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over USA.



Developing parameterisations for (high resolution) GCMs
Reasons for using RCMs

RCMs can be forced at the boundaries by high quality analyses.

RCMs can be integrated (affordably) at probable resolutions of
future 6CMs (e.g. 10-100km)

RCMs can be targeted at key failures in present GCMs

e.g. Subtropical stratocumulus, Monsoon circulations etc etc.
RCMs can be integrated without error advection from external
regions (of a GCM domain) Subject to the quality of the analyses

Parameterisations can be developed and tested at specified
resolutions, with dynamical interaction at the same resolution
A complement to Single Column Models

RCMs can be centred around regions of high quality observations
and periods of intensive observation (e.g. CEOP, TOGA, LBA, AMMA)

RCMs can provide ‘large-scale’ forcing to LES/CRM/SCMs consistent
with the analysed large-scale for a defined time period (e.g. RICO)



GEWEX RCM Transferability Working group

6.Takle, R.Arrit, W.Gutowksi (ISU) J.Roads (ECPC),
B.Rokel (6KSS) A.Zadra(CMC) and C.Jones (UQAM/SMHI)

ICTS: Inter-CSE (Continental Scale Experiment)
Transferability Study A TW6G/CEOP co-sponsored project

Aims: To assess the performance of (unmodified) RCMs
across a wide variety of (global) climate conditions
using CSE/CEOP observations for model evaluation.

Objectives: Using multi-model, multi-domain evaluation
identify common and individual weaknesses
and strengths of RCMs with respect to
simulating regional water and energy cycles.

Through an iterative procedure improve RCM abilities
to simulate these processes on all model domains.



The ICTS Regional Climate Modelling protocol aims to capitalise
on the global coverage offered by CEOP observations
to assess and improve the global transferability of RCMs

water 0 100 200 500 1000 1500 3000 5000 m

Unmodified RCMs were run on a variety of domains around the globe



ICTS Modelling and Evaluation structure
Integration period 2000-2004

LBCs from Reanalyses (ECMWF, NCEP etc)

Common grid and |
Data format |

= CEOP Reference || Additional non
Satellite Data || Site Data I CEOP data

From Burkhardt Rokel GKSS



Forced by analysed
boundary conditions
RCMs simulate the
higher time frequency
meteorology accurately
(e.g MSLP):

Parameterisations can
therefore be developed
and evaluated in a
realistic large scale
meteorological setting
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Frequent, high-quality CEOP observations allow a
detailed evaluation of a wide range of simulated
variables, across a variety of geographic locations



Simulated 2m temperature and precipitation NE Thailand 2002 -2004

Thailand Larnpang Chao Pharya River Lampang Precjpitatjon 2002 —2004 (mm)
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Mean Diurnal Cycle of 2m-temperature in North East Thailand
JJA 2003-04 : Local Time = UTC +6.5 hours
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Mean Diurnal Cycle of Precipitation North East Thailand
(JJA 2003-04): Local Time = UTC + 6.5 hours
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Problems simulating the subtropical dry season over
South America and the use of CEOP observations




In the original ICTS runs the RCA3 model had a large warm bias
in screen temperature during the dry season over South America

Manaus: Screen temperature
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RCA3 has 3 soil layers, with a thin (1cm thick) top soil layer
included to simulate rapid diurnal changes in surface temperature.

In the original ICTS runs a number of key vegetation related
parameters were either parameterised or specified in a manner
that had been developed and validated for mid-latitude conditions

e.g. Leaf Area Index (LAI) and vegetation rooting depth (ZW2)

A new set of RCA simulations were recently made for ICTS

whereby surface physiographic data was specified based on the
Global ECOCLIMAP data set. This data set includes observational
based estimates of LAI, rooting depth and soil thermal conductivity.

ECOCLIMAP LAI has a different annual cycle in the tropics
compared to the original RCA3. Tropical rooting depths are much
deeper in ECOCLIMAP (up to ~5m compared to ~Im in original RCA3)



In the original RCA3 runs, the surface latent heat flux fell close to
zero in the dry season, with a commensurate increase in the surface
sensible flux.The shut down of evaporation led to the surface layer

warming rapidly and development of the large warm bias seen earlier

Manaus: Surface Latent Heat Flux
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Manaus: Surface Sensible Heat Flux

Latent heat (W/m2)
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Using the ECOCLIMAP surface physiography data set the new RCA3

runs (RCAECO) show much better agreement of near-surface
temperature with the CEOP observations over South America.

Manaus: Screen temperature
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In RCA3ECO surface evaporation is maintained throughout the dry
season, with a marked reduction in the surface sensible flux. Net
surface radiation is now mainly balanced by evaporative cooling rather
than surface warming leading to a 12°C cooling relative to RCA3.

Manaus Sur'face Laten'r Hea'r Flux
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Brazil Manaus 2002—2004

— 315

E 42 [ICTS RCA3 .

To determine which physiographic

Lol variables were important in reducing
o fh sy Vhrelisi4  Tthe surface temperature bias in
T o e A o e A o RCAECO, extra RCA runs were made

L with the original LAT and Z2W (rooting
i depth) values separately reset to the
o et T SPTS original values. A further run was also
225 ey ————————————————  made with both LAT and Z2W set to
the original RCA3 values.

S z97
£ aoe

2 308

X

Modifications to the convection
scheme had also been made between
RCA3 and RCAECO. On going back to

the original convection along with the
L5 | Ak LAT and Z2W values the original warm
" san mer EJﬂt'gz oct Jan Apr z%‘léla Oct Jan Apr EJGL.& oct bias is Iar‘gely retrieved.

Jan A|:.:r zJo;:';z Oct Jan A;.:-r 2.10{513 ot Jan A;lzlr EJ[};gd oot The warm bIGS |n The mOdlerd
returned to the original RCA3 warm
2512 [ECO Z2W Lal|

g aoo
& 297
= 315 = — — . .
PR ECOCLIMAP runs only partially
4 303 : .
T T e T e bias (e.g. ECO_Z2W_LAT)
2002 2003 2004
—~ 315 T T T T T T T T
5309
-;303
For

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
2002 2003 2004

315 T
¥ 512 | OLD KFCUM

g 09 —
= 308

% 303




Latenl heal (W/m2) Latent heat (W/m2) Latent heal (W/m2) Latent heal (W/m2) Lalent heat (W/m2)

Lalent heat (W/m2)

Manaus Brazil 2002—2004

300

250 FICTS RCAZ
200
150
100
511}
(1]

—50
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
2002 2003 2004

300
o50 EECO2 |
200
160

—50 .

Jan Apr Jul Oet Jan Apr Jul Oet Jan Apr Jul Oct
2002 2003 2004

300

2560
200 E
150
100
50
a

—60

300
250
200
150
100
60
a
50

The combined
impact of the
convection and
surface terms
are confirmed
when looking
at the surface
flux variables.

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
2002 2003 2004

300 T
250 ERCO Z2W LAL
200
160
100
a0
Q
—50 . . . . L .

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
2002 2003 2004

300
260
200
150
100
50
a
—B60

Jan Apr Jul Ocl Jan Apr Jul Oct Jan Apr Jul Oct
2002 2003 2004

Manaus

Sensible heat (W/m2) Sensible heat (W/m2) Sensible heat {W/m2) Sensible heat (W/m2) Sensible heat (W/m2)

Sensible heat {W/m2)

120
100
BO
60
40
20
0
—-20

Brazil 2002—2004

ICTS RCA3

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul OQct
2002 2003 2004

120
100
B0
B0
40
20
0
—-20

Jan Apr Jul 0Oct Jan Apr Jul QOet Jan Apr Jul Oect
2002 2003

120
100
80
B0
40
20
¢]
20

2004

Jan Apr Jul Ocl Jan Apr Jul Oet Jan Apr Jul Oet
2002 2003 2004

120
100
BOD
g0
40
20
+]
—20

FCO LAl

Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct
2002 2003 2004

120
100
BO
80
40
20
o
—&0

Jan Apr Jul Oct Jan Apr Jul Oect Jan Apr Jul Oect
2002 2003 2004

OLD KFCUM

Jan Apr Jul Oct Jan Apr Jul Oet Jan Apr Jul Oet
2002 2003 2004



Manaus Prempltahon 2002—-2004 (mm)
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Combined with, and forcing,
the reduction in surface
evaporation (latent flux) is
a marked reduction in
precipitation in the dry
season (fo zero in the
original ICTS RCA3 runs)

A weak rainfall rate during
the dry season appears
important for maintaining
surface evaporation and thus
constraining surface warming.



Santarem Precipitation 2002—-2004 (mm)
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ECO?2 run illustrates the full
ECOCLIMAP + new convection runs
of RCA3 compared to the original
ICTS RCA3 runs at Santarem

3 convection changes were each
individually set back to the original
RCA3 values to determine which
change was important in maintaining
precipitation during the dry season.

EE2: Entrainment rate increased
for relatively dry environments.

OLDTRIG: New trigger function
set back to original, based solely on
temperature perturbations at LCL

OLDCAPE: New CAPE calculation
for an dilute updraft set back to

original undilute CAPE profile for
The KF CAPE closure



Each convection change plays a role in maintaining dry season rainfall
constraining the surface fluxes & femperatures at Manaus & Sanatrem
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Summary of ICTS analysis.

CEOP observations, particularly of surface turbulent fluxes,
combined with TRMM precipitation observations proved
extremely useful in understanding and improving a large bias
in the Rossby Centre Regional Climate Model over S. America.

Surface turbulent fluxes in subtropical dry seasons are very
sensitive to the representation of surface physiography and
the maintenance of weak convective precipitation.

Using a thin upper soil layer, surface temperature is very
sensitive to errors in the surface water and energy balance.
But a thin, top soil layer may be required to simulate the
diurnal cycle accurately.

We are presently evaluating the RCAECO configuration on the
other ICTS domains: Some improvements, no degradation yet |



The sensitivity of African precipitation to model resolution

Studies using the Canadian Global Environmental Multiscale Model
(GEM), run in Global regular mode at 2° and 1° resolution and in
Global variable resolution mode, with an outer global resolution of
2° and an inner high-resolution region over Africa of 0.33°
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GEM variable resolution: 2° global resolution
0.33° over North Africa & the tropical Atlantic.




Précipitation (mm/jour) pour 1979-2003 Zone |
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Mean Annual Cycle of precipitation averaged across the
African ITCZ as a function of latitude.
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Time-Latitude Diagrams 1998-2003 (Zone I)
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Understanding and evaluating cloud-radiation errors in RCMs

With suitable averaging (point) surface observations
(e.g. of clouds and radiation) can be used in RCM evaluation



Annual Cycle of surface shortwave (SWD) and longwave (LWD)
radiation at the ARM SGP site in Oklahoma (1996-2002):

Observed and simulated by the GEM-LAM forced by ERA40
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Separating model and observations into clear sky and
overcast conditions helps in evaluating the individual
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Cloud Fraction (%)

Cloud Fraction, while difficult to observe accurately,
plays a key role in determining surface radiation errors
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Separation into clear and overcast conditions allows an analysis
of the covariability of terms controlling the surface radiation fluxes

Clear-sky Solar' RGdIGTIOh flux against In’regra‘red WaTer Vapour
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Clear-sky longwave radiation flux against Integrated Water Vapour
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Using RCMs to simulate convection over the East Pacific
and South America : RCA at 0.3°with ERA40 LBCs
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RCMs sometimes improve on reanalysis products in data sparse
regions, when run at high-resolution forced by analysed LBCs

RCA-Simulated, Japanese Reanalysis and TRMM observed
monthly mean r'amfall aver'aged over ’rhe Eas’r Pacuflc ITCZ
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Mean Annual Cycle of precipitation averaged
over the East Pacific ITCZ (1998-2003)
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(a-d) Normalized intensity distribution for pentad rainfall in mm/day
(1979-2005) for 4 regions of central/south America

(e-h) Contribution of each pentad-mean intensity bin to the total
precipitation in each spatially meaned region (1979-2005)
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RCMs allow an indepth evaluation of key interacting
parameterisation schemes required to accurately
simulate important regional processes:

The Low Level Jet (LLJ) and the diurnal cycle of
precipitation in the Central United States
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Summary

RCMs can be used productively for developing and

evaluating parameterization schemes at high resolution
(10-100km)

To benefit most from this, it is important that the
RCM performance is evaluated across a wide range
of climate regimes.

It is important to evaluate RCM performance at the
process level whenever possible

Increased resolution does appear beneficial in many
instances. This does not come automatically but
often requires effort with model physics/dynamics to
fully realize the benefits.





