischen Industrie (FCI) VolkswagenStiftung (VW) Deutsche Krebsforschung Deutsche Forschungsgemeinschaft (DFG) BMBF, BASF, Qiagen, Zeiss Humboldt, Marie Curie, EU-STREP, EU-IP Max Planck Society

EMBL Dr. Th. Surrey

Weizmann Institute Prof. Dr. B. Geiger