

1932-19

Winter College on Micro and Nano Photonics for Life Sciences

11 - 22 February 2008

Photonic crystals

Marco CENTINI Università degli Studi di Roma 'La Sapienza' Rome, Italy

Winter College on Micro and Nano Photonics for Life Sciences (11-22 February 2008)

Photonic Crystals:

A Glimpse

M.Centini Universita' di Roma, "La Sapienza", Roma, Italy

Outline

- Photonic Crystals: definititions and brief introduction;
- Natural Photonic crystals;
- Fabrication technologies: overview;
- Properties of bulk photonic crystals;
- Super Prism effect: Autocollimation, negative refraction;
- Band edge laser;
- Photonic Crystals: intentional defects, cavities and waveguides;

Photonic Crystals

Multi- dimensional periodic structures with a period of the order of optical wavelength.

Periodicity comparable to incident light wavelengths can be responsible for constructive interferences among scattered light by every lattice point. A well known manifestation of this phenomenon is observed in diffraction gratings.

Photonic Crystals

Band diagrams

$$\omega = \omega(\vec{K}),$$

"Photonic crystals", K Inoue & K. Ohtaka, (Springer, NewYork, 2003).

For a quick refresh on band diagrams and Brillouin zone see the lecture notes of " Photonic Crystal Basics", held at the Winter college preparatory school 4-8 Feb. 2008 From Bragg Gratings to Photonic Crystals in 5 Steps

1785: The first man-made diffraction grating was made by David Rittenhouse, who strung hairs between two finely threaded screws. (Fraunhofer 1821)

1913: Bragg formulation of X-ray diffraction by cristalline solids

- 1928: Bloch's Theorem describe the conduction of electrons in crystalline solids. (Math developed by Floquet in 1D case in 1883)
- 1976: A.Yariv and P. Yeh, study of dielectric multilayer stacks, waveguides and bragg fibers.
- 1987: <u>Prediction of photonic crystals</u>

S. John, Phys. Rev. Lett. 58,2486 (1987), "Strong localization of photons in certain dielectric superlattices"

E. Yablonovitch, Phys. Rev. Lett. 58 2059 (1987), "Inhibited spontaneous emission in solid state physics and electronics"

Brief Photonic Crystal History

1987: Prediction of photonic crystals

S. John, Phys. Rev. Lett. 58,2486 (1987), "Strong localization of photons in certain dielectric superlattices"
E. Yablonovitch, Phys. Rev. Lett. 58 2059 (1987), "Inhibited spontaneous emission in solid state physics and electronics"

1990: <u>Computational demonstration of photonic crystal</u>

K. M. Ho, C. T Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990)

1991: Experimental demonstration of microwave photonic crystals

E. Yablonovitch, T. J. Mitter, K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991)

Brief Photonic Crystal History

1995: "Large" scale 2D photonic crystals in Visible

U. Gruning, V. Lehman, C.M. Englehardt, Appl. Phys. Lett. 66 (1995)

1998: "Small" scale photonic crystals in near Visible;

S. Y. Lin *et al.*, *Nature* 394, 251 (1998)]

"Large" scale inverted opals

Zakhidov et al., Science 282, 897 (1998)

Photonic Crystal Fibres

J.C. Knight et al, Science 282, 1476 (1998).

Brief Photonic Crystal History

1999: First photonic crystal based optical devices;

M. Meier et al., Appl. Phys. Lett. 74, 1 (1999) (PhC Laser) T. Zijlstra et al., *J. Vac. Sci. Technol. B1*7, 2734 (1999). (PhC Waveguides) R.F. Cregan et al., Science 285, 1537 (1999) (holey fibers)

2000-present: Large number of applications, devices and new fabrication technologies proposed and realized

Websites:

http://www.pbglink.com for Extensive web listing of PBG information

http://ab-initio.mit.edu/mpb MIT photonic- band package

http://homepages.udayton.edu/~sarangan Dayton Univ. Lectures on Photonic crystals

Suggested readings

Books:

Photonic Crystals: Towards Nanoscale Photonic Devices, J-M Lourtioz et al. Springer (2003)

Roadmap on Photonic Crystals by Susumu Noda (Editor), Toshihiko Baba (Editor), Kluwer Academic Publishers; (2003).

Nonlinear Photonic Crystals by R. E. Slusher and B. J. Eggleton Eds., (2003).

Photonic Crystals: The Road from Theory to Practice: S. G. Johnson and J. D. Joannopoulos, Kluwer (2002).

Optical Properties of Photonic Crystals K. Sakoda, Springer (2001).

Quantum Electronics 3° edition A. Yariv, Wiley (1989).

Optical waves in Layered media Pochi Yeh, Wiley (1988).

Photonic Crystal Fibres A. Bjarklev et al, Kluwer (2003)

Photonic Crystal Fibre PJ Russel, Wiley (2005)

Bloch's Theorem

for e.m waves in photonic crystals

Starting point: Maxwell equations and constitutive relations.

If the e.m field is time-harmonic and if the bodies are at rest or in very slow motion relative to each other:

$$\vec{j} = \sigma \vec{E}, \quad \vec{D} = \varepsilon_0 \hat{\varepsilon}_r \vec{E}, \quad \vec{B} = \mu_0 \hat{\mu}_r \vec{H}.$$

Neutral Insulators or dielectrics: $\rho=0$ σ (conductivity) is negligibly small; non magnetically active $\mu_r=1$;

If we seek solutions of the form: $\vec{E}(\vec{r},t) = \vec{E}(\vec{r})e^{-i\omega t}$; $\vec{H}(\vec{r},t) = \vec{H}(\vec{r})e^{-i\omega t}$;

We have....

Ashcroft & Mermin, Solid State Physics, Saunders College Publishing for a proof of the theorem

Bloch's Theorem

for e.m waves in photonic crystals

...the following eigenvalue equations:

$$\hat{\Gamma}_{E}\vec{E}(\vec{r}) = \frac{1}{\varepsilon_{r}(\vec{r})}\vec{\nabla}\times\{\vec{\nabla}\times\vec{E}(\vec{r})\} = \frac{\omega^{2}}{c^{2}}\vec{E}(\vec{r}),$$
$$\hat{\Gamma}_{H}\vec{H}(\vec{r}) = \vec{\nabla}\times\left\{\frac{1}{\varepsilon_{r}(\vec{r})}\vec{\nabla}\times\vec{H}(\vec{r})\right\} = \frac{\omega^{2}}{c^{2}}\vec{H}(\vec{r}),$$

If ε_r is a periodic function of the spatial coordinate Bloch's Theorem states that fields solutions are characterized by a **Bloch wave vector K**, a band index n and have the form:

$$\vec{E}(\vec{r}) = \vec{E}_{\vec{K}n}(\vec{r})e^{i\vec{K}\cdot\vec{r}}; \qquad \vec{H}(\vec{r}) = \vec{H}_{\vec{K}n}(\vec{r})e^{i\vec{K}\cdot\vec{r}};$$

with:

$$\begin{split} \mathcal{E}_{r}(\vec{r}) &= \mathcal{E}_{r}(\vec{r} + \vec{a}_{i}); \\ \vec{E}_{\vec{K}n}(\vec{r}) &= \vec{E}_{\vec{K}n}(\vec{r} + \vec{a}_{i}); \\ \vec{H}_{\vec{K}n}(\vec{r}) &= \vec{H}_{\vec{K}n}(\vec{r} + \vec{a}_{i}); \end{split} \quad i = 1,2,3. \\ \vec{a}_{2}; \quad \text{Primitive vectors of the periodic lattice} \\ \vec{a}_{3}; \end{split}$$

Bloch's Theorem

for e.m waves in photonic crystals

Substituting Bloch's solution into eigenvalue equations it is possible to calculate:

Eigen-angular frequencies: $\mathcal{O}_{\vec{k}n}$; Bloch modes (eigenvectors): $\vec{E}_{\vec{K}n}(\vec{r})$; $\vec{H}_{\vec{K}n}(\vec{r})$;

If we consider infinite periodic structures, real values of ϵ (i.e lossless case), Γ_E and Γ_H are Hermitian eigen-operators:

$$\mathcal{W}_{\bar{K}n} \in R$$

$$\vec{E}_{\bar{K}n}(\vec{r}); \quad \vec{H}_{\bar{K}n}(\vec{r}); \quad \text{Are a complete set of orthogonal eigen-functions.}$$

Solving equations for several values of K and w it is possible to calculate and plot band diagrams (dispersion relations)

Photonic Crystals

Photonic crystals are characterized by a lattice, and a dielectric function (periodic over the lattice).

Primitive vectors

 $\vec{a}_1;$ $\vec{a}_2;$

$$e^{i\vec{G}\cdot\vec{R}}=1$$

$$R = n\vec{a}_1 + m\vec{a}_2 + l\vec{a}_3;$$

 $n, m, l = 0, \pm 1, \pm 2, ...$

Primitive basis vectors for the face-centered cubic lattice.

 $\mathcal{E}(\vec{r} + n\vec{a}_1 + m\vec{a}_2 + l\vec{a}_3) = \mathcal{E}(\vec{r})$ $n, m, l = 0, \pm 1, \pm 2, \dots; \vec{r} \in u.c.$

A periodic function can be expanded according to Fourier series:

$$\mathcal{E}(\vec{r}) = \sum_{\vec{G}} e^{i\vec{G}\cdot\vec{r}} F(\vec{G});$$

RECIPROCAL LATTICE

The set of G vectors are selected in order to have a periodic oscillating function over the unit cell. This means that in a

Photonic Crystals

Analysis of 2D and 3D Photonic crystals

Examples in 2D

k,

Triangular lattice

Fig. 1.11. Left. Triangular lattice formed by pores created in a dielectric substrate and corresponding Brillouin zone. **Right**. Band diagram calculated for a dielectric substrate with a permittivity $\varepsilon = 11.7$ and a period $a = 2\mu m$, while the radius of the pores is r/a = 0.45. The band gaps are indicated by grey bands

Isofrequency curves

Computational Tools

Plane Wave Expansion (PWE) Method

-CPU time demanding and considerations on the truncation of the Fourier expansion of the dielectric constant have to be done to check convergence

Koringa-Kohn-Rostker (KKR) Method

- based on spherical waves expansion. Scattering matrix approach used for the elementary cell. it provides the Green function for the periodic structure on the basis of spherical harmonics.

Transfer matrix method

- Developed by Pendry's group at Imperial College. It also provides amplitude and phase information.
- Rigorous Coupled-wave analysis RCWA

Numerical simulations:

- Finite difference time-domain computation (Sakoda's book)

- Modified FFT-TD Beam propagation method (papers by M. Scalora, J. Haus)

Plane Wave Method

2D simplification scalar equations

• E-polarization - **k** in the 2D plane - Scalar equation H-polarization - **k** in the 2D plane - Scalar equation $\begin{aligned}
\vec{E} = E(x, y)\hat{z} \\
\vec{C}^{2} \sum_{\vec{G}'} \varepsilon_{z}(\vec{G} - \vec{G}')E(\vec{G}') \\
\vec{H} = H(x, y)\hat{z} \\
- \mathbf{k} \text{ in the 2D plane}
\end{aligned}$

To solve these eigenvalue equations the number of terms is truncated. In some cases a high number of equations must be considered. Convergence tests must be performed.

Nature has produced nanoscopic periodic structures that inspire researchers to create entirely new solutions to persistent problems.

Diatom (unicellular algae) convert sunlight into chemical energy.

Details of the silica shell structure of the diatom species Coscinodiscus granii and Coscinodiscus wailesii

"Inspired by Nature" Photonic Crystals

BIOMIMETICS: emerging science of mimicking the properties that nature produces on its own. For example:

Darren Bagnall at the Southhampton University nanofab facility has patterned silicon after the structure of a night flying moth cornea. The moth cornea allows very little light to escape making it an excellent anti-reflective coating.

Coloration in Butterfly wings

Pigments found in butterflies, (melanins, pterins) can produce yellow, orangeyellow, red, black and brown colors.

Blue, violet and green colors are results of the scales micro and nanostructure of the wings.

ELSEVIER

Fig. 1: A sea mouse or *Aphrodita* (note the iridescent felt on the edge of its body). From Sue Daly, *Marine Life of the Channel Islands*, 1998 (with permission).

The sea mouse-Aphrodita sp. (Polychaeta: Aphroditidae)

Available online at www.sciencedirect.com SCIENCE

Physica B 338 (2003) 182-185

www.elsevier.com/locate/physb

Structural colours through photonic crystals

R.C. McPhedran^{a,*}, N.A. Nicorovici^a, D.R. McKenzie^a, G.W. Rouse^b, L.C. Botten^c, V. Welch^d, A.R. Parker^d, M. Wohlgennant^e, V. Vardeny^e

^a Department of Theoretical Physics, School of Physics, University of Sydney, NSW 2006, Australia
 ^b School of Biological Sciences, University of Sydney, NSW 2006, Australia
 ^c School of Mathematical Sciences, University of Technology, Sydney, P.O Box 123, Broadway, NSW 2007, Australia
 ^d Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
 ^e Department of Physics, University of Utah, Salt Lake City, UT 84112, USA

• Electron micrographs of a spine and a felt hair. Both contain close packed voids of water in chit in (refractive index 1.52). The spine has 88 layers of holes with a spacing of 0.51 $\mu m.$

Natural Photonic Crystals Opal - silica spheres

Close packed spheres form a FCC lattice. 3D photonic crystals.

Zakhidov et al., Science 282, 897 (1998)

Colloids, artificial opals


```
microspheres (diameter < 1 \mu m)
```

sediment by gravity into close-packed fcc lattice!

Convective Assembly

[Nagayama, Velev, et al., Nature (1993) Colvin et al., Chem. Mater. (1999)]

Capillary forces during drying cause assembly in the meniscus. Flat, thin films, large area opals are acheived

Inverse Opals

Zakhidov et al., Science 282, 897 (1998)

CdSe inverse Opal synthesis

1. Silica PBG immersed in solution of CdSe nanoparticles

2. Solution evaporates leaving the CdSe particles behind

3. Sintering leads to densification of the CdSe particles.

4. Silica is etches away, leaving CdSe matrix

D. Norris and Y. Vlasov, Adv. Mat. 13, 371 (2001)

Semiconductor Processing

Fabrication of high-aspect-ratio two-dimensional silicon-based photoniccrystal chipsY. Xu et al., J. Opt. Soc. Am. B18, 1084 (2001)

5000

40.

Combination of e-beam lithography and dry etching

III-V semiconductor techniques for 3D photonic crystal fabrication

Multilayer Growth (Heteroepitaxy): MBE or MOVPE.

Lithography: electron beam lithography or deep UV.

Dry etching: reactive ion etching (RIE), chemically assisted ion beam etching (CAIBE), inductively coupled plasma (ICP).

Selective Wet Oxidation in high (differential) Al-fraction arsenides and phosphides.

Nanoimprint

Transfers the desired structure to a substrate covered with PR. 10 nm accuracy achieved.

Photofabrication - Polymers

Photonic crystal fibers

Air-core confined light

J. C. Knight, Nature 424, 847-851 (2003)

Bulk Photonic crystals properties

- Enhanced nonlinear optical effects

Spatial dispersion (Superprism effect)

- Negative refraction
- Large angle deflection 500x
- Self-collimation

(+ negative refraction)

Dispersive refractive index dispersion

- Control of light propagation
- Phase-matching for harmonic generation

Group Velocity and isofrequency curves

3

2

Group velocity=Energy velocity (proof: Yariv's Optical waves in crystals; Lossless case)

 $\vec{v}_g = \vec{\nabla} \, \boldsymbol{\omega}(\vec{K}) \Big|_{\vec{K} = \vec{K}_0}$

Superprism effect and Negative refraction in Photonic crystals

The superprism is a function of a photonic crystal which allows wide-angle deflection of a light beam by a slight change of wavelength and incident angle.

Superprism effect and Negative refraction in Photonic crystals

Fig. 4. Photographs demonstrating the superprism phenomena—Wavelength sensitive propagation: (a) light paths inside a PC with incident light of $0.99 \ \mu m$ and $1.0 \ \mu m$ wavelengths. A large swing reaching 50° was achieved with a slight wavelength change of 1%. The incident light was polarized in the TM mode and tilted at 15° from normal to the crystal edge and (b) light propagation in a conventional Si crystal under the same condition as (a). The two beams with different wavelengths traced almost the same paths.

H. Kosaka et al. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999

Autocollimation

Superlensing with Photonic Crystals

[Luo et al, PRB 68, 045115 (2003).]

Here, using *positive* effective index but negative "effective mass"...

The Band Edge Laser

J.P. Dowling et al, J. Appl. Phys. 75, 1896-1899 (1994).

The group velocity near the bandedge is zero because of coupling between the Bloch waves. Photons in the PC can then interact with an active material for a lengthy period, which results in lasing operation.

Micro lasers with large emitting areas can be obtained without resorting to the use of cavity mirrors. 2 D Photonic crystals allow slow light in plane propagation and extraction of laser light form the whole surface of the crystal.

S.H. Kwon et al. APPLIED PHYSICS LETTERS VOLUME 83, NUMBER 19 (2003)

Square-lattice bandedge lasers are realized by room-temperature optical pumping of photonic crystal air-bridge slabs of InGaAsP quantum wells emitting at 1.5 mm.

FIG. 1. (a) Top-view scanning electron microscope image of a fabricated square-lattice photonic crystal free-standing slab. The lattice constant and air-hole radius are 550 nm and 210 nm, respectively. Thickness of the slab is 200 nm. (b) The corresponding band structure calculated by the PWE method.

FIG. 2. Mode pattern images of (a) the second X and (b) the second M points bandedge lasers taken by a CCD camera. The dotted squares represent the boundary of the photonic crystal lasers. The side views of the intensity profiles of (c) the second X and (d) the second M points bandedge modes.

The Band Edge Laser

S.H. Kwon et al., Optics Express 12, 5356-5361 (2004).

Fig. 2. (a) Typical mode pattern images of PBG-BE lasers taken by an infrared camera. The dotted white hexagon represents the boundaries of the photonic bandedge mode region, which is same with the central region (I) of the SEM image. (b) Fourier space field pattern of the PBG-BE mode. (c) Top-view and (d) side-view of the calculated electric-field intensity profile of the PBG-BE mode. The dotted white hexagon indicates the boundary of the bandedge mode region. (e) side-view of the first K point bandedge mode operating at the finite PC pattern with no surrounding air hole. The intensity is indicated by a logarithm scale.

Using Photonic Crystals with intentional defects

Photonic GAPs can be used to confine light in a region of space

Light cannot propagate inside the crystal and it is confined in a finite region of space.

Mode of electromagnetic waves inside the cavity must fulfill proper boundary conditions (discrete eigenfrequency spectrum)

Light tuned in the gap cannot exit form the line defect which acts as a waveguide. Propagation constants of guided modes will appear in the gap of the perfectly periodic crystal's band diagram.

RESONANT C	AVITIES
-------------------	---------

:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
	ċ	÷	ċ	ċ	÷	÷	÷	÷	ċ	÷	÷	÷	ċ	ò	÷	÷	÷	ò	÷	÷	
	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
•••• ()	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•••
•••• O	\circ	$^{\circ}$	\circ	\circ	${}^{\circ}$	\circ	$^{\circ}$	${}^{\circ}$	igodol	$^{\circ}$	$^{\circ}$	$^{\circ}$	\circ	$^{\circ}$	$^{\circ}$	${}^{\circ}$	$^{\circ}$	\circ	$^{\circ}$	$^{\circ}$	• • •
•••• •	\circ	\circ																\bigcirc	igodol	\circ	• • •
•••• O	\circ	\circ																\circ	igodol	\circ	• • •
•••• O	\circ	\circ																\circ	0	0	• • •
•••• O	\circ	\circ																\circ	0	\circ	• • •
•••• O	0	0																\circ	0	0	• • •
•••• O	\circ	0																\circ	igodol	0	• • •
•••• O	\circ	\circ																\circ	\circ	0	• • •
•••• O	\circ	0																\circ	0	0	• • •
•••• O	\circ	\circ																\circ	igodol	$^{\circ}$	• • •
•••• O	\circ	\circ	\circ	0	0	\circ	igodol	igodol	\circ	igodol	${}^{\circ}$	0	igodot	igodol	${}^{\circ}$	0	0	igodot	${}^{\circ}$	0	• • •
•••• O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	• • •
•••• O	\circ	\circ	\circ	\circ	\circ	\circ	0	\circ	igodol	0	0	\circ	igodol	0	\circ	\circ	\circ	\circ	0	\circ	• • •
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	
•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	٠	٠	•	

WAVEGUIDES

10	d pe	riod	icity	/ —				•
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
				con	ser	/ed	<i>k</i> !	
\bigcirc	\bigcirc	\bigcirc				/ed	<i>k</i> !	\bigcirc
	0 0	○ ○	• • •			/ed	k!	○

Control of Electromagnetic Waves 1D Micro-cavity

Micro-cavity sandwiched between two Bragg mirrors. High Q factors, high fields intensity enhancement inside the structure.

$$Q = 2\pi \frac{\text{Stored Energy}}{\text{Energy lost per cicle}} = \omega_0 \frac{\langle \text{Energy} \rangle}{\langle \text{Power loss} \rangle} \approx \frac{\omega_0}{\Delta \omega_0}$$

2D single mode Micro Cavity

Control of Electromagnetic Waves 2D Micro Cavities

Control of Electromagnetic Waves Spontaneous emission suppression E. Yablonovitch, PRL (1987)

- Excited atoms in a Photonic crystal will not radiate; i.e. no radiation mode is available.
- Add a defect that introduces a single mode in the band gap. Now when an atom radiates its first photon it has no other choice except into the defect mode. Thereafter the atoms radiate by stimulated emission. Zero threshold laser.

Several examples will be discussed in the next lecture "Applications of Photonic Crystals"

Photonic Crystal waveguides

Photonic Crystal waveguides

We add a defect:

Hollow Bragg waveguides

Control of Electromagnetic Waves 2D waveguides

any state in the gap cannot couple to bulk crystal -> localized

Control of Electromagnetic Waves 2D devices

100% transmission sharp bend [A. Mekis *et al.*, *Phys. Rev. Lett.* **77**, 3787 (1996)]

Waveguide crossings (waveguide + cavity)

Channel drop filters (waveguide +cavity)

And many other applications for integrated optics and optical communications.

- Using Photonic Crystals properties for integrated sources and devices;
- Tailored DOS, Control of Spontaneous emission, Ph.C.microcavity
- Photonic Crystal Biosensors;
- Photonic crystal fibers and applications;
- Nonlinear effects enhancement, SHG and parametric fluorescence